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The new era of gravitational wave astronomy truly began on September 14, 2015, with the detection
of GW150914, the sensational first direct observation of gravitational waves from the inspiral and
merger of two black holes by the two Advanced LIGO detectors. In the subsequent first three
observing runs of the LIGO-Virgo network, gravitational waves from ∼50 compact binary mergers
have been announced, with more results to come. The events have mostly been produced by binary
black holes, but two binary neutron star mergers have been observed thus far, as well as the mergers of
two neutron star–black hole systems. Furthermore, gravitational waves emitted by core-collapse
supernovae, pulsars, and the stochastic gravitational wave background are within the LIGO-Virgo-
KAGRA sensitivity band and are likely to be observed in future observation runs. Beyond signal
detection, a major challenge has been the development of statistical and computational methodology
for estimating the physical waveform parameters and quantifying their uncertainties in order to
accurately characterize the emitting system. These methods depend on the sources of the gravitational
waves and the gravitational waveform model that is used. This review examines the main waveform
models and parameter estimation methods used to extract physical parameters from gravitational
wave signals detected to date by LIGO and Virgo and from those expected to be observed in the
future, which will include KAGRA, and how these methods interface with various aspects of LIGO-
Virgo-KAGRA science. Also presented are the statistical methods used by LIGO and Virgo to
estimate detector noise, test general relativity, and draw conclusions about the rates of compact binary
mergers in the Universe. Furthermore, a summary of major publicly available gravitational wave
parameter estimation software packages is given.
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I. INTRODUCTION

While we can see the Universe with electromagnetic
radiations, we can now also listen to the Universe with
gravitational waves (GWs). After decades of work,
Advanced LIGO (Aasi et al., 2015b) and Advanced Virgo
(Acernese et al., 2015) made direct detections (B. P. Abbott
et al., 2019c; R. Abbott et al., 2021c, 2021f). The detections in
and of themselves were the confirmation of the prediction
made by Albert Einstein a century before (Einstein, 1916b,
1918) as a consequence of general relativity (Einstein, 1916a).
The direct detection of gravitational waves was a fundamental
physics result of tremendous significance. It should be noted
that the existence of gravitational waves was already estab-
lished by the observation of the decay of the orbit of a binary
neutron star system, exactly at the rate predicted by general
relativity (Taylor and Weisberg, 1982, 1989; Weisberg, Nice,
and Taylor, 2010; Weisberg and Huang, 2016). Gravitational
waves are a new means to observe the Universe, and are
providing important astrophysical and cosmological informa-
tion, with much more to come with future observations.
Advanced LIGO and Advanced Virgo have now completed

three observational runs. The first observing run O1 occurred
from September 12, 2015, until January 19, 2016, and
involved only Advanced LIGO. Advanced LIGO’s second
observing run O2 started on November 30, 2016, then went
until August 25, 2017. On August 1, 2017, Advanced Virgo
formally joined O2, although it was acquiring some engineer-
ing data leading up to that date. Advanced Virgo also observed
in O2 until August 25, 2017, thereby providing the first time
three detectors were used to search for gravitational waves.
The third observing run O3 commenced on April 1, 2019, and
ended on March 27, 2020.
The initial observation of gravitational waves was made

by the two Advanced LIGO detectors on September 14, 2015
(B. P. Abbott et al., 2016b). The signal detected at the LIGO-
Livingston Observatory (L1) and the LIGO-Hanford
Observatory (H1) can be seen in Fig. 1. Parameter estimation
methods were then employed on this observed signal, in this
case, the LALInference package of the LIGO Algorithm
Library (LAL) software suite (Veitch et al., 2015), which is
described later. The physical parameters estimated for this

signal include the masses, spins, luminosity distance, sky
position, and other parameters that are described in more
detail later. It was from the parameter estimation results that
the initial component masses m1 ¼ 36þ5

−4M⊙ and m2 ¼
29þ4

−4M⊙ of the system in its source frame corresponding to
GW150914 were obtained. The parameter estimation routines
generated bivariate and univariate posterior distributions for
these masses that are displayed in Fig. 2. The signal
reconstruction appearing in Fig. 1 is also a consequence of
the parameter estimation. From the observation that there are
two apparent point masses of 36M⊙ and 29M⊙, one can
declare that LIGO has observed black holes, another impor-
tant consequence of Einstein’s theory of general relativity
(Schwarzschild, 1916; Oppenheimer and Snyder, 1939; Kerr,
1963). The observation of stellar mass black holes around
30M⊙ also had important astrophysical implications (B. P.
Abbott et al., 2016a). Presented in Fig. 3 is a timeline of
important events pertaining to gravitational waves.
The importance of parameter estimation was also dramati-

cally displayed in association with GW170817 (Abbott et al.,
2017d), observed by Advanced LIGO and Advanced Virgo,
and produced by the merger of a binary neutron star system.
This observation was the birth of gravitational wave multi-
messenger astronomy. In addition to the gravitational wave
signal, a gamma-ray burst was observed 1.7 s after the merger
time (Abbott et al., 2017k). The gravitational wave signal
gave an estimate of the sky position and distance to the source
(see Fig. 4); this was consistent with the sky position that
could be inferred from the gamma-ray signals detected by
Fermi Gamma-ray Burst Monitor (GBM) (Goldstein et al.,
2017) and International Gamma-Ray Astrophysics Laboratory

FIG. 1. Measured detector strain time series of the first detected
gravitational wave signal by Advanced LIGO, GW150914 (B. P.
Abbott et al., 2016b) as observed in H1 (top panel) and L1
(bottom panel). The times displayed are with respect to
September 14, 2015, 09∶50∶45 UTC. The shaded regions are
the 90% credible regions for the reconstructed waveforms. The
dark blue area comes from a model that does not assume a
particular waveform morphology (template agnostic) and em-
ploys sine-Gaussian wavelets, namely, BayesWave, described
later in the review and by Cornish and Littenberg (2015). The
cyan portion corresponds to the modeled analyses (templated
analysis) using IMRPhenom (Ajith et al., 2007, 2008; Pan et al.,
2008; Hannam et al., 2014; Bohé et al., 2016; Husa et al., 2016;
Khan et al., 2016) and EOBNR (Pan et al., 2014; Taracchini et
al., 2014) template waveforms (described later). Gray traces
represent the data. From B. P. Abbott et al., 2016e.
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(INTEGRAL) (Savchenko et al., 2017). The localization of
the emission of the signal allowed for the identification of the
source, and then the discovery of the kilonova (Abbott et al.,
2017d; Coulter et al., 2017a). This was a tremendously
important event, and the ability to use parameter estimation
to find the source of GW170817 led to numerous significant
observations (Abbott et al., 2017e). It also led to important
fundamental physics results, such as an independent

measurement of the Hubble constant (Abbott et al., 2017j)
and the demonstration that the speed of gravity is the same as
the speed of light (Abbott et al., 2017k).
The goal of this review is to summarize the state of

parameter estimation for gravitational wave observations.
The review is dedicated to applications from the ground-
based detectors (Advanced LIGO, Advanced Virgo, KAGRA)
(Aso et al., 2013; Akutsu et al., 2019, 2020). There are
numerous studies addressing parameter estimation for the
Laser Interferometer Space Antenna (LISA) (Amaro-Seoane
et al., 2017; Babak, 2017) and pulsar timing (Hobbs and Dai,
2017; Alam et al., 2021a, 2021b). In this review we address
only the ground-based detector results and encourage the
interested reader to also explore the rich parameter estimation
literature for LISA and pulsar timing. In their first three
observation runs Advanced LIGO and Advanced Virgo
reported the observations of gravitational waves from ∼50
compact binary mergers (B. P. Abbott et al., 2019c; R. Abbott
et al., 2021c). The results from the second half of the third
observing run are still forthcoming. Parameter estimation
routines applied to these signals have produced results in
fundamental physics, astrophysics, and cosmology. We
present a review of these methods and results.

II. HISTORY

We present here a review of the history of parameter
estimation for gravitational waves. Early papers that addressed
the inverse problem of estimating the parameters of gravita-
tional wave signals from ground-based laser interferometric
measurements were predominantly using maximum-likeli-
hood- (ML-) based approaches. Davis (1989) gave a general
overview of the statistical theory of signal detection including
the classical theory of hypothesis testing, ML estimation of
unknown parameters, nonlinear filtering in signal detection,
and prewhitening filters to handle correlated noise. Gürsel and
Tinto (1989) developed a method to estimate the source
direction and the amplitudes of gravitational wave burst

FIG. 2. Source frame component mass parameter posterior
probability distributions for the first detected gravitational wave
signal by Advanced LIGO, GW150914 (B. P. Abbott et al.,
2016b). The waveform models are IMRPhenom (blue) and
EOBNR (red), with the combined posterior probability distribu-
tions (black). The 50% and 90% credible regions are drawn for
the two-dimensional posterior probability distribution. From B. P.
Abbott et al., 2016e.

FIG. 3. Timeline of significant events in the history of gravitational waves. These include Einstein’s papers on gravitational waves
(Einstein, 1916b, 1918), predictions of gravitational collapse of stars and the creation of neutron stars (Oppenheimer and Snyder, 1939;
Oppenheimer andVolkoff, 1939), and a general-relativistic solution for spinningmasses (such as black holes) (Kerr, 1963). The renowned
Chapel Hill conference in 1957 led to the acceptance by the physics community that gravitational waves truly exist (Bergmann, 1957). The
first pulsar was discovered in 1967 (Hewish et al., 1968), followed by the binary pulsar in 1967 (Hulse and Taylor, 1975) and the
observation of the orbital decay of the binary pulsar by the emission of gravitational waves (Taylor andWeisberg, 1982). Construction for
LIGO began in 1994, and 1996 for Virgo. Initial LIGO and Virgo made observations from 2002 to 2010, but with no detections. The
Advanced LIGO and Advanced Virgo observing runs to date were at O1, O2, and O3, while future observing runs O4 and O5 will also
includeKAGRA. The LISAmission is presently predicted to begin in 2034 (Amaro-Seoane et al., 2017), while a third generation detector,
such as the Einstein Telescope (Punturo et al., 2010) or the Cosmic Explorer (Reitze et al., 2019), should start observations in the 2030s.
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signals from observations of three detectors assuming white
noise using a least squares approach and optimal filtering
without any explicit model for the GW waveform. Echeverria
(1989) was the first to not only estimate the mass and angular
momentum of a perturbed Kerr black hole from the emitted
gravitational waves but also describe a method for determin-
ing the uncertainty in the parameter estimates. The method is
based on Wiener optimal filtering and determining the
parameters that maximize the signal-to-noise ratio.
However, the results were valid only for a sufficiently large
signal-to-noise ratio (SNR) and provided no guidance for
estimating the amplitude of the signal. ML estimation was
used by Królak, Lobo, and Meers (1993) to estimate the
amplitude, phase, time of arrival, and chirp mass of compact
binary coalescing systems. The chirp mass is defined as

Mc ¼
ðm1m2Þ3=5

ðm1 þm2Þ1=5
; ð1Þ

and it is the mass parameter that describes the evolution of a
binary system as its orbit decays via gravitational wave
emission. In Sec. V a more complete description is given.
Jaranowski and Krolak (1994) extended the ML approach to
data from three detectors to estimate the source direction and
the strain amplitudes. Cutler and Flanagan (1994) determined
the accuracy of ML estimates of the masses, the spins, and the
distance to Earth for gravitational waves of binary inspiraling
systems using lowest-order Newtonian waveforms. They gave

an example using the Marković approximation (Marković,
1993) in which there is no uncertainty of the location in the
sky of the binary. This reduced the unknown parameters of the
gravitational waveform to the distance to the binary, the cosine
of the inclination angle to the line of sight, the polarization
angle of the gravitational wave, and the phase at collision
time. They expanded their analysis to include post-Newtonian
effects on parameter estimates.
Even with the development of inverse probability and

Bayes’s theorem by Thomas Bayes and Pierre-Simon
Laplace dates back to the 18th century and the fact that
physicists Sir Harold Jeffreys and Edwin Jaynes were strong
proponents in the 20th century, Bayesian ideas in astronomy
did not appear until the late 1970s in the field of image
restoration (Gull and Daniell, 1978). The methodology was
focused on the principle of maximum entropy, finding a point
estimate based on maximizing an entropy-based prior subject
to some likelihood-based constraint (Hilbe and Loredo, 2013).
This still fell short of a proper Bayesian approach using all of
the posterior distribution and marginalization to determine
point estimates of parameters and their uncertainties. The use
of Bayesian inference in astronomy as well as most other
disciplines was hindered by the difficulty of computing the
posterior distribution for problems with a large number of
parameters. Computing the joint posterior distribution using
Bayes’s theorem required high-dimensional integration to
evaluate the normalization constant and a determination of
the marginal posterior distribution of each individual param-
eter. As numerical integration is feasible only for dimensions
up to ≈5, the Laplace approximation (Gelman et al., 2014)
works well only for unimodal and symmetric posteriors and
ordinary simulation methods based on independent random
draws such as importance sampling (Gelman et al., 2014) are
efficient only in low dimensions, the progress of Bayesian
inference was ultimately linked to progress in computational
solutions to high-dimensional integration problems. One such
solution already came with the development of the Metropolis
algorithm by Metropolis et al. (1953) and its extensions, the
Metropolis-Hastings (MH) algorithm (Hastings, 1970) and a
modification by Barker (1965). Instead of generating inde-
pendent samples from the posterior distribution, Metropolis
came up with the idea of generating dependent samples from
an ergodic Markov chain, constructed such that the posterior
distribution is its stationary distribution. However, its impor-
tance for Bayesian posterior computations remained unno-
ticed until the seminal paper by Geman and Geman (1984)
that applied the MH algorithm to the problem of image
restoration. This paper marked the turning point, as it garnered
significant interest from not only computer scientists but also
statisticians. More or less at the same time, statisticians had
simultaneously developed the Gibbs sampler, which was
based on the idea of generating a sample from a multivariate
distribution by generating repeatedly over cycles of full
conditional distributions (Tanner and Wong, 1987). The
Gibbs sampler was later shown to be a special case of the
MH algorithm; for a proof see Chap. 11.5 of Gelman et al.
(2014). The papers by Gelfand and Smith (1990) and Gilks,
Richardson, and Spiegelhalter (1996) laid out the foundations
of simulation-based Bayesian posterior computation using
Markov chain Monte Carlo (MCMC) methods. Coupled with

FIG. 4. Estimates of the sky position and luminosity distance for
the source of GW170817 using the data from the two Advanced
LIGO detectors and the Advanced Virgo detector. A rapid
parameter estimation routine (Singer and Price, 2016) using only
the data from the two LIGO detectors (light blue contours)
constrains the source sky location to 190 deg2, while with the
data from Virgo included (dark blue contours) the location
uncertainty is reduced to 31 deg2. The offline parameter estima-
tion analysis of Veitch et al. (2015) further reduces the sky-
location uncertainty to 28 deg2 (green contour). The upper right
inset shows an enlargement with a cross identifying the location
of the galaxy NGC 4993, where the source was found (Coulter
et al., 2017a). The bottom right inset shows the posterior
distribution functions for the luminosity distance with the vertical
line showing the redshift measured distance to NGC 4993. From
Abbott et al., 2017d.
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this algorithmic breakthrough, the 1990s also saw a continu-
ous improvement in hardware and computing power. This
combination triggered revolutionary advances in Bayesian
computation via MCMC methods. For a detailed review of the
history of MCMC techniques, see Hitchcock (2003). Thus, it
was in the mid to late 1990s that Bayesian computations
became computationally feasible, at the same time that the
LIGO Scientific Collaboration (LSC) was established in 1997
and interest in the development of parameter estimation of
signals to be observed by LIGO and Virgo was growing.
In 1992, Loredo (1992) already clearly contrasted the

Bayesian and frequentist approach to statistical inference
and outlined its promise for astrophysics. Gregory and
Loredo (1992) advocated strongly for a Bayesian approach
to statistical inference in astrophysical problems. Finn (1992)
laid out a Bayesian strategy for parameter estimation using the
posterior mode as a point estimate and normal approximation
to determine a credible interval. Finn and Chernoff (1993)
explored gravitational waves of binary inspirals observed by a
single detector using a quadrupole waveform approximation
characterized by four parameters: amplitude, chirp mass,
arrival time, and phase, again using the normal approximation
for posterior computation. Finn (1997) described the differ-
ence between the traditional frequentist and Bayesian
approaches to data analysis and pointed out the importance
of Bayesian parameter estimation for gravitational waves.
Christensen and Meyer (1998) were the first to show how
computational difficulties in computing the Bayesian posterior
distribution of gravitational wave parameters can be overcome
using the sampling-based MCMC approach. They demon-
strated the performance of the Gibbs sampler in the same four-
parameter setup as used by Cutler and Flanagan (1994). The
MCMC-based approach to posterior computation was rapidly
taken up by the LSC and applied to gravitational waves from
pulsars (Christensen et al., 2004; Umstätter et al., 2004;
Dupuis and Woan, 2005; Clark et al., 2007), rotating core-
collapse supernovae (Röver et al., 2009; Logue et al., 2012;
Edwards, Meyer, and Christensen, 2014), and observations
from the planned space-based observatory LISA (Cornish and
Crowder, 2005; Umstätter et al., 2005a, 2005b; Cornish and
Porter, 2007; Crowder and Cornish, 2007; Gair, Tang, and
Volonteri, 2010; Ali et al., 2012). For binary inspirals,
increasingly sophisticated MCMC techniques were developed
that took more and more accurate waveform approximations
into account with a growing number of parameters
(Christensen and Meyer, 2001; Pai, Dhurandhar, and Bose,
2001; Christensen, Meyer, and Libson, 2004; Röver, Meyer,
and Christensen, 2006, 2007; van der Sluys, Roever et al.,
2008; Aasi et al., 2013). These were further developed and
finally integrated into the LALInference adaptive MCMC
routine that is in place today to estimate the 15 parameters
describing the coalescence of two compact spinning binaries
(Veitch et al., 2015). Skilling (2006) developed nested
sampling as an algorithm to approximate marginal likeli-
hoods, which as a by-product also generates samples from the
posterior distribution. Nested sampling simulates from the
prior, conditional on having a likelihood value above a
threshold. In many applications, importance sampling or
MCMC algorithms are required to generate these internal
samples. Veitch and Vecchio (2010) introduced nested

sampling for parameter estimation of gravitational waves.
Nested sampling has been integrated in LALInference
and, together with the adaptive MCMC method, is routinely
employed for parameter estimation and evidence calculation
in LIGO. Both the MCMC method and nested sampling were
used to estimate the parameters of the first gravitational wave
signal GW150914 observed by LIGO, yielding consistent sets
of parameter estimates (B. P. Abbott et al., 2016e).
The importance that Bayesian parameter estimation played

in describing the physics associated with the first direct
observation of gravitational waves with GW190514 was
summarized by Meyer and Christensen (2016) and Meyer
et al. (2020). For the first gravitational wave multimessenger
event GW170817 (Abbott et al., 2017d), parameter estimation
provided an estimation of the source position that then led to
finding the optical counterpart (Coulter et al., 2017a), obser-
vations and studies of a kilonova (Metzger, 2020), estimation
of the neutron star radius and tidal deformability (Abbott
et al., 2018a, 2019b; Coughlin et al., 2019), a speed of gravity
limit (Abbott et al., 2017k), a new estimation of the Hubble
constant (Abbott et al., 2017j), tests of general relativity
(Abbott et al., 2019f), etc. With ∼50 gravitational wave
signals observed from compact binaries, parameter estimation
now allows for further tests of general relativity (R. Abbott
et al., 2021d) as well as detailed studies on the formation
mechanisms for these systems (R. Abbott et al., 2021a).

III. METHODS

We now review the general Bayesian approach to statistical
inference before describing the computational methods used
for calculating the posterior distribution of gravitational wave
parameters. For comprehensive treatments of Bayesian infer-
ence, see Jaynes (2003), Gregory (2005), Gamerman (2006),
Feigelson (2012), and Gelman et al. (2014).
The application of Bayes’s theorem, expressed in terms of

probabilities for observable events A and B as

PðAjBÞ ¼ PðBjAÞPðAÞ
PðBÞ ¼ PðBjAÞPðAÞ

PðBjAÞPðAÞ þ PðBjAcÞPðAcÞ ;

ð2Þ

is completely uncontroversial when applied, for instance, to
medical diagnostic testing where A is the event that a patient
has a certain disease, Ac is its complement, i.e., the event that a
patient does not have the disease, and B is the event that a
diagnostic test for that disease returns a positive result. It is
purely based on probability theory and the definitions of
conditional and marginal probabilities. The conditional prob-
ability of PðBjAÞ refers to the likelihood and PðAÞ to the prior
probability of A. Bayes’s theorem gives us a formula to update
a prior probability to the posterior probability PðAjBÞ after
observing B. Its application to the scenario where A are
unknown parameters of a statistical model and B are the
observed data has been the cause for seemingly unresolvable
disputes between frequentists and Bayesians. Whereas fre-
quentists argue that unknown parameters are fixed quantities
and thus cannot have a probability distribution, Bayesians aim
to quantify the uncertainty about unknown parameters using
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probability and thus treat them as random quantities. When
observations are denoted by d ¼ ðd1;…; dnÞ and unknown
parameters are denoted by θ ¼ ðθ1;…; θpÞ, the uncertainty
about the values of θ before observing the data is expressed by
the prior probability density function πðθÞ. The likelihood
function LðdjθÞ is the conditional probability density function
of the data given the unknown parameters. Bayes’s theorem in
this context gives the following posterior probability density
of the parameters after observing the data:

pðθjdÞ ¼ LðdjθÞπðθÞ
Z

¼ LðdjθÞπðθÞR
LðdjθÞπðθÞdθ ∝ LðdjθÞπðθÞ: ð3Þ

The denominator Z, also called the marginal likelihood, the
evidence, or the prior predictive distribution, does not depend
on θ and is therefore merely a normalization constant as far as
the posterior distribution of θ is concerned. It turns out that for
many sampling-based techniques, this normalization constant
is not needed, and therefore the posterior distribution is often
simply written as proportional to the prior times likelihood.
The normalization constant is important, though, for model
comparison and is an integral part of the Bayes factor; see
Sec. III.C. Calculating the marginal posterior distribution of
one of the parameters requires integrating the joint posterior
over the remaining p − 1 parameters. Similarly, calculating
the posterior mean or variance requires a further integration.
Thus, the main difficulty in Bayesian posterior computation
when the dimension of the parameter space is large lies in
solving high-dimensional integration problems. These inte-
gration problems can be solved analytically only for conjugate
priors, by numerical integration only in low dimensions, using
Gaussian approximations for unimodal and symmetric pos-
teriors but generally require simulation-based computational
techniques such as MCMC techniques or nested sampling, as
later described in more detail.
For gravitational wave applications, the data d consist of K

time series of gravitational wave strain measurements dðkÞ ¼
dðkÞðtÞ taken at detector k in a network of K detectors that
would compose the Advanced LIGO detectors at Livingston
and Hanford (USA), the Advanced Virgo detector at Pisa
(Italy), the cryogenic detector KAGRA in Kamioka (Japan),
and GEO 600 in Hanover (Germany). If the sampling
frequency (e.g., 16384 Hz for LIGO) is denoted by fs ¼
1=Δt and the measurements span τobs seconds, the strain time
series consists of T ¼ fs × τobs measurements dðkÞðtÞ; t ¼
1;…; T with a spacing of Δt seconds. Ignoring the calibration
error that is discussed in Sec. VI.A, the data dðkÞðtÞ are
modeled as follows as a gravitational wave signal hðkÞðtjθÞ
buried in interferometer noise nðkÞðtÞ:

dðkÞðtÞ ¼ hðkÞðtjθÞ þ nðkÞðtÞ; t ¼ 1;…; T: ð4Þ

The noise term combines a variety of noise sources such
as quantum, seismic, and thermal noise and is assumed to be
mean zero, wide sense stationary, and Gaussian with power
spectral density (PSD) SðkÞ. The PSD is given by the Fourier
transform of the autocovariance function γðkÞ, i.e.,
SðkÞðfÞ ¼ P∞

l¼−∞ γðkÞðlÞe−ilf, and uniquely characterizes

the second-order properties of the time series. For the moment,
we also assume that SðkÞ is known. In Secs. IV.A and IV.B we
explain statistical methods for estimating the spectral density
for a noise-only time series and how to simultaneously
estimate the spectral density and gravitational wave signal
parameters, respectively. The strain signal hðkÞðtjθÞ depends
on, say, p parameters θ ¼ ðθ1;…; θpÞ, such as the distance of
the source to Earth and the masses and spins for compact
binary coalescences. With respect to a geocentric reference
frame, the strain measured at detector k of a gravitational wave
source with polarization amplitudes hþ and h× located in the
sky at ðα; δÞ, where α is the right ascension and δ is the
declination of the source, is

hðkÞðtjθÞ ¼ FðkÞ
þ ðα; δ;ψÞhþðtjθÞ þ FðkÞ

× ðα; δ;ψÞh×ðtjθÞ; ð5Þ

where Fþ;× denote the antenna responses as functions of the
source locations and the polarization angle ψ of the gravita-
tional waves (Anderson et al., 2001). The time series are
usually down sampled from their original sampling frequency
of 16 384 Hz for LIGO and 20 kHz for Virgo to 4096 Hz,
bandpass filtered as the LIGO and Virgo detectors are
sensitive and calibrated only in the frequency bands of
10 Hz to 5 kHz for LIGO and 10 Hz to 8 kHz for Virgo,
and notch filtered around known instrumental noise frequen-
cies (Covas et al., 2018; R. Abbott et al., 2021e). Code for
these preprocessing steps is included in the LAL library
(LIGO Scientific Collaboration, 2018). The exact form of the
gravitational waveform model hþ;×ðtjθÞ and its parameters
depends on the emitting source of the gravitational waves. We
focus mainly on binary inspiral signals for which the param-
eter vector θ consists of 15 individual parameters with their
prior πðθÞ and describe their gravitational waveforms in
Sec. V. Gravitational waveform models for other sources
such as pulsars, core-collapse supernovae, and the stochastic
gravitational wave background are presented in Sec. IX.
For parameter estimation of ringdown-only signals, namely,

after two compact objects merge and the newly formed black
hole oscillates and emits gravitational waves until it comes to
equilibrium as a Kerr black hole, the time-domain formulation
of the likelihood [Eq. (4)] is directly used (Carullo, Pozzo, and
Veitch, 2019; Isi et al., 2019) to avoid the contribution of
spurious frequency contributions from the premerger phase.
However, in general when making use of theWiener-Khinchin
theorem (Wiener, 1964), the likelihood is usually specified in
the frequency domain by the assumption of stationary
Gaussian errors with known PSD and the independence of
observations between interferometers, yielding

LðdjθÞ ¼
YK
k¼1

LðdðkÞjθÞ

∝
YK
k¼1

eð−1=TÞðd̃
ðkÞ−h̃ðkÞÞ�SðkÞ−1 ðd̃ðkÞ−h̃ðkÞÞ; ð6Þ

where the complex vector d̃ðkÞ contains the Fourier coeffi-
cients defined by
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d̃ðkÞj ¼ d̃ðkÞðfjÞ ¼
XT
t¼1

dðkÞðtÞe−itfj

and SðkÞ is a diagonal matrix containing the PSD SðkÞðfjÞ
at the Fourier frequencies fj ¼ 2πj=T;j¼ 0;…;N,
N ¼ bðT − 1Þ=2c. The likelihood in Eq. (6) is known as
the Whittle likelihood and provides an approximation to the
exact Gaussian likelihood (Contreras-Cristán, Gutiérrez-
Peña, and Walker, 2006; Rao and Yang, 2020) that would
have a nondiagonal covariance matrix with a Toeplitz struc-
ture given by ΣðkÞ ¼ ½γðkÞði − jÞ�i;j¼1;…;T ; with γðkÞðlÞ ¼R
π
−π S

ðkÞðfÞeilfdf for l ¼ 0;…; T − 1. But it also provides
a valid approximation to non-Gaussian likelihoods (Tang
et al., 2021). The Whittle likelihood is thus an approximation
in two respects: The first approximation takes place when one
uses a Gaussian likelihood to approximate the potentially non-
Gaussian likelihood of the observations. The second approxi-
mation stems from replacing the quadratic form corresponding
to the observations in the exponent of the time-domain
Gaussian likelihood with a frequency domain term by the
sum of ½d̃ðkÞðfjÞ − h̃ðkÞðfjÞ�2=SðkÞðfjÞ. The Whittle likelihood
approximation therefore facilitates the likelihood evaluations
by avoiding matrix inversions of large covariance matrices.
Before going into more detail about specific waveforms and
prior distributions, Secs. III.A–III.E describe simulation-
based methods to compute the posterior distribution of
gravitational waveform parameters. These assume the PSD
to be known and fixed for the purpose of parameter estima-
tion. Section IV reviews techniques for spectral density
estimation.

A. Markov chain Monte Carlo technique

The well-known Monte Carlo technique of rejection sam-
pling (Rubinstein, 1981) can be regarded as a precursor of
MCMC techniques, and the Metropolis algorithm is easily
understood as a generalization. To sample from a target
probability density function pðθjdÞ, rejection sampling gen-
erates a candidate θ� ∼ qðθÞ from a proposal probability
density function qðθÞ that majorizes the target, i.e., pðθjdÞ ≤
MqðθÞ for all θ andM > 0. It then accepts θ� with probability

α ¼ pðθ�jdÞ
Mqðθ�Þ

and otherwise rejects θ� and draws a new candidate. It can be
shown that the acceptance probability is 1=M, so the rejection
method is efficient if M is close to 1, i.e., qð·Þ close to pð·Þ.
Note that the normalization constant of the posterior is not
needed for rejection sampling as it would cancel in the
acceptance ratio. Thus, this could easily be used for sampling
from the posterior; however, the main difficulty consists of
finding this majorization density, as doing so would require
first solving an optimization problem. In high dimensions, it
will also be difficult to find a majorization density that is close
enough to the target to be efficient.
Now, the MH algorithm is an extension of rejection

sampling in that it avoids having to use a majorization

proposal at the expense of generating dependent instead of
independent samples. It starts with some arbitrary θ0. The
proposal probability density function qðθjθ0Þ can now depend
on θ and does not have to majorize the target. A candidate
θ� ∼ qðθjθ0Þ is generated and accepted with probability

αðθ0Þ ¼ min

�
1;

pðθ�jdÞ
Mðθ0Þqðθ�jθ0Þ

�
;

with Mðθ0Þ ¼ pðθ0jxÞ=qðθ0jθ�Þ. That is the new value
θ1 ¼ θ�, and otherwise the previous value is recycled, i.e.,
θ1 ¼ θ0. This is then iterated. The acceptance probability of
the MH algorithm can be written as follows in its more
familiar form:

αðθnþ1Þ ¼ min

�
1;
pðθ�jdÞqðθnjθ�Þ
pðθnjdÞqðθ�jθnÞ

�
:

Note that, just as in rejection sampling, the normalization
constant of the posterior probability density function is
not required, pðθ�jdÞ and pðθnjdÞ have the same normaliza-
tion constant, and these would cancel out in the acceptance
probability anyway. In analogy to rejection sampling, the
efficiency of the MH algorithm depends crucially on
the choice of the proposal density. It should be close to the
posterior density but easy to sample from. In practice
multivariate normal or Student-t proposals are often chosen.
The original Metropolis algorithm is the special case where
the proposal probability density function is symmetric, i.e.,
qðθjθ0Þ ¼ qðθ0jθÞ. This algorithm generates a Markov chain.
Hastings (1970) proved the remarkable fact that, with just
about any choice of the proposal density q, the equilibrium
distribution for the Markov chain is the posterior pðθjdÞ, as
desired. Tierney (1994) gave the first comprehensive account
of theoretical results regarding convergence rates, laws of
large numbers, and central limit theorems for estimates
obtained by MCMC methods. In particular, Tierney (1994)
showed that the sample average of an ergodic Markov chain
ð1=NÞPN

n¼1 θ
ðnÞ has asymptotic variance that is larger by a

factor of

τ ¼ 1þ 2
X∞
l¼1

ρðlÞ

than if one were to average over independent samples. This
factor is the so-called integrated autocorrelation time
and depends on all lag-l autocorrelations ρðlÞ of the
MCMC sample and is used as a measure of the efficiency
of a MCMC scheme. A valid estimate of τ can be obtained
from CODA (Plummer et al., 2006), which computes a time-
series estimate of τ based on the spectral density estimate at
zero (Geweke, 1992).
A special case of the MH algorithm that has found

numerous useful applications in many disciplines is the
Gibbs sampler. Flexible implementations are available in
the public domain Bayesian software packages BUGS and
JAGS, which were described in detail by Lunn et al. (2013) and
Depaoli, Clifton, and Cobb (2016), respectively. The proposal
density of the Gibbs sampler is the product of full conditional
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densities and it is straightforward to show that the acceptance
ratio in the MH algorithm with this choice of proposal density
is 1, so every move is accepted. Each iteration of the Gibbs
sampler moves in a cycle through each component of θ. In

cycle n, the Gibbs sampler generates a new value θðnÞj for the
full conditional distribution

pðθjjd; θðnÞ1 ;…; θðnÞj−1; θ
ðn−1Þ
jþ1 ;…; θðn−1Þp Þ:

For many Bayesian hierarchical models, these full condi-
tionals are conjugate distributions and can be sampled directly.
For many nonlinear problems, as those discussed by
Christensen and Meyer (1998), a MH algorithm is needed
to sample from the full conditionals. The main disadvantage of
the Gibbs sampler is that it can converge slowly to the
equilibrium distribution if the posterior correlations between
parameters are large. Reparametrizations that reduce the
posterior correlation, blocking, or the introduction of auxiliary
variables can improve mixing (Gelman et al., 2014).
For any application of MCMC methods, it is important to

ensure that the algorithm has converged toward the joint
posterior distribution. Different tests for diagnosing conver-
gence have been established [see Cowles and Carlin (1996)]
and implemented in the R package CODA (Plummer
et al., 2006).
Various techniques have been developed to improve mixing

and accelerate the convergence of the Markov chain to the
posterior distribution and have been applied to estimating
gravitational wave parameters. These include parallel temper-
ing (Swendsen and Wang, 1986) for moving rapidly through a
multimodal target distribution and avoiding getting stuck in
local maxima. In analogy to the simulated annealing algo-
rithm, parallel tempering samples in parallel from L chains
with target densities pðθjdÞ1=Tl ;l ¼ 1;…; L for a set of
temperature parameters Tl. Tl ¼ 1 reduces to the original
posterior distribution and large values of Tl produce flatter
target densities, helping one to avoid local maxima. The
chains can jump from one sampler to another with a certain
probability. Only the samples from the chain with Tl ¼ 1 are
eventually used for posterior inference. Evolutionary
Monte Carlo (EMC), introduced by Liang and Wong
(2001), works in a manner similar to parallel tempering in
that a population of Markov chains at different temperatures is
generated. In addition, EMC includes a genetic operator in
analogy to the crossover in a genetic algorithm, which often
improves the mixing of the chains. Many variants of crossover
operators have been suggested. One of the most popular is the
snooker crossover proposed by Liang and Wong (2001),
which randomly selects a parameter, say, θi, from the current
set of parallel chain values. Another one θj from the remaining
ones and a new proposal is generated by Gibbs sampling along
the line connecting θi and θj. Similarly, with the aim of
allowing one to jump between local modes when sampling
from multimodal posteriors, a differential evolution proposal
(ter Braak and Vrugt, 2008) has proven to be useful in
situations where linear correlations are present (Veitch et al.,
2015). The proposal drew from two previous samples θa and
θb from the Markov chain and suggested a new parameter
according to

θ� ¼ θþ γðθa − θbÞ;

where θ denotes the current parameter and γ is drawn from
Nð0; 2.38= ffiffiffiffiffiffi

2p
p Þ. An alternative approach is based on the

intuition that the closer the proposal distribution is to the
target, the faster convergence to stationarity is achieved.
Adaptive MCMC techniques (Roberts and Rosenthal, 2009)
aim to dynamically adjust the proposal to the target density
based on information from previously sampled values as long
as the amount of adaptation is diminishing. For instance, for
p-dimensional multivariate normal proposals and targets, the
most efficient scale that determines the jump size has been
shown to be ≈2.38= ffiffiffiffi

p
p

(Gelman et al., 2014). Moreover, the
proposal covariance matrix can be sequentially updated based
on the information from the current samples as long as the
diminishing adaptation condition is satisfied. Starting with a
p-dimensional Gaussian proposal qnðθÞ ¼ Nðθ; 0.12=pIpÞ
for n ≤ 2p, for later steps one uses the current empirical
estimate Σn of the covariance of the target based on the run
thus far in defining the proposal

qnðθÞ ¼ ð1 − βÞNðθ; 2.382=pΣnÞ þ βNðθ; 0.12=pIpÞ;

where β is a small positive constant such as β ¼ 0.05.
Sampling occasionally from the standard Gaussian distribu-
tion that is independent of the previous samples guarantees
that the algorithm does not get stuck at problematic values on
Σn. Jump sizes can also be dynamically adjusted to obtain an
optimal empirical acceptance rate of about 0.44 in one
dimension, decreasing to 0.23 in high dimensions (p > 5).
An alternative strategy is delayed rejection (Tierney and Mira,
1999). The idea behind the delayed rejection algorithm is that
persistent rejection, perhaps parts of the state space in
particular, may indicate that locally the proposal distribution
is badly calibrated to the target. Therefore, the MH algorithm
is modified such that on rejection a second attempt to move is
made with a proposal distribution that depends on the
previously rejected state. Delayed rejection was also gener-
alized to the variable dimension case (Green and Mira, 2001).
Hamiltonian Monte Carlo avoids the random walk behavior
and sensitivity to highly correlated parameters by taking a
series of steps informed by first-order gradient information
(Neal, 2011), thereby simulating Hamiltonian dynamics.
Open-source software STAN, which implements Hamiltonian
Monte Carlo in a flexible modeling language similar to BUGS

and JAGS, was described by Gelman, Lee, and Guo (2015). It
uses the no-U-turn sampler (Hoffman and Gelman, 2014) and
makes use of an optimizer that iterates to find a local
maximum of the objective function. As both the sampler
and the optimizer require gradients, a reverse-mode automatic
differentiation method (Griewank, 2000) is implemented in
STAN. A method that has been popular in physics is the
invariant ensemble sampler proposed by Goodman andWeare
(2010) and implemented in the open-source PYTHON-based
software package EMCEE by Foreman-Mackey et al. (2013).
Like parallel tempering, it employs the idea of running L

Markov chains fθðlÞn gNn¼1;l ¼ 1;…; L in parallel, but with the
proposal for the lth chain at iteration n depending on the
position of the remaining “walkers” at iteration n using an
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affine-invariant random transformation, thus reducing the
dependence of run-time on the posterior correlations, reducing
the autocorrelation time, and speeding up convergence. For
problems where the dimension of the parameter space is not
fixed but variable, as in multiple change-point problems,
variable selection in regression models, and mixture decon-
volution with an unknown number of components, the MH
algorithm cannot be adopted when proposing transdimen-
sional moves between models. Therefore, the MH algorithm
has been extended to the reversible jump MCMC algorithm
(Green, 1995), which constructs jumps between parameter
vectors of different dimensions in such a way as to preserve
the detailed balance equations that guarantee ergodicity and
convergence to the posterior distribution.

B. Nested sampling

Nested sampling was proposed by Skilling (2006) for
computing the evidence or marginal likelihood of a
Bayesian model and later shown to provide samples from
the posterior distribution as a by-product. It is based on the
following simple identity for the expectation of a positive
random variable Y with probability distribution function fðyÞ
and cumulative distribution function FðyÞ ¼ R y

0 fðxÞdx:

E½Y� ¼
Z

∞

0

yfðyÞdy ¼
Z

∞

0

½1 − FðyÞ�dy. ð7Þ

Equation (7) can be easily shown using Tonelli’s theorem
(Schilling, 2005) on switching the order of integration in a
double integral as follows:

Z
∞

0

½1 − FðyÞ�dy ¼
Z

∞

0

�Z
∞

y
fðxÞdx

�
dy

¼
Z

∞

0

�Z
x

0

fðxÞdy
�
dx

¼
Z

∞

0

xfðxÞdx;

noting that the area of integration is fðx; yÞ∶0 < x < ∞; x <
y < ∞g ¼ fðx; yÞ∶0 < y < ∞; 0 < x < yg. Nested sampling
aims to evaluate the marginal likelihood [the denominator in
Bayes theorem (3)] Z ¼ R

LðdjθÞπðθÞdθ. Thus, the likelihood
function LðθÞ ¼ LðdjθÞ takes the role of the positive random
variable Y. Setting

φ−1ðyÞ ¼ Pπ(LðθÞ > y);

one gets the following representation of the marginal like-
lihood as a one-dimensional integral:

Z ¼
Z

∞

0

φ−1ðyÞdy ¼
Z

1

0

φðxÞdx:

Such an integral can be solved numerically by the Riemann
sum approximation

Ẑ ¼
XN
i¼1

ðxi−1 − xiÞφi;

where φi ¼ φðxiÞ and the grid values 0 < xN < � � � < x1 <
x0 ¼ 1 over ½0; 1� are chosen either deterministically, e.g.,
xi ¼ e−i=N , or randomly. But the function φ is usually
intractable and needs to be approximated using an iterative
algorithm.

• At iteration 1.—The nested sampling algorithm startswith

N walkers θð1Þi ∼π, i ¼ 1;…; N, drawn independently

from the prior, determines θ1 ¼ arg min1≤i≤NLðθð1Þi Þ,
i.e., the walker with the smallest likelihood out of the
current walkers, and sets φ1 ¼ Lðθ1Þ.

• At iteration 2.—It sets θð2Þi ¼ θð1Þi but replaces walker

θð2Þ1 by a sample from π subject to the constraint

LðθÞ > φ1, determines θ2 ¼ arg min1≤i≤NLðθð2Þi Þ, i.e.,
the walker with the smallest likelihood out of the current
walkers, and sets φ2 ¼ Lðθ2Þ.

• Iterate until a desired accuracy of Ẑ is achieved.
Skilling (2006) pointed out that nested sampling provides

not only an estimate of Z but also a sample θ̃i from the
posterior distribution if one assigns appropriate importance
sampling weights to θi; i.e., it defines θ̃i ¼ ðxi−1 − xiÞφiθi.
Nested sampling has a convergence rate of OðN−1=2Þ and

computational costs Oðp3Þ, where p is the number of
parameters (Chopin and Robert, 2010). As pointed out by
Chopin and Robert (2010), the practical difficulty of nested
sampling is simulation from the prior subject to the inequality
constraint LðθÞ > LðθiÞ. Skilling (2006) proposed using a
finite number of MCMC steps; however, convergence of
nested sampling when correlations are introduced by any
embedded MCMC scheme is an open problem. Mukherjee,
Parkinson, and Liddle (2006) considered simulating points
within an ellipsoid and accepted them if they satisfied the
constraint. Chopin and Robert (2010) proposed an importance
sampling method to sample from the constrained prior, nested
importance sampling, employing a similar ellipsoid strategy in
scenarios where the posterior mode and Hessian at the mode
were available. Further variants of constrained sampling are
nested sampling with constrained Hamiltonian Monte Carlo
(Betancourt et al., 2011), Galilean nested sampling (Skilling,
2012), slice sampling (Aitken and Akman, 2013), and
diffusive nested sampling (Brewer and Foreman-Mackey,
2018). Feroz, Hobson, and Bridges (2009) and Feroz and
Skilling (2013) developed so-called MultiNest, nested sam-
pling for multimodal distributions that has become popular in
cosmological and astrophysical applications. However,
MultiNest performs inefficiently in dimensions larger than
20 as a large part of the sampling region might fall below the
likelihood threshold and gives biased results when errone-
ously excluding relevant prior volume from the sampling
region (Buchner, 2016). Buchner (2016) developed a test to
diagnose these types of potential failures of nested sampling.

C. Model comparison

To test and compare competing models within a Bayesian
framework, one computes the Bayes factor, the ratio of the
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marginal likelihoods of the two models M1 and M2 under
consideration. If PðMiÞ denotes their prior probabilities and
πiðθi;MiÞ denotes the prior probability distribution function
under model Mi with parameter vector θi ∈ Θi, where
i ¼ 1; 2, the Bayes factor is defined as follows as the ratio
of posterior to prior odds:

B12 ¼
PðM1jdÞ=PðM2jdÞ
PðM1Þ=PðM2Þ

ð8Þ

¼
R
Θ1

L1ðdjθ1;M1Þπ1ðθ1;M1Þdθ1R
Θ2

L2ðdjθ2;M2Þπ2ðθ2;M2Þdθ2
¼ Z1

Z2

. ð9Þ

Equations (8) and (9) resemble a likelihood ratio statistic but,
unlike a likelihood ratio, the Bayes factor is obtained by
integrating and not maximizing over θi. Changing to −2 lnB12

gives the same scale as the frequentist deviance and likelihood
ratio statistics.
For the special case in which comparing two nested models

M1 ⊂ M2 [i.e., θ2 ¼ ðθ1; θ2−1Þ] with separable (Cornish and
Littenberg, 2007) prior distributions, the Bayes factor can be
written as the following Savage-Dickie density ratio:

B12 ¼
p2ðθ2−1 ¼ 0jdÞ
π2ðθ2−1 ¼ 0Þ

[where p2ðθjdÞ denotes the posterior under the prior π2 of
model 2], which can be estimated using the MCMC output
from model 2; see Verdinelli and Wasserman (1995). Its
limitation is that it holds only for a specific form of the prior
for the nuisance parameters under model 1, which is com-
pletely determined by the prior under model 2 (Mulder,
Wagenmakers, and Marsman, 2020).
In general, for non-nested models and general priors the

notoriously difficult part is the computation of the evidence

Z ¼
Z
Θ
Lðdjθ;MÞπðθÞdθ:

This high-dimensional integral does not generally have an
analytic solution, and numerical methods are required for its
calculation.
Several computational approaches for calculating the mar-

ginal likelihood exist; for reviews see Robert et al. (2009) and
Gelman et al. (2014), and for a comparison in the context of
LISA data analysis see Cornish and Littenberg (2007). Here
we give a comprehensive overview in the hope that some of
the methods that have received little attention within astro-
physics thus far might find more uptake and provide a
valuable addition to the tool kit for model comparison of
gravitational wave models.

1. Under certain regularity conditions, the Bayesian
information criterion (BIC), defined as

BIC ¼ −2 lnLðdjθ̂;MÞ þ p ln n;

where θ̂ denotes the maximum-likelihood estimate, p
is the number of parameters, and n is the sample size,
provides an approximation to −2 lnZ. This combines a

measure of goodness of fit, the log-likelihood evaluated
at the maximum-likelihood estimate, and a measure of
complexity that penalizes the number of parameters.
Alternatively, Akaike’s information criterion is often
used for practical model selection (Cavanaugh and
Neath, 2019). It differs from the BIC only in the penalty
term 2p instead of p ln n. Frequentist analysis shows
that the BIC score is an asymptotically consistent
model selection procedure under weak conditions.
But there is no contribution of the prior to the BIC,
so it is not a Bayesian criterion. A Bayesian analog, the
deviance information criterion (DIC), was developed
by Spiegelhalter et al. (2002). The DIC is based on the
devianceDðθÞ¼−2 lnLðdjθ;MÞ. While BIC uses the
maximum-likelihood estimate, DIC’s plug-in estimate
is based on the posterior mean of the deviance
D̄ðθÞ ¼ Eθjd½DðθÞ�,

DIC ¼ D̄ðθÞ þ pD;

where the measure of complexity pD ¼ D̄ðθÞ −Dðθ̄Þ
is the difference between the posterior mean of the
deviance and the deviance at the posterior mean. It can
be justified as an estimate of the posterior predictive
model performance within a decision-theoretic frame-
work, and it is asymptotically equivalent to leave-one-
out cross validation. TheDIC has been used extensively
for practical model comparison in many disciplines, as
it is easy to compute when a sample of the posterior
distribution is available (Spiegelhalter et al., 2014;
Meyer, 2016). Another main advantage is that, unlike
the Bayes factor, it can be used even if improper priors
are specified.

2. The Laplace formula is widely used to approximate
p-dimensional integrals of the form

In ¼
Z
Θ
exp f−gnðθÞgdθ;

where gnðθÞ is a smooth real-valued function of a p-
dimensional vector θ, e.g., gnðθÞ¼−ln½Lðdjθ;MÞπðθÞ�
in the case of the marginal likelihood; n is again
the sample size. The Laplace approximation is based
on a Taylor series expansion around the posterior mode
θ̂ and given by

In ≈ exp f−gnðθ̂Þgð2πÞp=2jΣj1=2; ð10Þ

where Σ is the inverse of the Hessian of gn evaluated
at θ̂. This expansion is accurate to the order Oð1=nÞ.
It requires finding the posterior mode, which can be
done using standard optimization methods such as
gradient search, and computing second derivatives for
which automatic differentiation tools (Griewank, 2000)
might be useful. However, the Laplace approximation
can be inaccurate when the integrand is far from a
Gaussian density, e.g., when the posterior distribution is
multimodal or severely skewed.
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3. The harmonic mean estimator goes back to Newton
and Raftery (1994) and is straightforward to calculate
when a sample θi, i ¼ 1;…; N, from the posterior
distribution is available. The estimator is defined as the
following harmonic mean of the likelihood values:

ẐHM ¼
�
1

N

XN
i¼1

1

Lðdjθ;MÞ
�
: ð11Þ

Equation (11) is easy to calculate but can be biased and
unreliable due to its potentially infinite variance; see
the discussion by Radford Neal of Newton and Raftery
(1994). An improvement of the harmonic mean
estimator is given by the representation

Ẑ�
HM ¼

�
1

N

XN
i¼1

ϕðθiÞ
Lðdjθ;MÞπðθi;MÞ

�
ð12Þ

in Marin and Robert (2010), which holds for any
function ϕ. For ϕ ¼ π, this estimator Ẑ�

HM equals the
ordinary harmonic mean estimator ẐHM. But choosing
a function ϕ with lighter tails than the posterior, such
as for ϕ with constrained support given by the convex
hull of sampled values within the 10% highest
posterior density region, guarantees finite variance.

4. An approximation of the marginal likelihood is also
possible via classical importance sampling (Marin and
Robert, 2010). A sample θi, i ¼ 1;…; N, is drawn
from an importance density qðθÞ and Z estimated by

ẐIS ¼ 1

N

XN
i¼1

Lðdjθ;MÞπðθi;MÞ
qðθiÞ

; ð13Þ

where q can be chosen such that the variance of the
importance sampling estimate is reduced. This implies
choosing importance functions that provide good
approximations to the posterior distribution, as for
instance maximum-likelihood asymptotic distribu-
tions or kernel approximations based on a pilot
sample. Importance sampling distributions should
have fatter tails than the target density.

5. Thermodynamic integration or the more general path
sampling (Gelman and Meng, 1998; Neal, 2001; Xie
et al., 2011) make use of an auxiliary inverse temper-
ature variable β, 0 ≤ β ≤ 1, to define transitional
distributions, namely, the power posterior distribu-
tions, defined by

pβðθjd;MÞ ¼ Lðdjθ;MÞβπðθjMÞ
Zβ

; ð14Þ

providing a path from the prior (β ¼ 0) to the posterior
distribution (β ¼ 1). By explicitly denoting the evi-
dence Zβ as a function of β by

ZðβÞ ¼
Z
Θ
Lðdjθ;MÞβπðθjMÞdθ;

the log marginal likelihood has the representation as
the integral over the one-dimensional parameter β of
half the mean deviance, where the expectation is taken
with respect to the power posterior as follows
(Maturana-Russel et al., 2019):

lnðZÞ ¼ ln

�
Zð1Þ
Zð0Þ

�
¼

Z
1

0

Eβfln½pðdjθ;MÞ�gdβ:

ð15Þ

The samples from parallel-tempered chains that are
obtained for instance in LALInference for different
values of β provide samples from the power posteriors
and the expectation Eβfln½LðXjθ;MÞ�g can then be
estimated by the sample average. The integral in
Eq. (15) is approximated by numerical integration
using the trapezoidal or Simpson’s rule.

6. Another method that combines importance sampling
and simulated annealing is the stepping-stone sam-
pling algorithm, widely used in phylogenetics, where
it was proposed by Xie et al. (2011). The marginal
likelihood can be seen as the ratio Z ¼ Z1=Z0, where
Z0 ¼ 1 since the prior is assumed to be proper. The
direct calculation of this ratio via importance sampling
is not reliable because the distributions involved in the
numerator and denominator (posterior and prior,
respectively) are in general quite different. To solve
this problem, stepping-stone sampling expands this
ratio in the following telescope product of L ratios of
normalizing constants of the transitional distributions:

Z ¼ Z1

Z0

¼ Zβ1

Zβ0

Zβ2

Zβ1

� � �ZβL−2

ZβL−3

ZβL−1

ZβL−2

¼
YL−1
l¼1

Zβl

Zβl−1

¼
YL−1
l¼1

rl;

for β0 ¼ 0< β1 < � � �< βL−2 < βL−1 ¼ 1, as the se-
quence of inverse temperatures, where rl¼Zβl=Zβl−1 .
These individual intermittent ratios can be estimated
with higher accuracy than Z1=Z0 because the distri-
butions in the numerator and denominator are gen-
erally similar when one uses a reasonable number of
temperatures L. In this situation the importance
sampling method works well. The stepping-stone
sampling algorithm estimates each ratio rl by impor-
tance sampling using pβl−1 as importance sampling
distribution. This is a suitable distribution because it
has heavier tails than pβl , which leads to an efficient
estimate of rl. The estimation of each ratio is based on
the identity

rl ¼ Zβl

Zβl−1

¼
Z
Θ

Lðdjθ;MÞβl
Lðdjθ;MÞβl−1 pβl−1ðθjd;MÞdθ;

which is estimated by its unbiased Monte Carlo
estimator
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r̂l ¼ 1

N

XN
i¼1

Lðdjθiβl−1 ;MÞβl−βl−1 ;

where θ1βl−1 ;…; θnβl−1 are drawn from pβl−1 , with
l ¼ 1;…; L − 1.

Therefore, the stepping-stone estimate of the mar-
ginal likelihood is defined as

ẐSS ¼
YL−1
l¼1

1

N

XN
i¼1

Lðdjθiβl−1 ;MÞβl−βl−1 :

Maturana-Russel et al. (2019) demonstrated the
performance and computational costs of the step-
ping-stone sampling in comparison to thermodynamic
integration and nested sampling in a simulation study
and a case study of computing the marginal likelihood
of a binary black hole merger signal applied to
simulated data from the Advanced LIGO and Ad-
vanced Virgo gravitational wave detectors.

7. For the analysis of gravitational wave signals, the
nested sampling algorithm is often used for model
comparison. Nested sampling has already been de-
scribed in detail in Sec. III.B, as it provides samples
from the posterior distribution at the same time as
evidence is computed. Maturana-Russel et al. (2019)
described a block bootstrap method to determine the
Monte Carlo standard error of evidence estimates and
apply this to estimates based on both stepping-stone
and nested sampling.

8. The previous model comparison methods used
Monte Carlo samples from each model to estimate
each evidence. A conceptually different approach to
model comparison is given by the reversible jump
Markov chain Monte Carlo (RJMCMC) algorithm
(Green, 1995). RJMCMC constructs a single Markov
chain that includes moves between both models and
thus requires transdimensional moves. The parameter
space for such a chain includes the traditional param-
eters and an indication of the current model. It makes
use of additional random variables that enable a
matching of dimensions of the models with potentially
different numbers of parameters. The dimension
matching ensures that the detailed balance equations
that are necessary to prove convergence of the MH
algorithm hold. The proportion of iterations that the
RJMCMC algorithm spends in one model is a con-
sistent estimate of its posterior probability and used via
Eq. (8) to estimate the Bayes factor. For a detailed
description of the RJMCMC algorithm and an early
application to the LISA source confusion problem, see
Umstätter et al. (2005a).

D. Rapid parameter estimation

To get information to multimessenger observing partners as
rapidly as possible, it is important to have methods to improve
the computational speed of parameter estimation. The
LALInference (Veitch et al., 2015) implementations of

MCMC techniques and nested sampling provide accurate
parameter estimates but at the cost of extensive computation
times that range from several hours for short signals of black
hole mergers to weeks for longer neutron star coalescences.
Various strategies have been employed to reduce the overall
computation time, which is largely dominated by the time to
reevaluate the likelihood in each MCMC or nested sampling
step. To this end, Cornish (2010, 2021) and Zackay, Dai, and
Venumadhav (2018) used the heterodyning principle and
relative binning, respectively, for fast likelihood evaluation.
With heterodyning, two signals with similar frequencies are
multiplied together, producing a low-frequency signal con-
taining the useful information and a high-frequency signal that
is discarded. The relative binning concerns the subsequent
greatly reduced number of frequency bins used in the analysis,
hence greatly increasing the calculation speed. Accurate
approximative methods based on reduced-order models of
gravitational waveforms have been developed (Canizares
et al., 2015; Smith et al., 2016). Fast reduced-order quadrature
allows one to approximate posterior distributions at greatly
reduced computational costs. A review of waveform accel-
eration techniques based on reduced-order or surrogate
models that speed up parameter estimation was given by
Setyawati, Pürrer, and Ohme (2020). Vinciguerra, Veitch, and
Mandel (2017) used the chirping behavior of compact binary
inspirals to sample sparsely for portions where the full
frequency resolution is not required; an extension of this
work for IMRPhenomXHM models (García-Quirós et al.,
2020) was presented by García-Quirós et al. (2021). An
alternative approach for rapid parameter estimation is based
on highly parallelizable grid-based techniques [see Pankow
et al. (2015) and Lange, O’Shaughnessy, and Rizzo (2018)]
and was successfully used for parameter estimation in the third
observing run (R. Abbott et al., 2020c, 2021c). The corre-
sponding package is called RIFT and is described in Sec. X.E.
The previously mentioned acceleration techniques yield

estimates of all intrinsic and extrinsic parameters but are still
high latency (Sidery et al., 2014). If the primary focus is on
obtaining rapid estimates of the sky location and distance in
order to alert electromagnetic observatories to enable follow-
up searches for counterpart transient events, the measured
time of arrival of a signal at different detectors can be used to
triangulate the source position (Cavalier et al., 2006;
Fairhurst, 2009, 2011). Grover et al. (2014) and Fairhurst
(2018) improved the timing triangulation by including phase
consistency information. Berry et al. (2015) showed that
timing triangulation can often be a poor approximation.
Timing triangulation can provide the sky position in about
a minute (or maybe less), but at the expense of accuracy. A
rapid as well as accurate Bayesian sky-localization algorithm
known as Bayesian triangulation and rapid localization
(BAYESTAR) was developed by Singer and Price (2016).
It avoids expensive post-Newtonian model waveforms and
MCMC iterations by simplifying the likelihood function.
BAYESTAR is conditioned on the intrinsic parameters and
uses the maximum-likelihood estimates of the time delay,
amplitude, and phase on arrival at each of the network
detectors as data to construct an approximate likelihood.
Numerical quadrature is used to obtain the marginal posterior
distribution of the sky location and parallelization at pixel
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level yields estimates of the sky position 104 times faster than
LALInference, within a minute of detection, at an accu-
racy comparable to the full coherent MCMC-based posterior
inference (Berry et al., 2015).

E. Machine learning

To speed up parameter estimation, deep learning
approaches, particularly variational autoencoders and convo-
lutional neural networks, were recently explored (George and
Huerta, 2018; Gabbard et al., 2019; Alvares et al., 2020; Chua
and Vallisneri, 2020; Green, Simpson, and Gair, 2020; Shen
et al., 2022). Deep learning approaches train neural networks
to learn the posterior through stochastic gradient descent to
optimize a loss function. The training samples require only
sampling from the prior and the likelihood that is fast. It also
has the advantage that training can be performed off-line and
the estimation of parameters from an observed gravitational
wave signal becomes almost instantaneous. A recent summary
of how machine learning might aid gravitational wave signal
searches was presented by Cuoco et al. (2021). These methods
are still in their infancy and are being further developed to be
able to handle the full parameter space of binary inspirals
(Green and Gair, 2020) and longer duration waveforms from
multiple detectors. They hold great promise for low-latency
parameter estimation and a fast electromagnetic follow-up.
Machine-learning approaches have also been explored to
produce a fast approximation to waveform generation
(Khan and Green, 2021; Schmidt et al., 2021) and much
quicker parameter estimation (Dax et al., 2021).

IV. NOISE POWER SPECTRAL DENSITY ESTIMATION

It is critical for the accurate estimation of the physical
parameters to also accurately estimate the noise PSD for each
of the detectors. In Sec. III, the noise PSDs were assumed to
be known, so the factors relating to the determinant of the PSD
matrices in the Whittle likelihood approximation

LðdjθÞ ≈
YK
k¼1

1

detðπTSðkÞÞ e
−ð1=TÞðd̃ðkÞ−h̃ðkÞÞ�SðkÞ−1 ðd̃ðkÞ−h̃ðkÞÞ ð16Þ

could be ignored, yielding the simpler likelihood in Eq. (6). In
practical LIGO data analyses, the noise PSD has often been
estimated off source using the Welch method (Welch, 1967),
which averages the periodograms of several time segments of
noise close to but not including the signal and with the same
length as the signal segment. This averaging reduces the
variance and provides a consistent estimate of the PSD. For
the purpose of parameter estimation, this Welch estimate or
the median of the periodograms (Veitch et al., 2015) has then
often been substituted for the true PSD in Eq. (6) and assumed
to be known and fixed. But as demonstrated by Zackay et al.
(2021), the noise PSD of LIGO data drifts slowly over
timescales of dozens of seconds to minutes. Failure to take
this into account results in a loss of sensitivity in matched filter
searches for graviational waves. Similarly, Chatziioannou,
Haster et al. (2019) showed the potential effects of this so-
called off-source PSD estimation on parameter estimates in

simulation studies. They find that the fractional change in the
width of posterior credible intervals ranges from a few percent
to 25%. Their work demonstrates the superiority of on-source
PSD estimation, i.e., using the signal segment for simulta-
neously estimating the PSD and waveform parameters.
Furthermore, assuming the noise PSD to be known does
not take the full uncertainty into account and might yield
credible bands that are too narrow for the physical parameters,
as shown by Biscoveanu, Haster et al. (2020).
In this section, we review methods for spectral density

estimation. In Sec. IV.A we first consider techniques for
estimating the noise PSD for time series that consist of pure
instrumental noise before combining these with parameter
estimation methods for time series consisting of signal and
noise in Sec. IV.B.

A. Estimation of the power spectral density estimation with no
signals present

For ease of exposition, we consider a data stream in just one
detector. Furthermore, we assume that the data do not contain
any gravitational wave signals, i.e., dðtÞ ¼ nðtÞ, t ¼ 1;…; T.
Under the usual assumption of stationarity and Gaussianity,
the Whittle likelihood takes the following form:

LðnjSÞ ≈ 1

detðπTSÞ e
ð−1=TÞñ�S−1ñ

¼ exp

�
−
X
j

�
ñðfjÞ2
TSðfjÞ

þ log½πTSðfjÞ�
��

.

A parametric method to estimate the PSD was introduced by
Röver, Meyer, and Christensen (2011), who put conjugate
inverse gamma distributions on the unknown spectral den-
sities SðfjÞ, which yielded Student-t marginal distributions for
the errors. Although fast to compute, this estimate is not
consistent in that the posterior distribution of the PSD estimate
will not concentrate around the true spectral density with
increasing sample size. A closely related approach that also
attempts to account for the uncertainty in the PSD was given
by Littenberg et al. (2013) and Veitch et al. (2015). It treats
SðfjÞ as fixed but introduces an additional scale factor ηj for
each frequency bin; i.e., it replaces SðfjÞ with ηjSðfjÞ and
places normal priors on ηj with mean 1. Talbot and Thrane
(2020) derived the likelihood after marginalization over the
uncertainty in the median PSD estimate and showed that their
analysis was robust with respect to outliers. They also
investigated the impact of mean- and median-based noise
PSD estimation methods on the astrophysical inference of
GW151012. Cuoco et al. (2001) employed the classical
parametric spectral density estimation methods based on
fitting autoregressive and autoregressive moving average
models.
But, even though parametric models are efficient when the

parametric model is correctly specified, they can give biased
results under model misspecification. Therefore, considering
the presence of glitches (short-duration noise transients) and
slow adiabatic drift in LIGO-Virgo-KAGRA noise, robust
Bayesian nonparametric approaches to PSD estimation have
been developed. These can then be combined with a Bayesian
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estimation of the model parameters when a gravitational wave
signal is present, as illustrated in Sec. IV.B. The BayesLine
algorithm (Littenberg and Cornish, 2015) uses a mixture of
Lorentzians and cubic splines to model spectral lines and the
smooth part of the PSD, respectively. BayesLine is a
component of the BayesWave analysis (Cornish and
Littenberg, 2015; Cornish et al., 2021). This is a flexible
approximation that treats the number and location of the knots
of the cubics splines and also the number, location, and
linewidth of the spectral lines as unknown parameters. This
approach then uses a RJMCMC procedure to allow for the
change in dimension of the parameter space. Edwards, Meyer,
and Christensen (2019) modified the Bernstein-Dirichlet
process prior on the PSD specified by Choudhuri, Ghosal,
and Roy (2004). The Bernstein-Dirichlet process prior models
the PSD by a mixture of Bernstein polynomials where the
number of mixture components is variable and the mixture
weights are induced by a Dirichlet process. To improve on the
approximation properties of Bernstein polynomials, Edwards,
Meyer, and Christensen (2019) suggested replacing these by
B-splines and put a second Dirichlet process prior on the knot
spacings. They demonstrated the method’s ability to pick up
sharp spectral peaks and lines in the data from the LIGO S6
science run. To speed up this algorithm, Maturana-Russel and
Meyer (2021) used P-splines, i.e., B-splines with a fixed
number and location of knots where the smoothness prior is
derived from the difference-based penalty of penalized splines,
avoiding the computationally intensive Dirichlet process prior
and reversible jump type simulations. These algorithms are
implemented in the R packages bsplinePsd 1 and
psplinePsd (Maturana-Russel and Meyer, 2020). Instead
of modifying the Bernstein-Dirichlet process prior, Kirch et al.
(2019) improved the Whittle likelihood approximation by
making use of an autoregressive working model. They proved
posterior consistency, superior small sample performance
measured using integrated absolute error and frequentist

coverage probability and achieved a better estimation of sharp
peaks in the PSD as demonstrated using LIGO S6 noise and
shown in Fig. 5. The implementation of this PSD estimation
method is available in the R package beyondWhittle
(Meier et al., 2018).

B. Estimation of the power spectral density estimation with
signals present

Biscoveanu, Haster et al. (2020) quantified the effect
of PSD uncertainty on waveform parameter estimates
by first sampling from the PSD using BayesWave and then
obtaining samples from the compact binary coalescence wave-
form parameters conditional on each sampled PSD, while still
not simultaneously sampling from the joint posterior distribu-
tion of waveform parameters and PSD. Currently the most
often used method to simultaneously estimate the PSD and the
signal waveform is BayesWave (Cornish and Littenberg,
2015; Cornish et al., 2021). BayesWave combines the
BayesLine PSD estimation method with a simultaneous
estimate of a gravitational wave transient signal and glitches,
both modeled as a mixture of Morlet-Gabor wavelets. While
this gives estimates of the Morlet-Gabor wavelet coefficients
and can thus reconstruct the signal taking the full uncertainty in
the PSD estimate into account, it is not intended for estimating
the astrophysical waveform parameters.
Most of the Bayesian noise PSD estimation techniques

discussed in Sec. IV.A lend themselves to a simultaneous
estimation of interferometer-specific PSDs SðkÞ and astro-
physical waveform parameters θ via the Whittle likelihood
equation (16). In general, this can be done by combining the
respective MCMC algorithms used for parameter and PSD
estimation in a Gibbs sampling step. One iterates between

• conditioning on a PSD estimate and performing one
iteration of the parameter estimation routine,

• then conditioning on the just obtained new estimate of θ,
calculating the residuals d̃ðkÞ − h̃ðkÞð·jθÞ and performing
one iteration of the PSD MCMC routine.

This Gibbs sampling procedure was applied by Edwards,
Meyer, and Christensen (2015) to simultaneously fit rotating
core-collapse supernova gravitational wave burst signals
embedded in simulated Advanced LIGO–Advanced Virgo
noise and the PSD using the Bernstein-Dirichlet process prior
and by Edwards et al. (2020) to simultaneously estimate the
parameters of a galactic binary signal and the noise PSD in
simulated LISA data using the B-spline prior. Similarly, in a
blocked Gibbs sampler Chatziioannou et al. (2021) simulta-
neously estimated the compact binary coalescence waveform
parameters and the noise PSD using BayesLine and
extended this to the simultaneous estimation of instrumental
glitches using sine-Gaussian wavelets. Thus, in the applica-
tions of Edwards, Meyer, and Christensen (2015), Edwards
et al. (2020), and Chatziioannou et al. (2021), the marginal
posterior distributions of the signal parameters take the full
uncertainty of the PSD estimates into account. This is in
contrast to Chatziioannou, Haster et al. (2019), who used the
BayesWave PSD estimate that was obtained from the same
stretch of data as the signal but assumed fixed for the purpose
of parameter estimation of injected compact binary coales-
cence signals in real LIGO O2 noise.
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FIG. 5. Estimated log spectral density for a 1 s segment of
Advanced LIGO S6 data. The posterior median log spectral
density estimate using the corrected likelihood with an AR(35)
working model (solid black thin line), pointwise 90% credible
region (red thicker line), and uniform 90% credible region (violet
band) are overlaid with the log periodogram (gray data). From
Kirch et al., 2019.

1See https://CRAN.R-project.org/package=bsplinePsd.
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V. PARAMETER ESTIMATION FOR GRAVITATIONAL
WAVES FROM COALESCING COMPACT BINARIES

The gravitational wave observations from LIGO and Virgo
to date have all been produced by compact binary systems
(R. Abbott et al., 2021c). This is a system where there is an
ability to use a waveform model for its expected emitted
signal, which can be compared with the observed data. Black
holes and neutron stars are compact objects and behave like
point particles, hence simplifying the analysis. As we later see,
tidal effects will deform a neutron star at some level, and this
will change the inspiral behavior. But to start one can assume
the validity of general relativity and derive the evolution of a
binary system of point particles, with the system losing energy
due to the emission of gravitational waves. General relativity
is a nonlinear theory, so it will ultimately be impossible to
produce a closed form or exact functional description for the
gravitational waves, and approximations with different levels
of accuracy will be used. The methods used to derive wave-
forms are summarized later. There are excellent descriptions
of the physics of coalescing compact binary mergers, and what
information can be extracted from their observation with
gravitational waves, given by Sathyaprakash and Schutz
(2009) and Abbott et al. (2017h).
We start with the lowest level of approximation, which is

essentially coupling Newtonian orbital mechanics and gravi-
tational wave emission via linearized general relativity. This
presentation is for the dominant quadrupolar multipole
moment of radiation. We follow the presentation of Moore
(2013) and use this as a means to develop an understanding of
the physical parameters before moving on to more complex
waveform theories.
Consider two point masses m1 and m2 orbiting around one

another and separated by a distance of D. The total mass is
M ¼ m1 þm2, while the dimensionless mass ratio is
η ¼ m1m2=ðm1 þm2Þ2. The orbital frequency of the system
is f. An observer directly above the orbital plane of the system
a distance R away would observe the following gravitational
wave strain:

h¼ 16π2GMηD2f2

Rc4
½hþ cosð4πftþϕ0Þþh× sinð4πftþϕ0Þ�;

ð17Þ

where the two polarization states are represented by hþ and
h×. This is a circular polarization. ϕ0 is a phase shift
depending on the initial conditions. If one observes the binary
system edge on from a distance R, then the gravitational waves
received will be

h ¼ 8π2GMηD2f2

Rc4
hþ cosð4πftþ ϕ0Þ ð18Þ

and thus linearly polarized, and smaller in magnitude by a
factor of 2. In general the observer will be at an angle of ι with
respect to the normal of the orbital plane. In this case the
amplitude of the hþ polarization component will be dimin-
ished by a factor of ð1þ cos2 ιÞ=2, while the amplitude of the
h× polarization component will be diminished by cos ι

(Usman, Mills, and Fairhurst, 2019). Note that the gravita-
tional wave signal frequency is twice the orbital frequency
(fGW ¼ 2f); this is the frequency of the gravitational wave
that will be detected. Since the system is losing energy via
gravitational wave emission, the orbit will decay. This will
cause the orbital frequency to increase as follows:

df
dt

¼ 192πη

5c5
ð2πfGMÞ5=3f2 ∝ f11=3: ð19Þ

This defines the frequency evolution of the system and the
gravitational wave signal. The frequency evolution is what
results in the chirplike signal. As the binary system’s orbit
decays the frequency of the resulting gravitational wave signal
will increase, and consequently the amplitude will increase
as well.
One can then calculate the time it will take for the two

masses to spiral into one another. Starting from a separation
distance ofD0 the coalescence time, namely, when the masses
collide at D ¼ 0, is

tc ¼
5D0c5

256ηðGMÞ3 : ð20Þ

The simple calculation in Eq. (20) essentially assumes an orbit
described by Kepler’s laws, with energy loss from the
emission of gravitational waves. However, the general evo-
lution of the system is evident. It is also now possible to see
which parameters pertaining to the source can be described
using parameter estimation methods on the detected gravita-
tional wave signal.
Gravitational wave signals from compact binary coales-

cence have been detected by LIGO and Virgo (Abbott et al.,
2019c). These detectors are L shaped, and hence quadrupole
detectors. A gravitational wave descending directly downward
(normal incidence) on such a detector will register the
maximal response for the hþ polarization and no response
for the h× polarization. Gravitational waves can come from
any direction. We define a Cartesian coordinate system with
the arms of the detector defining the x and y directions, with z
normal to those in a right-hand sense. The units for the sky
location of an astronomical source are right ascension (RA)
and declination (Dec). But, in terms of the Cartesian coor-
dinate system, we can say that the angle between the
propagation direction of the gravitational wave k and the z
axis is θ. The projection of k onto the x-y plane makes an
angle ϕ with respect to the x axis. Finally, ψ defines the angle
of polarization about the k direction of propagation. A
quadrupole detector will respond to the incoming gravitational
wave with a detected signal of

h ¼ Fþðθ;ϕ;ψÞhþ þ F×ðθ;ϕ;ψÞh×; ð21Þ

where hþ and h× are the amplitudes of the two polarizations
and

Fþðθ;ϕ;ψÞ¼ 1
2
ð1þ cos2θÞcos2ϕcos2ψ − cosθ sin2ϕsin2ψ

ð22Þ
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and

F×ðθ;ϕ;ψÞ¼ 1
2
ð1þ cos2θÞsin2ϕcos2ψ − cosθ sin2ϕcos2ψ :

ð23Þ

While it is difficult to determine the sky location of the
source with just one interferometer, with two detectors one can
use the interferometer responses and delay in the arrival time
of the signal to constrain the source location (Röver, Meyer,
and Christensen, 2007; Röver et al., 2007). The addition of
more detectors improves one’s ability to resolve a source (B. P.
Abbott et al., 2020d; Pankow et al., 2020). The current LIGO-
Virgo network of three detectors has already succeeded in
estimating the sky location of GW170817 to 28 deg2. The
long-term goal is to have a worldwide network of five
detectors, which in addition to the two LIGO detectors and
Virgo would include the Japanese KAGRA detector (Aso
et al., 2013; Akutsu et al., 2020) and a third LIGO detector in
India (Unnikrishnan, 2013). With such a network it should be
possible to constrain the location of a compact binary source
to a few deg2 on the sky.
One can now see the parameters that can be estimated using

the data from gravitational wave detectors. With even just one
detector it is possible (with sufficient SNR) to produce
estimates of the two mass parameters m1 and m2, the time
of coalescence tc, and the inspiral phase ϕ0. With two or more
detectors estimates can be made of the sky position (RA and
Dec), the distance to the source R, the orbital plane inclination
angle ι, and the polarization angle ψ . More complicated orbits,
for example, those including eccentricity, would consequently
require additional parameters for the model.
In terms of parameter estimation, the mass parameter that

can be estimated most accurately is the chirp mass Mc
[Eq. (1)]. This is because it is the mass term that directly
influences the frequency derivative. For example, Eq. (19) can
be rewritten as

df
dt

¼ 192π

5c5
ð2πfGMcÞ5=3f2: ð24Þ

Hence, Mc is the only mass term that contributes to the
frequency evolution. The orbital frequency f is certainly an
important parameter for describing the physical system
producing the gravitational waves, but the detectors will be
directly observing the gravitational wave frequency
fGW ¼ 2f. Hence, the time evolution of the phase terms in
Eqs. (17) and (18) will vary like 2πfGWt.
The previously presented signal model neglected to address

the fact that the Universe is expanding. Gravitational waves
that have been emitted at a large distance will experience a
redshift, and the detected gravitational wave frequency will be
less than the emitted frequency by a factor of 1þ z, where z is
the cosmological redshift of the signal source. With the
expanding Universe the gravitational wave signal will provide
an estimate of the luminosity distance DL (Moore, 2013),
which we use henceforth instead of R. When LIGO and Virgo
detect a gravitational wave signal from a compact binary
coalescence, the masses derived via parameter estimation will
be the detector framemasses. The physical parameters that are

needed to understand the origin of the signal are the source
frame masses (Krolak and Schutz, 1987). One must divide the
detector frame masses by 1þ z to produce those of the source
frame. This requires the use of additional cosmological
information. Objects in the expanding Universe move away
from us at a velocity v that is related to the distance D via the
Hubble constant H0 by

v ¼ H0D: ð25Þ

The coalescing binary gravitational wave signal provides an
estimate for the luminosity distance to the source. Converting
distance to redshift requires the assumption about the cosmol-
ogy of the Universe. LIGO and Virgo have been using the
cosmological parameters derived from the Planck observa-
tions of the cosmic microwave background (Ade et al., 2016).
The cosmological calculation converts the luminosity distance
to a redshift.
Ultimately one must use general relativity to describe

everything about the evolution of the binary system. While
Newtonian equations of motion emerge as an approximation
to general relativity, it should be no surprise that it is necessary
to use the full theory of general relativity to describe the
orbital mechanics and gravitational wave emission. As an
example of the difference between Newtonian orbits and those
from general relativity, consider a point particle in an orbit
about a central mass M. For Newtonian mechanics, the radial
acceleration is

d2r
dt2

¼ −GM
r2

þ l2

r3
; ð26Þ

where t is the coordinate time and l is the angular momentum
per unit mass. On the other hand, the radial acceleration from
general relativity is

d2r
dτ2

¼ −GM
r2

þ l2

r3
−
3GMl2

c2r4
; ð27Þ

where τ is the proper time. With Newtonian gravity it is
possible to have a stable circular orbit for any radius. However
the effect of the additional term in Eq. (27) creates an
innermost stable circular orbit. For r < 6GM=c2 it is not
possible to sustain a circular orbit, and the particle will fall
toward r ¼ 0 (Moore, 2013). This has important implications
for predicting the gravitational wave signal for a coalescing
compact binary. The previous derivation considered the
gravitational wave emission from the inspiral part of the
signal, but an accurate description must also consider this
plunge part of the signal.
The no-hair theorem says that black holes in general

relativity can be completely described by three parameters:
their mass, their spin (angular momentum), and their electric
charge (Misner, Thorne, and Wheeler, 1973). Astrophysical
black holes will likely be uncharged (the surrounding plasma
will quickly neutralize any net charge) (Narayan, 2005), and
will be described by their mass and spin, namely, Kerr black
holes (Kerr, 1963). For a binary black hole coalescence the
final part of the process, after the plunge, will be the merger of
the two initial black holes to form a final black hole. By the
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no-hair theorem the final product of the merger must be a Kerr
black hole. This means that the merger process will be the
initial formation of a black hole that undergoes a ringdown to
a final stable configuration. This merger-ringdown process
will result in gravitational wave emission as well. In fact, the
observed gravitational waves from the ringdown of a newly
formed black hole can be used to test the no-hair theorem; see
Dreyer et al. (2004), Kamaretsos et al. (2012), and Isi
et al. (2019).
The spin of the initial component masses will add six

additional parameters. Essentially, these are the total spin
magnitude and the spin direction (a vector) for each initial
mass. While general relativity is the correct theory of gravity,
one can consider the limit when the theory is well approxi-
mated by Newtonian gravity. The gravitational field g⃗ðr⃗Þ at r⃗
created by a point mass M at the origin is

g⃗ðr⃗Þ ¼ −GMr̂
r2

: ð28Þ

Similarly, the electric field E⃗ðr⃗Þ at r⃗ created by a point charge
Q at the origin is (Coulomb’s law)

E⃗ðr⃗Þ ¼ keQr̂
r2

; ð29Þ

with ke the Coulomb constant. The form of the equations is
similar. And while we know that a moving charge will create a
magnetic field B⃗, it should not come as a surprise that a
moving mass would create a so-called gravitomagnetic field
B⃗G (Moore, 2013). The effect of gravitomagnetism would
cause a spinning gyroscope orbiting the rotating Earth to be
torqued through Lense-Thirring precession and geodetic
precession. The measurement of these effects was the goal
of NASA’s Gravity Probe B mission (Everitt et al., 2011).
For compact binary systems we can make a comparison

with atoms and spin-orbit coupling. For the binary system
there will be a coupling between the gravitomagnetic field
created by the orbital angular momentum and the gravito-
magnetic field created by the spins of the compact objects.
This will affect the orbital dynamics, and hence the generation
of the gravitational waves. The spin angular momentum S⃗j of
a black hole of mass mj will vary in magnitude between 0 and
a maximum allowed by general relativity ofGm2

j=c. One often

uses the dimensionless spin vector χ⃗j ¼ S⃗jc=Gm2
j , whose

magnitude varies from 0 to a maximum of 1 by cosmic
censorship (a proposition to avoid naked singularities)
(Wald, 1997).
LIGO and Virgo report their results in terms of two global

effective spin parameters, in addition to the individual
component spins. The effective inspiral spin parameter χeff
is a mass averaged sum of the spins of the two initial masses
aligned with the orbital angular momentum, as presented by
Santamaría et al. (2010), Ajith et al. (2011), and Abbott et al.
(2019c). The effective precession spin parameter χp is a
measure of the component mass spin parallel to the orbital
plane (Hannam et al., 2014; Schmidt, Ohme, and Hannam,
2015). The presence of χp will change the dynamics of the
orbit, creating a precession of the orbital plane (Apostolatos

et al., 1994; Apostolatos, 1996). A waveform model that
includes spins is more complex, but it is also representative of
how we expect to observe black holes and neutron stars. The
first step in complexity will be models that consider only the
presence of spin in the direction of the obital angular
momentum, the so-called spin-aligned models with a χeff .
The more complete and more complex model also considers
spin in the orbital plane, which hence has orbital precession,
and a nonzero χp. These models are described in Sec. V.A.

A. Binary black hole

The gravitational waves from a binary black hole are the
simplest binary system to predict, as black holes have no
internal structure that must be taken into account. That said, it
will still require 15 parameters to describe the gravitational
waves produced by a binary black hole system in a circular
(namely, noneccentric) orbit. The research into the prediction
of the gravitational waveforms goes back many years. Landau
and Lifshitz (1951) addressed the dynamics of the orbit of a
binary system, the production of gravitational waves, and the
decay of a circular orbit via energy loss from gravitational
wave emission.
In the early 1960s the complexity of the binary orbit was

increased. The evolution of a binary in an eccentric orbit was
studied by Peters and Mathews (1963), and it was shown that
gravitational wave emission would cause the orbit to circu-
larize. This then led to a subsequent study where the emission
of gravitational waves from a binary system is derived via
approximative solutions derived using expansions of the field
equations in terms of the gravitational coupling constant and
the velocity of the masses with respect to the speed of light
(v=c) (Peters, 1964). The expansion methods have become
critically important in the evolution of gravitational waveform
development. Peters (1964) presented a derivation of both the
energy and the angular momentum carried away from a binary
by gravitational waves; this was demonstrated for a binary
system with eccentricity.
A strong motivation for the study of binary systems was

provided by Hulse and Taylor (1975) with the discovery of the
binary pulsar PSR 1913þ 16. It was quickly realized that this
system would provide an excellent opportunity to test general
relativity (Damour and Ruffini, 1974), and especially the
existence of gravitational waves (Wagoner, 1975). The decay
of the orbit of PSR 1913þ 16 was confirmed by Taylor and
Weisberg (1982), who showed that the energy loss was exactly
what one would expect with general relativity and the
emission of gravitational waves. Years of subsequent obser-
vations have even more convincingly supported the initial
observations (Taylor andWeisberg, 1989; Weisberg, Nice, and
Taylor, 2010; Weisberg and Huang, 2016).
By the 1970s the activity associated with the development

of gravitational wave detectors was well under way. These
detector projects included resonant bar detectors (Weber,
1969, 1970; Boughn et al., 1977) and laser interferometers
(Weiss, 1972; Forward, 1978; Billing et al., 1979).
Simultaneously there was a rapid development of the theo-
retical physics methods to more accurately describe the
gravitational wave signals that these detectors would hope-
fully soon observe. A method to approximate the solutions to
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the nonlinear Einstein equation is to derive order-by-order
deviations from Newtonian gravity, the so-called post-
Newtonian formalism. These approximative solutions are
expansions in terms of small parameters that are similar to
a Taylor series. Epstein and Wagoner (1975) used a post-
Newtonian approximation expansion in general relativity to
describe the gravitational radiation field and the energy flux
from sources. The expansion was done in powers of the
velocity of the signal source, namely, powers of v=c; the initial
derivation for gravitational waves was done to 3=2 post-
Newtonian order. This post-Newtonian method was intro-
duced by Chandrasekhar (1965) to derive hydrodynamics
equations in general relativity. The method was then applied to
a system of two masses for circular orbits, gravitational
bremsstrahlung, and head-on collisions (Wagoner and Will,
1976). And so began the derivation of gravitational wave
solutions for the inspiral phase of binary systems, to higher
and higher post-Newtonian order. Soon 2.5 post-Newtonian
solutions were presented by Damour and Deruelle (1981) and
Itoh, Futamase, and Asada (2001), and then 3.0 ones
(Blanchet, 1998). The effects from the spin of the masses
must be addressed and have been included in the post-
Newtonian waveforms; these include spin-orbit and spin-spin
coupling. Post-Newtonian waveforms up to order 4.0 have
been derived. For an excellent and comprehensive review of
post-Newtonian descriptions of gravitational wave signals, see
Blanchet (2014).

1. Compact binary parameter estimation

After the initial proposal by Christensen and Meyer (1998)
to use MCMC methods for Bayesian gravitational wave data
analysis, these parameter estimation methods were then tested
by Christensen and Meyer (2001) with 2.5-order post-
Newtonian waveforms as expressed in the frequency domain
(Tanaka and Tagoshi, 2000). The MCMC technique was
implemented with a Gibbs sampler (Gilks, Richardson, and
Spiegelhalter, 1996). This initial demonstration considered the
data from one detector and five parameters: the two masses,
the time and phase at coalescence, and a signal amplitude. The
demonstration was also concerned with displaying rapid and
efficient sampling from a complex posterior distribution for
the steps of the Gibbs sampler; this was accomplished with a
Metropolized type of adaptive rejection sampling (Gilks and
Wild, 1992; Gilks, Best, and Tan, 1995).
These MCMC methods were then expanded by

Christensen, Meyer, and Libson (2004) with the use of a
Metropolis-Hastings MCMC technique (Metropolis et al.,
1953; Hastings, 1970). This was again a demonstration for a
single detector and a signal described by five parameters
(Tanaka and Tagoshi, 2000), also with the 2.5 post-Newtonian
waveforms of Tanaka and Tagoshi (2000). The code was
developed to be compatible with LIGO data and data analysis.
Starting with initial LIGO’s second science run S2, these
MCMC parameter estimation methods were applied to signals
injected into the data (Abbott et al., 2005). Further improve-
ments to this initial method also involved the development of
importance resampling (Smith and Gelfand, 1992; Gelman
et al., 2014) to improve the convergence of the Markov chains,
and informative priors to better correspond to the conditions

expected with LIGO and Virgo observations (Röver, Meyer,
and Christensen, 2006).
The application of Bayesian parameter estimation for

gravitational wave signals observed by a network of detectors
was demonstrated by Röver, Meyer, and Christensen (2007).
This was a presentation of a MCMC routine for coherent
parameter estimation for binary compact objects with multiple
interferometric gravitational wave detectors, such as the three
detectors in the LIGO-Virgo network. This increased the
number of parameters to nine, including the distance and sky
position; spin was neglected in this initial study. As described
in Sec. III [see Eq. (6)], for interferometer k the likelihood
function takes the following form:

LðkÞðθÞ ∝ exp

�
−
1

T
½d̃ðkÞ − h̃ðkÞðθÞ��SðkÞ−1 ½d̃ðkÞ − h̃ðkÞðθÞ�

�
;

where the detector data is dðkÞ, which is the sum of the detector
noise and the gravitational wave signal hðkÞðθÞ, which is
described by the parameters θ. The Fourier transforms of the
data d̃ðkÞ and h̃ðkÞðθÞ appear in the likelihood along with the
noise PSD SðkÞ. The parameters θðkÞ that describe the signal in
detector k are masses m1 and m2, luminosity distance DL,
inclination angle ι, coalescence phase ϕ0, polarization ψ , and
the following detector-specific parameters: local coalescence

time tðkÞc , local sky altitude ϑðkÞ, and local sky azimuth φðkÞ.
Making the assumption that the noise in the detectors is
independent, we find that the product of the individual
likelihoods gives the network likelihood [Eq. (6)]. Röver,
Meyer, and Christensen (2007) implemented a prior for the
gravitational signal amplitude that considered the combined
effects of the distance and masses, which was then multiplied
by the prior for the inclination and sky position. For this study
the MCMC technique was implemented as a Metropolis
sampler (Gilks, Richardson, and Spiegelhalter, 1996;
Gelman et al., 2014). With the large number of parameters,
simulated annealing was used to better sample the parameter
space. This study demonstrated effects that are important for
present LIGO-Virgo observations, especially GW170817
(Abbott et al., 2017d). There is a correlation between the
estimation of the luminosity distance dL and the inclination
angle ι. In addition, if the signal strength (SNR) in a particular
detector is small it still adds information and can improve the
sky position localization. This was what was again observed
with GW170817, where the signal was weak in Virgo, yet the
inclusion of the Virgo data in the parameter estimation
improved the sky position estimation and was crucial for
identifying the source via electromagnetic observations
(Abbott et al., 2017e).
The multidetector, coherent MCMC method for gravita-

tional wave signals from compact binary systems was further
expanded and presented by Röver et al. (2007). Here a more
advanced waveform model was used that was 3.5 post-
Newtonian order in phase and 2.5 order in amplitude
(Blanchet et al., 2002; Arun et al., 2004). This study used
sophisticated MCMC methods for the Metropolis sampler,
such as an evolutionary MCMC technique (Liang and Wong,
2001), a generalization motivated by genetic algorithms
(Goldberg, 1989). These methods yielded an enhancement
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over parallel tempering, with faster and more dependable
convergence toward the correct posterior distribution.
The natural evolution of the parameter estimation for

compact binary coalescence produced gravitational wave
signals was the inclusion of spin for the two initial component
masses. van der Sluys, Roever et al. (2008) and van der Sluys,
Raymond et al. (2008) considered in the first step of this
process a neutron star– (1.4M⊙) black hole (10M⊙) binary;
the black hole is assumed to be spinning, while the spin of the
neutron star can be ignored. This brings the total number of
parameters considered to 12. Such a parameter estimation
routine is demanding due to the sizable parameter number and
large correlations between them; this creates a parameter
space with much structure. The waveform used was 1.5 post-
Newtonian in phase but Newtonian order in amplitude; in this
way the signal could be computed analytically, which was
convenient for this initial demonstration with a large param-
eter number. The spin of the black hole can couple with the
orbital angular momentum (an analogy to atomic spin-orbit
coupling); this will lead to modulation of the signal amplitude
and phase. In addition, such a coupling will create a
precession of the orbital plane (Apostolatos et al., 1994).
However, the modulations in the observed signal can actually
benefit the parameter estimation and sometimes remove
parameter degeneracies. While the MCMC technique was
running, the correlations between the Markov chains for the
different parameters were measured. The covariance matrix
was calculated. The subsequent samples for the Markov
chains were then drawn from the new multivariate normal
distribution. This increased the efficiency of the MCMC
technique. Parallel tempering was also employed. The study
showed that for reasonable SNRs the sky position of the
source could be estimated to tens of deg2, thereby displaying
the potential for gravitational wave multimessenger
astronomy. Raymond et al. (2009) subsequently demon-
strated that the use of high post-Newtonian templates with
spin provided improved sky position estimation. The appli-
cation of the 12-parameter MCMC method was successfully
demonstrated for hardware-injected signals in the LIGO S5
data, thereby showing the efficacy of the method in the
presence of real interferometer detector noise (van der Sluys
et al., 2009).
The parameter estimation for a compact binary coalescence

where the spin of both component masses is considered was
presented by Raymond et al. (2010). For this the total number
of parameters is 15. Parallel tempering is again used for the
MCMC technique (Röver, Meyer, and Christensen, 2007). For
the study the waveform was 3.5 post-Newtonian order in
phase, Newtonian amplitude, and spin related terms that are
2.5 post-Newtonian order in phase; these are waveforms in the
adiabatic circular orbit inspiral regime that are driven by
radiation reaction (Buonanno, Chen, and Vallisneri, 2003).
Signals were injected into synthetic Gaussian noise and also
actual LIGO data. These injected signals had a SNR of 11.3,
and with that an accurate parameter estimation was achieved.
This study also made the comparison between injected signals
and short-duration noise transients (glitches). Bayes factors
were calculated for the comparison between the model where
a signal is present, as compared to just Gaussian noise. A

harmonic mean method was used for the calculation of the
evidence, and hence also the Bayes factor (Newton and
Raftery, 1994); see also Sec. III.C.
The possibilities for Bayesian parameter estimation for

compact binary coalescence produced gravitational wave
signals were greatly expanded after the important paper of
Veitch and Vecchio (2010), which introduced nested sampling
as a possible method for use. Nested sampling, described in
Sec. III, offers a parameter estimation method that is poten-
tially faster than MCMC techniques. This is important for
signals with a large number of parameters, such as the 15
parameters associated with compact binary coalescence. In
addition to the generation of posterior probability functions
for the parameters, the study also addresses model selection
and the generation of Bayes factors. Nested sampling and
MCMC techniques both became integral for the LIGO-Virgo
parameter estimation software LALInference (Veitch et al.,
2015), which is described in Sec. X.A.

2. Compact binary waveform modeling

As demonstrated by the observations of numerous binary
black hole produced gravitational wave signals by LIGO and
Virgo (B. P. Abbott et al., 2019c; R. Abbott et al., 2021c), it is
critical to have a model for more than just the inspiral part
of the signal. The decades of work on the development of
waveform models that include the merger and ringdown of the
newly formed black hole have become essential in this era
where gravitational waves from binary black holes are
commonly observed and an accurate parameter estimation
is required (Mandel et al., 2014). The limitations of the post-
Newtonian expansion, in powers of v=c, become evident in
the final few orbits of a binary black hole as the relative
velocity approaches the speed of light. This is well illustrated
in the observation of GW150914, where the two black holes
reached a relative velocity of v=c ∼ 0.6 at merger (B. P. Abbott
et al., 2016b). To address the limitations of the post-
Newtonian approach, the effective-one-body (EOB) formal-
ism was developed (Buonanno and Damour, 1999, 2000;
Damour, Jaranowski, and Schaefer, 2000). The post-
Newtonian expansion in powers of v=c is replaced by a
nonpolynomial function of v=c that addresses the nonpertur-
bative characteristics of the true signal (Damour, 2016). The
EOB method was quickly expanded to include spin for the
initial component black hole by Damour (2001).
A critically important point in the development of gravi-

tational wave signal waveforms was the numerical calculation
of the final orbit, the plunge, and then the ringdown from the
newly formed black hole system; this achievement was
presented by Pretorius (2005). This breakthrough motivated
many groups to develop numerous different numerical sol-
utions to general relativity and the prediction of gravitational
wave signals from binary black hole systems; see Baker et al.
(2006), Campanelli et al. (2006), and Lindblom et al. (2006).
A subsequent important development was the ability to
combine analytical relativity with numerical relativity, as
demonstrated by Buonanno, Cook, and Pretorius (2007).
With this work numerical-relativity-completed EOB wave-
forms were constructed. This has subsequently led to the use
of templates constructed via these methods for use by LIGO
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and Virgo; see Taracchini et al. (2014) and Ossokine
et al. (2020).
The Numerical Injection Analysis (NINJA) project was

initiated in order to study the sensitivity of gravitational wave
analysis pipelines to numerical simulations of waveforms. The
Bayesian parameter estimation methods were used to help
verify the validity of numerical-relativity waveforms as part of
the NINJA project (Aylott et al., 2009; Cadonati et al., 2009;
Aasi et al., 2014).
A frequency domain phenomenological model for the

generation of gravitational wave signals has also been
developed and used by LIGO and Virgo (Khan et al.,
2016; Pratten et al., 2021). The phenomenological models
use a combination of analytic post-Newtonian and EOB
methods to describe the inspiral, merger, and ringdown.
Numerical-relativity simulations are then used to calibrate
EOB coefficients that could not be defined otherwise, and also
free parameters associated with the merger and ringdown.
These models have considered a spin-aligned configuration
where the black holes spins are parallel to the orbital angular
momentum. However, they have also been extended to
account for in-plane spin and orbital precession by twisting
up nonprecessing waveforms to simulate the precessional
motion via the addition of one parameter, the effective
precession spin parameter χp, as described by Hannam et al.
(2014) and Schmidt, Ohme, and Hannam (2015).
For the first detected gravitational wave signal GW150914

(B. P. Abbott et al., 2016b) the waveforms that were used for
the parameter estimation included the numerical-relativity-
completed EOB waveforms (Pürrer, 2014; Taracchini et al.,
2014), as well as the phenomenological model with aligned
spin (Khan et al., 2016; Pratten et al., 2021). A phenomeno-
logical model that included spin precession was also used
(Hannam et al., 2014). The analysis was redone in order to
correct a transformation of coordinates relating the non-
precessing and precessing systems; this analysis used the
spin-aligned EOB waveforms and the precessing phenom-
enological waveforms and produced parameter estimates
equivalent to the initial study (Abbott et al., 2016e).
Finally, a revised and improved analysis using fully precessing
waveforms (EOB and phenomenological) was presented by
T. D. Abbott et al. (2016).
Even from his orginal calculations, Einstein knew that

gravitational waves would be at least quadrupolar (Einstein,
1918). But just as with electromagnetic radiation (where the
lowest multipole radiation is dipole), it is possible to have
higher-order multipoles. For gravitational waves, extensions
past quadrupolar multipole moments are what are referred to
as higher-multipole emission. Note that the presence of
higher-order modes and precession does not actually increase
the number of physical parameters to estimate: it is just a more
accurate waveform. Higher multipoles will be detectable in
gravitational wave signals observed from compact binary
systems with large inclination angles; hence, the absence of
the higher multipoles would allow for the exclusion of those
large angles. This can break the orbital plane inclination
angle–distance degeneracy, which will then improve the
constraints on the inferred source inclination and luminosity
distance (Chatziioannou et al., 2019).
The recent O3 observations by Advanced LIGO and

Advanced Virgo have displayed more complicated signals

that have shown the importance of having more complex
waveforms that encompass higher multipoles and orbital
precession. The binary systems responsible for the gravita-
tional wave signals GW190412 (R. Abbott et al., 2020b) and
GW190814 (R. Abbott et al., 2020d) had larger mass ratios,
and the presence of higher multipoles was confirmed. For
GW190412 (R. Abbott et al., 2020b) the system was a binary
black hole with initial component masses estimated to be
m1 ¼ 29.7þ5.0

−5.3M⊙ and m2 ¼ 8.4þ1.8
−1.0M⊙ for a mass ratio of

q ¼ 0.28þ0.13
−0.06 . The inclination angle (folded to ½0; π=2�) was

estimated to be θJN ¼ 0.73þ0.34
−0.24 . Between the large mass ratio

and the relatively large inclination angle it should not be a
surprise that there was evidence for higher-order modes, as
given by a log10 Bayes factor ≥ 3. The estimate for the orbital
precession was χp ¼ 0.30þ0.19

−0.15 , which did not provide any
strong evidence. Numerous waveforms were used that incor-
porated higher-multipole modes and orbital precession. These
include EOB waveforms, which are created by doing an
analytical inspiral-merger-ringdown description that is based
on post-Newtonian, black hole perturbation theory, numerical-
relativity results; see Pan et al. (2014), Babak, Taracchini, and
Buonanno (2017), and Ossokine et al. (2020). There were also
the phenomenological waveforms that included higher multi-
poles with no precession (London et al., 2018) or with
precession (Khan et al., 2019, 2020); further advances have
been implemented with the IMRPhenomXHM models
(García-Quirós et al., 2020, 2021). In addition, a numeri-
cal-relativity surrogate model with higher-multipole modes,
but spin aligned only with the angular momentum (Varma
et al., 2019b), was used to verify the parameter estimation
results for GW190412 (R. Abbott et al., 2020b). A similar
analysis, with comparable results, was conducted for
GW190814 (R. Abbott et al., 2020d). The binary black hole
system that produced this signal also had a large mass ratio:
m1 ¼ 23.2þ1.1

−1.0M⊙, m2 ¼ 2.59þ0.08
−0.09M⊙, and q ¼ 0.112þ0.008

−0.009 .
There was also a relatively large inclination angle of
θJN ¼ 0.8þ0.3

−0.2 . See Sec. VI.B.3 for more discussion of these
events.
Finally, the massive (total mass of 150M⊙) binary black

hole merger signal GW190521 (R. Abbott et al., 2020c,
2020e), shows some evidence of orbital precession. As
such it was necessary to have waveforms that accounted
for this effect. And while GW190521 did not show evidence
for the presence of higher-order modes, it is important to also
have these effects in the waveforms. For the analysis of
GW190521, LIGO and Virgo used the numerical-relativity
surrogate model NRSur7dq4 (Varma et al., 2019a), the
effective-one-body model SEOBNRv4PHM (Babak,
Taracchini, and Buonanno, 2017; Ossokine et al., 2020),
and the phenomenological model IMRPhenomPv3HM (Khan
et al., 2020). See Sec. VI.B.4 for more discussion of
this event.

B. Binary neutron star

The gravitational waves from a neutron star binary are
different to those of a binary black hole. The potential of
inducing tidal deformations in the neutron stars must be
included; see the discussion in Sec. VI.C.1 and Eq. (36). This
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was the case for the analysis of GW170817 (Abbott et al.,
2017d). As the orbital frequency increases, the neutron star
tidal effects begin to affect the phase and become significant
for orbital frequencies above about 300 Hz; these effects could
be observable in the gravitational wave signal (Hinderer et al.,
2010). These tidal deformations produce a mass-quadrupole
moment that will advance the coalescence (Flanagan and
Hinderer, 2008). The initial analysis of GW170817 used
waveforms incorporating the effects of spin aligned with
the orbital angular momentum (Bohé, Marsat, and Blanchet,
2013), spin-spin interactions (Bohé et al., 2015; Mishra et al.,
2016), and tidal interactions (Vines, Flanagan, and Hinderer,
2011; Nagar et al., 2018; Dietrich et al., 2019). A subsequent
analysis of GW170817 used waveforms that incorporated
different theoretical predictions for the equation of state of the
neutron stars (B. P. Abbott et al., 2020c), and also potential
coupling between p and g modes from within neutron stars
(Abbott et al., 2019b). See also Abbott et al. (2019d) for more
details on GW170817.

C. Neutron star–black hole binary

The gravitational waves from a neutron star–black hole
binary will encode the large disparity between the masses,
with the neutron star mass being around 2M⊙ or less and
the black hole mass unconstrained. This will allow for the
presence of higher-order modes to be observable in the
waveform. In addition, if the black hole mass is not too large,
possibly 10M⊙ as an upper limit, then tidal distortion of the
neutron star could be observable before the merger. As such,
LIGO and Virgo will use waveforms that incorporate tidal
effects (Nagar et al., 2018; Matas et al., 2020; Thompson
et al., 2020) similar to the situation for binary neutron stars, as
described in Sec. V.C. Recently LIGO and Virgo announced
the discovery of gravitational waves coming from two neutron
star–black hole mergers, GW200105 and GW200115
(R. Abbott et al., 2021f). These events are further discussed
in Sec. VI.D.1.

VI. DETECTIONS OF GRAVITATIONAL WAVES BY LIGO
AND VIRGO

In this section we review the detection of gravitational
waves made by LIGO and Virgo to date and describe the
use of parameter estimation methods to extract physical
information. LIGO and Virgo have announced the
detection of 11 gravitational wave events during O1 and
O2, ten from binary black hole mergers and one from a binary
neutron star merger (Abbott et al., 2019c). These events
have provided numerous opportunities to use parameter
estimation methods to extract physics information, test
general relativity, and predict the expansion of the
Universe and the population of compact binary systems.
LIGO and Virgo have recently announced another 39 gravi-
tational wave events from compact binary mergers in catalog
GWTC-2 (R. Abbott et al., 2021c). GWTC-2 includes
gravitational wave events from the first half of O3, namely,
the events from O3a. The observation of two neutron star–
black hole coalescences by LIGO and Virgo were recently
announced (R. Abbott et al., 2021f).

A. Interferometer calibration

Before starting with a detected signal one must first take
into account the calibration of the gravitational wave detectors
and the associated uncertainty on the calibration parameters.
The calibration of Advanced LIGO was explained in detail by
Abbott et al. (2017i), Cahillane et al. (2017), and Sun et al.
(2020), and of Advanced Virgo by Acernese et al. (2018).
These calibration uncertainties will ultimately affect the
parameter estimation routines that are attempting to extract
the physical parameters associated with the detected gravita-
tional wave signals. The gravitational wave detectors like
LIGO and Virgo are complicated instruments, and hence the
calibration of their sensitivity to gravitational waves is a
necessary but difficult procedure.
MCMC methods are used to conduct the statistical analysis

on the LIGO interferometer response functions. The detector
parameters used for constructing a strain signal from the phase
changes in the interferometer light and the servo-loop signals
controlling the interferometer performance are estimated with
an MCMC technique. From this analysis the ultimate uncer-
tainties in the calibration are extracted (Cahillane et al., 2017).
A presentation of errors in the calibration of gravitational

wave detectors and how they will affect parameter estimation
was given by Farr, Farr, and Littenberg (2015). Following
their explanation, a gravitational wave of amplitude h̃ðfÞ (as
expressed in the frequency domain) arrives at the detector. The
data for the recorded signal d̃ðfÞ is

d̃ðfÞ ¼ h̃obsðfÞ þ ñðfÞ; ð30Þ

where ñðfÞ is the noise in the detector while h̃obsðfÞ is the
apparent gravitational wave signal observed by the detector.
There are always unavoidable uncertainties in the calibra-
tion of the detectors. A way of expressing this is through
the frequency-dependent uncertainty in the calibration of the
magnitude of the gravitational wave signal δAðfÞ and the
phase uncertainty δϕðfÞ. These uncertainties are frequency
dependent, but the assumption is that they are also continuous
as a function of frequency. One can then express the
observered gravitational wave signal with respect to the real
gravitational wave impinging on the detector as

h̃obsðfÞ ¼ h̃ðfÞ½1þ δAðfÞ�eiδϕðfÞ: ð31Þ

There will be different calibration uncertainties for the differ-
ent detectors. The calibration uncertainties are not large; for
example, for the time of the GW150914 detection, LIGO
reported calibration uncertainties of less than 10% in magni-
tude and 10° in phase for the frequency band 20 Hz to 1 kHz
(Abbott et al., 2017i). It is also the case that when the
observing run ends LIGO and Virgo redo their calibration,
which often results in diminishing the uncertainties. For the
O1 and O2 gravitational wave observations reported by
Abbott et al. (2019c) the final calibration uncertainties were
3.8% for magnitude and 2.1° in phase for LIGO-Livingston,
2.6% for magnitude and 2.4° for LIGO-Hanford, and 5.1% for
magnitude and 2.3° for Virgo. Farr, Farr, and Littenberg
(2015) introduced an approximation for the phase terms that
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will simplify the actual computer based computations,
namely,

eiδϕ ∼
2þ iδψðfÞ
2 − iδψðfÞ ; ð32Þ

and the phase term δψðfÞ is used instead.
A spline interpolation is used to model the calibration

errors, and this is the method currently used for LIGO-Virgo
parameter estimation studies with LALInference (Veitch
et al., 2015). At the nodes for the splines fi are the magnitude
errors δAi and phase errors δψ i. The nodal points are selected
to be distributed uniformly in log f. There are posterior
probability distribution functions generated for the calibration
errors at the nodal points, and this is done as part of the overall
parameter estimation calculation along with the physical
parameters of the gravitational wave source. This calibration
uncertainty procedure is conducted independently for each of
the gravitational wave detectors. Calibration uncertainty is
also modeled in a similar way with BILBY (Romero-Shaw
et al., 2020).
With the small uncertainties it is reasonable to use a prior

distribution that is Gaussian for the calibration uncertainties,
namely,

pðδAiÞ ¼ Nð0; σAi
Þ ð33Þ

and

pðδψ iÞ ¼ Nð0; σψ i
Þ; ð34Þ

and the σ’s are the calibration uncertainties. The prior
distributions for the calibration uncertainties are then used
as part of the parameter estimation process, and are part of the
parameter estimation routines in LALInference (Veitch
et al., 2015). When estimating the physical parameters of a
gravitational wave source one marginalizes over these cali-
bration uncertainties (Farr, Farr, and Littenberg, 2015). Note
that the absolute timing accuracy of data between the detectors
10 μs is so small that its potential contribution to affects on
parameter estimation are much less than those of the calibra-
tion uncertainty (Abbott et al., 2017i).
Payne et al. (2020) applied a calibration model that was

physically motivated and then used it as part of a compre-
hensive inference strategy for compact binary mergers. To
make the analysis more efficient importance sampling was
applied. Events from LIGO-Virgo catalog GWTC-1 (Abbott
et al., 2019c) were analyzed. It was found that the estimation
of the calibration error was not the limiting factor for the
estimation of the physical parameters from the gravitational
wave signals.
While the current LIGO and Virgo calibration strategies

involve injecting electrical signals at appropriate parts of the
control system or using photon actuators to push the mirrors,
new gravitational methods are currently under investigation.
Estevez et al. (2018) and Estevez, Mours, and Pradier (2021)
used spinning masses to conduct a Newtonian calibration of
Virgo. This initial demonstration of Newtonian calibration
gave results consistent with the standard calibration results of

Virgo; however, more work is necessary to reduce noise with
this method. Essick and Holz (2019) used the belief in the
correctness of general relativity, the relative amplitude and
phase measurements of the gravitational wave in multiple
detectors, and external electromagnetic observations that
provide constraints on the distance to the source and angle
of inclination of the orbital plane through the information from
the jet observation. The study was able to show, using
Bayesian parameter estimation methods (Veitch et al.,
2015), that with the observations of GW170817 one could
calibrate the amplitude calibration of the LIGO detectors to
�20% and �15% for the phase (Essick and Holz, 2019).
Accurate calibration will also have important implications for
measuring the Hubble constant with gravitational waves from
compact binary mergers; in fact, gravitational wave sources
can themselves be used to help calibrate the detectors (Schutz
and Sathyaprakash, 2020).

B. Binary black holes

When the first detection GW150914 was made (B. P.
Abbott et al., 2016b), it truly was the birth of a new type
of astronomy. Since the time of Galileo, every time a new type
of telescope has been used new and often unexpected
discoveries have been made. This was certainly the case with
the first detected gravitational wave signal GW150194. The
two LIGO detectors simultaneously detected this signal at
09∶50∶45 UTC on September 14, 2015. Since then LIGO and
Virgo have detected a further 49 gravitational wave signals
from compact binaries, with the majority being binary black
holes, during O1, O2, and O3a, with even more coming from
the O3b (the final 5 months of O3) observations. It is
informative to start with how much was learned from the
first event alone, especially through the use of parameter
estimation methods.

1. GW150914

GW150914, the first detection of a gravitational wave, was
made right at the beginning of the first observational run for
Advanced LIGO. The signal was confidently detected with 24
for the SNR and 1 event in 203 000 yr for the false-alarm rate
(B. P. Abbott et al., 2016b).
The first important result from parameter estimation would

be the sky position estimate. By providing a possible location
for the source it is possible for other observers (electromag-
netic radiation, high energy neutrinos) to look for a counter-
part signal. The simplest way to create a sky map is to use the
difference in the arrival times of the signal in the different
detectors. For GW150914 the time delay of 6.9þ0.5

−0.4 ms
between the Livingston and Hanford detectors produced a
location patch in the sky. This is what is typical done with the
signal search pipelines. However, Bayesian parameter esti-
mation routines take into account the nature of the signal as
defined by the model, and also consider the response of the
different interferometric detectors to the polarization state of
the gravitational wave.
For GW150914 there was an initial sky position estimate

released 2 days after the event that reported a 50% credible
region of ∼200 deg2 in size, and a 90% region of ∼750 deg2
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(LIGO Scientific and Virgo Collaborations, 2015). This initial
circulation used the output of two signal search routines,
Coherent WaveBurst (Klimenko et al., 2016) and Omicronþ
LALInference Burst (Lynch et al., 2017). Coherent
WaveBurst conducts a limited maximum-likelihood (using
the antenna response of the detectors) estimate of the
reconstructed signal on a grid of the sky, while Omicronþ
LALInference Burst makes the assumption of a sinusoidally
modulated Gaussian signal and then uses Bayesian inference.
On January 16, 2016, some 4 months after the event, LIGO
and Virgo released an update to the sky position estimate
(LIGO Scientific and Virgo Collaborations, 2016). This new
sky position estimate used LALInference (Veitch et al.,
2015), which is further described in Sec. X.A, and BAYESTAR

(Singer and Price, 2016), which is further described in
Sec. X.G. The BAYESTAR sky maps are made using the
information from the signal search pipelines: merger times,
signal amplitudes, and signal phases. The LALInference
sky map was created from Bayesian MCMC and nested
sampling analyses and was considered to be the most accurate
sky map, at the expense of the computational time. The
LALInference sky map for GW150914 has a 90% credible
region of 630 deg2. See B. P. Abbott et al. (2016c) for a full
description of the methods used to produce the sky position
estimates for GW150914, and the efforts that were sub-
sequently done by astronomical observers to try to find a
counterpart. Note that the sky localization for GW150914 was
later improved from 230 deg2 due to improved calibration
uncertainty (B. P. Abbott et al., 2016d). This also improved
the inclination estimation. See Abbott et al. (2019c) for the

most recent estimates of the parameters. Figure 6 displays the
LALInference generated sky map for GW150914.
While numerous observing systems looked for a counter-

part signal, there was only one possible associated observa-
tion. Fermi GBM reported a possible gamma-ray event of
energy above 50 keV of duration 1 s that occurred 0.4 s after
the GW150914 merger time, with a false-alarm probability of
0.0022. The sky-location determination for the gamma-ray
event was not well localized but was consistent with part of the
gravitational wave localization from the Advanced LIGO
(Connaughton et al., 2016). This observation was not con-
firmed by other observers.
In addition to the right ascension and declination, the

distance to the source is another critical parameter in the
attempt to locate a gravitational wave source. However, there
is a degeneracy between the luminosity distance and the angle
of incidence for the orbital plane of the binary system. If the
normal to the orbital plane points directly to the observer, then
the amplitude of the gravitational wave signal will be larger,
mimicking a closer source. As the angle between the normal to
the orbital plane and the line of sight of the observer departs
from 0 to π=2 rad, the amplitude diminishes, mimicking a
source farther away. This effect and its implications for
parameter estimation was explained by Röver, Meyer, and
Christensen (2007) and Röver et al. (2007). The parameter
estimation results for GW150914, as generated by
LALInference, produce posterior distribution functions
for the luminosity distance and the orbital plane inclination

FIG. 6. Two-dimensional (right ascension α in hours, declina-
tion δ in degrees) probability distribution function for the position
of the source of GW150914 on the sky. The 50% and 90%
contours for the credible regions are given. This probability
distribution function was made with LALInference (Veitch et
al., 2015), which is further described in Sec. X.A. See B. P.
Abbott et al. (2016e) for more details.

FIG. 7. Two-dimensional probability distribution function for
the luminosity distanceDL and the orbital plane inclination angle
θJN for GW150914. Two different model waveforms were used:
the effective-one-body numerical relativity (EOBNR, in red)
(Mroue et al., 2013; Taracchini et al., 2014), the inspiral-merger-
ringdown phenomenological formalism (IMRPhenom, in blue)
(Ajith et al., 2007, 2008; Pan et al., 2008; Hannam et al., 2014;
Bohé et al., 2016; Husa et al., 2016; Khan et al., 2016), and the
combined total (in black). The 50% and 90% credible regions are
also presented. See B. P. Abbott et al. (2016e) for more details.
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that can be seen in Fig. 7. The source of GW150914 was
evidently at a distance of 410þ160

−180 Mpc or a redshift of
0.09þ0.03

−0.04 (B. P. Abbott et al., 2016e) using Planck’s estimated
cosmology parameters (Ade et al., 2016).
For a binary black hole merger the information on the

inclination of the orbital plane does not offer much useful
information. However, for binary neutron stars, or a black
hole–neutron star binary, there could be a jet produced and the
subsequent gamma-ray observations would depend on that
angle (Burns, 2020). The importance of the orbital plane
inclination angle for binary neutron star mergers will be
addressed in Sec. VI.C.1.
The masses for the binary system that produced GW150914

were critical in explaining the nature of the initial and final
objects. From the character of the signal it appeared that the
objects were point masses, and parameter estimation provided
the estimate of the masses of the two initial objects to be
m1 ¼ 36þ5

−4M⊙ andm2 ¼ 29þ5
−4M⊙ (B. P. Abbott et al., 2016b,

2016e). The posterior distribution functions for the two initial
masses can be seen in Fig. 2. Note that for the initial analysis
of GW150914 the prior distribution for each initial component
masses was uniform between 10M⊙ and 80M⊙ (B. P. Abbott
et al., 2016e). The amplitude of GW150914 reached a
maximum at about 150 Hz, which implies that the orbital
frequency of the binary system was about 75 Hz. Using
Newtonian mechanics and neglecting the effects from a small
redshift of z ∼ 0.1, this implies and orbital separation of about
210 km for the orbital frequency of 75 Hz. The ∼30M⊙ initial
component masses are far in excess of what is possible for a
neutron star. In addition, a pair of stars would not sustain their
spherical shapes and act like point particles, and in fact would
be far larger than this implied separation distance. The only
reasonable explanation, aside from exotic and new physics, is
that these two masses are black holes. This is further
supported by the fact that the full general-relativistic analysis
of this merger is consistent with point particles meeting
together at a relative velocity of ∼0.6c (B. P. Abbott et al.,
2016b). Further support for the black hole hypothesis also
comes from the merger and ringdown part of the signal, which
is further discussed later in the context of tests of general
relativity in Sec. VII.
As explained in Sec. V, the mass parameter that is most

accurately described by parameter estimation is the chirp
mass. For the system that produced GW150914 this was
estimated to be M ¼ 28þ2.0

−1.7M⊙. And while the total initial
mass was M ¼ 65þ4.5

−4.0M⊙, the final mass was estimated to be
Mf ¼ 62þ4.1

−3.7M⊙, implying that about 3M⊙c2 of energy was
converted into the production of gravitational waves. This
peak gravitational wave luminosity was 3.6þ0.5

−0.4 × 1056 erg=s,
or 200þ30

−20M⊙c2=s (B. P. Abbott et al., 2016b, 2016e). On
Earth, for this instant GW150914 was about 10 times brighter
than the full moon.
The angular momentum components of the system are also

critically important parameters to estimate, as they might
provide some clues to the formation history of the black holes.
As previously described, the parameter estimation routines for
LIGO-Virgo estimate the initial spins of the component black
holes and, with the orbital angular momentum, an estimate of
the spin of the remnant black hole is also estimated.

GW150914 provided the first measurement of the spin of
black holes, although not all the information can be extracted
for a signal of finite SNR and it is observable only for a limited
time in the observation frequency band of the detectors.
LIGO and Virgo use two different models for the coalescing

compact binary parameter estimation with spin for the initial
masses. The simpler model considers only the spin of the
initial masses to be aligned or antialigned with the orbital
angular momentum vector. As such, for circular orbits this
model consists of 11 parameters describing the physical
system. When the spin directions for the initial masses can
be in any direction it is possible to induce precession of the
spins and the orbital plane. This more complex mode has 15
parameters for circular orbits. The nonprecessing analysis
used an effective-one-body model (Taracchini et al., 2014)
that was adjusted in consideration of numerical-relativity
simulation results (Mroue et al., 2013). These were the
considerations for the initial parameter estimation analysis
of GW150914 (B. P. Abbott et al., 2016e).
The initial analysis of the Advanced LIGO GW150914 data

showed that there was no appreciable spin for the two initial
black holes; however, the posteriors for the spins are essen-
tially uninformative. The mass weighted linear combination of
the initial spins aligned with the orbital angular momentum
was estimated to be χeff ¼ −0.07þ0.16

−0.17 , which is consistent
with zero but slightly negative. The posterior distribution for
the effective in-plane spin parameter essentially corresponds
to the prior, and hence a 90% constraint of χp < 0.71 is set.
Estimates were made on the total spins of the initial black
holes: χ1 ¼ 0.32þ0.49

−0.29 with an upper bound of 0.69� 0.08, and
χ2 ¼ 0.44þ0.50

−0.40 with an upper bound of 0.89� 0.13.
Conservation of angular momentum converts the initial spins,
the orbital angular momentum, and the angular momentum
carried away in gravitational waves into a spin for the remnant
black hole of χf ¼ 0.67þ0.05

−0.07 (B. P. Abbott et al., 2016e). See
Fig. 8 for a summary of the posterior distrubution functions
for the initial spins, and Fig. 9 for the posterior distributions
for the final mass and final spin of the remnant black hole.
For the initial analysis of GW150914 the prior distributions

for the spins were uniform between 0 and 1 for χ1 and χ2. For

FIG. 8. Spin parameters estimated for GW150914. Left image:
posterior probability distribution functions for the spin param-
eters χeff and χp. The 50% and 90% credible regions overlap the
two-dimensional posterior probability. Right images: posterior
probability functions for the dimensionless spins of the initial
black holes with respect to the orbital angular momentum vector.
There is no evidence for significant initial spin. See B. P. Abbott
et al. (2016e) for more details.
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the nonprecessing spin model the prior is such that the initial
black hole spin vectors could be aligned or antialigned with
the orbital angular momentum vector, with magnitudes
between 0 and 1. For the precessing spin model the initial
spin angular momentum priors are uniform across all direc-
tions, again with spin magnitudes between 0 and 1 (B. P.
Abbott et al., 2016e).
Subsequent analyses of GW150914 continue to show that

the spin parameters for the two initial black holes are not large,
and that the inclusion of precession in the model does not
affect the results. There is no indication of precession for
GW150914 (Abbott et al., 2017f, 2019c).
Tests of general relativity have been made with GW150914.

General relativity should describe everything about the merger
of a binary black hole system, from the orbital inspiral to
the merger of the two black holes and then to the ringdown
of the newly formed black hole. A test has been done to
subtract the most probable waveform from the gravitational
wave data using the procedure described in Sec. VII.A. After
the subtraction of the waveform the residuals from the two
LIGO data streams are more likely to represent Gaussian noise
than residual gravitational wave energy (B. P. Abbott et al.,
2016f, 2019g, 2020b). A comparison was done for the
estimation of the final black hole mass and spin, using the
data from the inspiral part of the signal (low frequency) and
then the data from the merger and ringdown (high frequency).

Figure 10 presents a display of the 90% credible regions for
the final spin and final mass for the black hole remnant for
GW150914 using the low-frequency (inspiral) and high-
frequency (merger and ringdown) parts of the signal.
The methods used to conduct a parametrized test of general

general relativity via an examination of the post-Newtonian
and phenomenological numerical-relativity parameters, as
described in Sec. VII.C, were also applied to GW190514.
Figure 11 diplays the 90% credible intervals for the post-
Newtonian inspiral parameters ϕi, the intermediate regime
parameters βi, and the merger-ringdown parameters αi. The
results are presented for the two O1 events GW150914 and
GW151226, as well as the combined result; these results are
consistent with general relativity for all the parameters. Yunes,
Yagi, and Pretorius (2016) addressed the implications of these
observations for theoretical physics.

2. GW170814 and GW170818

The first three-detector gravitational wave detection
GW170814, produced by a binary black hole merger, pro-
vided the first opportunity to test whether the polarization of
the gravitational waves was consistent with the predictions of
general relativity (Abbott et al., 2017c). GW170818 was
another gravitational wave from a binary black hole merger
that was detected with three detectors with sufficient SNR to
allow for a polarization test (B. P. Abbott et al., 2016d). See
Sec. VII.E for a description of the methods used. For
GW170814 the model comparison analysis gave a Bayes
factor of 30 for tensor polarization versus vector polarization,
and 220 for tensor versus scalar (Abbott et al., 2019g). With
GW170818 there was a Bayes factor of 12 for tensor
polarization versus vector, and 407 for tensor versus scalar
(Abbott et al., 2019g).

FIG. 9. Estimates for the spin and mass parameters in the source
frame for the black hole remnant associated with GW150914.
The one-dimensional probability distribution functions are cal-
culated for the spin-aligned EOBNR waveform (red lines), the
spin precessing IMRPhenom waveform (blue lines), and the
overall average (black lines). The 90% credible intervals are
indicated by the dashed lines. The two-dimensional probability
distribution function is overlaid by the 50% and 90% credible
regions. Note that the spin label in the figure af is equivalent to
what is called χf in the main text. See B. P. Abbott et al. (2016e)
for more details.

FIG. 10. Display of the 90% credible regions for the final spin
and final mass for the black hole remnant for GW150914 based
on the parameter estimation of the signal from the low-frequency
inspiral part of the signal, and the high-frequency merger-ring-
down part of the signal (labeled postinspiral). The black line
represents the estimate from the fill inspiral-merger-ringdown
analysis. Note that the spin label in the figure af is equivalent to
what is called χf in the main text. See B. P. Abbott et al. (2016f)
for more details. From LIGO Laboratory, 2016.
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3. GW190412 and GW190814

The observations of GW190412 (R. Abbott et al., 2020b)
and GW190814 (R. Abbott et al., 2020d), both seen in the
observing run O3, displayed new and important effects. All
three LIGO-Virgo detectors were in observational mode for
these two events. These two gravitational wave events were
produced from binary black hole systems where the mass ratio
for the initial constituent masses (q ¼ m1=m2) displays a
significant asymmetry. For GW190412 the parameter estima-
tion gave m1 ¼ 30.1þ4.6

−5.3M⊙ and m2 ¼ 8.3þ1.6
−0.9M⊙, or

q ¼ 0.28þ0.12
−0.07 . For GW190814 the parameter estimation

provided m1 ¼ 23.2þ1.1
−1.0M⊙ and m2 ¼ 2.59þ0.08

−0.09M⊙, or
q ¼ 0.112þ0.009

−0.008 . This low mass for m2 with GW190814
has provoked much discussion and research, as it is not
certain whether this object is a black hole or a neutron star; it
has even been proposed that this could be a strange quark star
(Bombaci et al., 2021).
When such significant mass ratios are present, it is possible

to observe the effects of higher-order multipoles, namely,
those past the dominant quadrupole mode. One can describe
the emitted gravitational waves in terms of a series of spin-
weighted spherical harmonics (Thorne, 1980). For example,
the two polarizations would take the following form (R.
Abbott et al., 2020b):

hþ − ih× ¼
X
l≥2

X
−l≤m≤l

hlm
DL

Ylmðθ;ϕÞ; ð35Þ

where the direction of propagation to the observer is defined
by the angles ðθ;ϕÞ, DL is the luminosity distance to
the source, Ylmðθ;ϕÞ are the spherical harmonics, and hlm
is the amplitude of each multipole. For binary systems the

quadrupole l ¼ m ¼ 2 mode is expected to dominate, but
when the mass ratio differs from 1 the contribution of the
l ¼ m ¼ 3 mode can become important.
The waveforms used in the analyses accounted

for both orbital precession and higher-order multiples.
These were the effective-one-body numerical-relativity wave-
form SEOBNRv4PHM (Babak, Taracchini, and Buonanno,
2017; Ossokine et al., 2020), the phenomenological
IMRPhenomPv3HM (Khan et al., 2019, 2020), as well as
the numerical-relativity surrogate NRHybSur3dq8 model (for
GW190412), which includes higher-order multipoles (Varma
et al., 2019a, 2019b). LALInference Veitch et al. (2015)
was used to generate the parameter estimation results.
As these two events displayed, signal models that

include higher multipoles are more effective in constraining
the parameters, especially the initial component masses.
Consequently, the waveforms used for parameter estimation
need to include these effects. The Bayes factor B, which
compares the presence of higher-order multipoles to a pure
quadrupole model in the waveforms, consistently had
log10 B > 3 for various signal models (R. Abbott et al.,
2020b). This was also the case for GW190814, where the
evidence was more significant, with log10 B > 9.6 (R. Abbott
et al., 2020d). The presence of higher-order multipoles in this
event is sufficiently strong for one to determine that the l ¼
m ¼ 3 mode is the dominant higher-order multipole, with
log10 B > 9.1 in support of the signal containing both the l ¼
m ¼ 2 and l ¼ m ¼ 3multipole modes, as opposed to just the
quadrupole l ¼ m ¼ 2. Further evidence for the presence of
the l ¼ m ¼ 3 mode in the GW190814 signal can be found in
Fig. 12, where the inferred SNR of this mode is observed,
whereas the inferred SNR for orbital precession is not
significant (Fairhurst, Green, Hannam, and Hoy, 2020;
Fairhurst, Green, Hoy et al., 2020). For GW190412, an
important result is that the effective spin parameter of the
primary (most massive) black hole primary can be measured
as χeff ¼ 0.25þ0.08

−0.11 . This is distinct from other events and was
discussed in detail by Zevin et al. (2020). For GW190412
there was no evidence for precession.

FIG. 12. For the observed gravitational wave signal GW190814,
the posterior distribution for the l ¼ m ¼ 3 mode SNR is shown
in orange, while that for precession is shown in green (Fairhurst,
Green, Hannam, and Hoy, 2020; Fairhurst, Green, Hoy et al.,
2020). The expected distribution for Gaussian noise is displayed
with the dotted line. See R. Abbott et al. (2020d) for more details.FIG. 11. Violin plots, or posterior density distributions and 90%

credible intervals, for the deviations from the post-Newtonian
inspiral parameters ϕi, the intermediate regime parameters βi, and
the merger-ringdown parameters αi. Results are given for
GW150914, GW151226, and a combination of the two. Some
parameters for GW150914 diverge slightly from zero. The
parameters for GW151226 are consistent with zero, as are the
combined results. See B. P. Abbott et al. (2016d) for more details.
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4. GW190521

One of the most important events observed in O3 was
GW190521 (R. Abbott et al., 2020c, 2020e). This was the
most massive binary black hole produced gravitational wave
event observed to date by LIGO and Virgo. The initial binary
system had black holes of masses m1 ¼ 85þ21

−14M⊙ and m2 ¼
66þ17

−18M⊙ (90% credible intervals). The final black hole has a
mass of 142þ28

−16M⊙, making this an observation of the
formation of an intermediate mass black hole (Mezcua,
2017; Koliopanos, 2018). It is also difficult to explain the
formation of the initial 85M⊙ by stellar processes as it falls
within the ∼64M⊙–135M⊙ mass gap from pulsational pair-
instability supernova processes (Spera and Mapelli, 2017;
Farmer et al., 2019; Woosley and Heger, 2021). The lumi-
nosity distance was estimated to be DL ¼ 5.3þ2.4

−2.6 Gpc, or a
redshift of z ¼ 0.82þ0.28

−0.34 .
The observed GW190521 signal provides an indication for

the effects of orbital precession. If the initial black holes have
significant spin in the orbital plane, there will be an induced
precession of the orbital plane; this is a consequence of a
gravitational spin-orbit coupling (Kidder, 1995). There was no
evidence for higher-order multipoles in the signal. However, it
is still important to include both orbital precession and higher-
order modes in the waveforms because this can help to break
the inclination angle–distance degeneracy and produce better
parameter estimates (Chatziioannou et al., 2019). As such, for
the study of GW190521 the numerical-relativity surrogate
model NRSur7dq4 (Varma et al., 2019a) was used in the
LIGO-Virgo discovery presentation given by R. Abbott et al.
(2020c). Two other waveforms, namely, the effective-one-
body model SEOBNRv4PHM (Babak, Taracchini, and
Buonanno, 2017; Ossokine et al., 2020) and the phenomeno-
logical model IMRPhenomPv3HM (Khan et al., 2020), were
also used and gave consistent results, as presented by R.
Abbott et al. (2020e).
The parameter estimation for GW190521 provided values

for the dimensionless spin vectors of χ1 ¼ 0.69þ0.27
−0.62 and

χ2 ¼ 0.73þ0.24
−0.64 . The precession spin parameter was estimated

at χp ¼ 0.68þ0.25
−0.37 , while the effective spin parameter was

χeff ¼ 0.08þ0.27
−0.36 . The Bayes factor for the presence orbital

precession was calculated to be log10 B ¼ 1.06þ0.06
−0.06 , thereby

showing slight evidence. Figure 13 displays the estimated
posterior distributions for the spins of the two initial black
holes, showing weight for the posteriors at large spin and near
the orbital plane at 90° (R. Abbott et al., 2020c).

5. O1 and O2 catalog, GWTC-1

The totality of the observations from the O1 and O2
observing runs were reported by LIGO and Virgo in their
first gravitational wave transient catalog, GWTC-1 (Abbott
et al., 2019c). This corresponds to the confident detections of
ten binary black hole produced gravitational wave signals and
one signal produced by a binary neutron star. The catalog
presents the basic information about the sources of these
signals, as derived via the Bayesian parameter estimation
routines. This information includes the estimates of the initial
and final masses, the effective aligned spin, the final spin,
peak luminosity, total radiated energy, luminosity distance,

and sky position. The tests of general relativity from the binary
neutron star merger were presented by Abbott et al. (2019f).
Similarly, the tests of general relativity from the gravitational
waves from the ten binary black hole mergers were presented
by Abbott et al. (2019g).

6. O1, O2, and O3a catalog, GWTC-2

The catalog encompassing the O3a results, GWTC-2 (R.
Abbott et al., 2021c), added another 39 compact binary
produced gravitational wave events, including a binary neu-
tron star produced signal (GW190425). One event could be
from a neutron star–black hole merger, although this event has
the lowest significance in the catalog. From this list of 50
compact binary produced signals further studies into the
population properties of compact binaries (R. Abbott et al.,
2021a). Additional tests of general relativity have also been
conducted using the events from GWTC-2 (R. Abbott
et al., 2021d).

C. Binary neutron stars

The observation of gravitational waves from the merger of a
binary neutron star system provides numerous additional
scenarios over what can be done with the observation of a
binary black hole system. Neutron stars are made of matter. As
such, with a binary neutron star merger electromagnetic
radiation will be emitted. In fact, it has been theorized that

FIG. 13. Etimated posterior distributions for the spins of the two
initial black holes that produced GW190521. Having significant
spin in the orbital plane would induce orbital precession. These
distributions show weight for posteriors with large spin near 90°,
namely, large spin in the orbital plane. Spins of 0° would be
aligned with the orbital angular momentum. See R. Abbott et al.
(2020c) for more details.
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a source for short gamma-ray bursts could be from binary
neutron star mergers (Berger, 2014).
Black holes essentially behave as point particles as they

spiral into one another in a binary merger and, while neutron
stars are incredibly dense, the tidal gravitational field will
eventually distort the shape of the neutron stars as they
approach each other. The tidal gravitational field induces
mass-quadrupole moments in the neutron stars (Damour,
Soffel, and Xu, 1992), and this has the effect of increasing
the rate at which the binary system coalesces (Flanagan and
Hinderer, 2008). This effect can be calculated and incorpo-
rated into the waveform. As such, it could be possible to
extract information on the nuclear equation of state from the
observation of gravitational waves from a binary neutron star
merger (Vines, Flanagan, and Hinderer, 2011; Damour, Nagar,
and Villain, 2012; Chatziioannou, 2020).
While it is likely that the end product of a binary neutron

star merger will be a black hole, it is possible that some of the
matter will be ejected from the collision, and could be
observable. This remnant is called a kilonova. Rapid neutron
capture would form heavy elements, and with them being
radioactive the activity could be visible. This ejected material
could also be the source of heavy elements, such as gold and
platinum, in the Universe (Lattimer and Schramm, 1974;
Metzger, 2020)
A unique feature about coalescing compact binary gravi-

tational wave signals is that it is possible to use Bayesian
inference to estimate the luminosity distance to the source. If
the redshift of the source can also be measured, then the
expansion of the Universe, or the Hubble constant, could be
measured (Schutz, 1986; Nissanke et al., 2010). This would
be a new and unique way to measure the expansion of the
Universe, and different from the use of cosmic microwave
background data (Christensen et al., 2001; Ade et al., 2016) or
supernovae observations (Riess et al., 2016).
All of these effects are of great importance to astrophysics

and fundamental physics. Hence, there is tremendous interest
in observing gravitational waves and electromagnetic radia-
tion from a binary neutron star merger. Many of the studies
necessitate finding the source, so this requires good parameter
estimation for the sky position and the distance. In such a way,
multimessenger astronomy can be conducted.

1. GW170817

The birth of gravitational wave multimessenger astronomy
occurred with the simultaneous observations of a gravitational
wave signal GW170817 (Abbott et al., 2017d) followed in
1.7 s by the observation of the short gamma-ray burst GRB
170817A (Goldstein et al., 2017; Savchenko et al., 2017).
With the subsequent detection of the kilonova counterpart
(Coulter et al., 2017a), the source was observed across the
electromagnetic spectrum, from x ray to radio (Abbott et al.,
2017e). This event provided the means to study numerous
important astrophysical and fundamental physics effects.
The success of GW170817 for multimessenger astronomy

came from the ability to identify the location of the source.
The gravitational wave detection was not trivial, however. A
strong noise transient, a glitch, occurred during the time that
the signal was being recorded at LIGO-Livingston, 1.1 s

before the coalescence time. For the initial rapid response the
data containing the glitch was removed with a Tukey window
function. The SNR was large in the data for LIGO-Hanford
and LIGO-Livingston. The SNR in the Virgo data was
relatively small; however, as noted by Röver, Meyer, and
Christensen (2007) this is still information that can be used in
a parameter estimation routine to improve the localization of
the source. The data from all three gravitational wave
detectors were crucial for the signal source identification.
The rapid parameter estimation routine BAYESTAR (Singer and
Price, 2016) (see also Sec. X.G) was able to estimate that
position of the source in the sky to 31 deg2, and the initial
estimation of the luminosity distance was 40� 8 Mpc (LIGO
Scientific and Virgo Collaborations, 2017). The sky position
estimation can be seen in Fig. 4. This is what allowed for the
location of the source to be identified in the galaxy NGC 4993
10.9 h after the detection of the gravitational wave and the
gamma-ray burst (Coulter et al., 2017b).
To subsequently conduct effective parameter estimation, the

glitch in the LIGO-Livingston data was modeled in time and
frequency with wavelets, namely, with the BayesWave
algorithm (Cornish and Littenberg, 2015) as described in
Sec. IV.B, and then subtracted from the data. Note that this
event has subsequently provoked the development of even
more sophisticated techniques in glitch subtraction (Pankow
et al., 2018). The waveform (Sathyaprakash and Dhurandhar,
1991) model used for the Bayesian parameter estimation
(Veitch et al., 2015) incorporated the effects of spin aligned
with the orbital angular momentum (Bohé, Marsat, and
Blanchet, 2013), spin-spin interactions between the two initial
masses (Bohé et al., 2015; Mishra et al., 2016), and tidal
interactions on the neutron stars (Vines, Flanagan, and
Hinderer, 2011; Bernuzzi et al., 2012). With that the param-
eter estimation could report that the initial component masses
were consistent with what are expected for neutron stars.
However, there was some dependency on the prior for the
effective spin parameter. Assuming that the initial system had
low spin the two initial masses were estimated to be in the
range of 1.17M⊙ to 1.6M⊙, with a total initial mass estimate
of 2.74þ0.04

−0.01M⊙ and a chirp mass estimate of 1.188þ0.004
−0.002M⊙

(Abbott et al., 2017d).
The parameter estimation for GW170817 considered the

possible distortion of the spherical shape of the neutron stars
from tidal forces. The tidal deformity is defined as the ratio of
the induced mass-quadrupole moments to the tidal gravita-
tional field and is given by

Λ ¼ 2k2
3

�
c2R
Gm

�
5

; ð36Þ

where R is the neutron star radius, m is the mass, and k2 is the
second Love number, which is theorized to be in the range of
0.05 to 0.15 for neutron stars (Hinderer et al., 2010). The
initial analysis constrained the tidal deformity to Λ ≤ 800

(Abbott et al., 2017d). A subequent analysis assumed that the
equation of state for the two neutron stars was the same, that
the equation of state could allow for neutron stars in excess of
1.97M⊙ (to be consistent with the observed mass of for the
pulsar J0348þ 0432 of ∼2M⊙) (Antoniadis et al., 2013), and
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that the spins of the neutron stars were consistent with the
observed spins of binary neutron stars in our Galaxy. With
such assumptions LIGO and Virgo were able to produce the
estimate of Λ ¼ 190þ390

−120 , as well as to estimate the radii of the
neutron stars to be 11.9þ1.4

−1.4 km (Abbott et al., 2018a). LIGO
and Virgo have used the gravitational wave data for
GW170817 and Bayesian parameter estimation methods to
investigate other characteristics of the neutron stars and their
equations of state (B. P. Abbott et al., 2019b, 2020c).
The ability to measure the expansion rate of the Universe,

the Hubble constant, was another significant by-product of the
observation of GW170817 and the use of Bayesian parameter
estimation routines on the gravitational wave data. The ability
to use gravitational wave data to measure the Hubble constant
was a long anticipated reward for gravitational wave astro-
physics (Schutz, 1986); recall Eq. (25), v ¼ H0D. The
parameter estimation for a compact binary coalescence
provides an estimate for the luminosity distance DL.
However, the estimation of another parameter is correlated
with the distance, namely, the angle of inclination of the
normal to the orbital plane of the system with respect to the
line of sight ι. Variations in both DL and ι affect the amplitude
of the detected gravitational wave (hence their correlation
when they are estimated). To generate a posterior probability
distribution function for the luminosity distance DL one must
marginalize over the inclination angle ι, which adds uncer-
tainty to the distance estimate. The Hubble constant parameter
estimation effort was significantly improved by the fact that
the source of GW170817 was found to be in the galaxy NGC
4993. Because of this the two sky position parameters could
be fixed, and with that constraint the distance was estimated to
beDL ¼ 43.8þ2.9

−6.9 Mpc, where the error bars correspond to the
68.3% credible interval. The velocity of the source to the line
of sight could be measured from the observed velocity of
NGC 4993; this is done via redshift measurements. An
allowance was also made for the peculiar velocity of NGC
4993 within its local cluster of galaxies. With this the Hubble
constant was estimated to be H0 ¼ 70þ12

−8 km s−1 Mpc−1,
where the error bars again represent the 68.3% credible
interval (Abbott et al., 2017j). This measurement was inde-
pendent of the other methods used to measure the Hubble
constant, but the result was consistent. For example, mea-
surements of the cosmic microwave background data gave the
estimateH0 ¼ 67.74� 0.46 km s−1 Mpc−1 (Ade et al., 2016),
while type Ia supernovae observations gave H0 ¼ 73.24�
1.74 km s−1 Mpc−1 (Riess et al., 2016). LIGO and Virgo
subsequently added binary black hole merger events and
information from galaxy catalogs to produce an estimation of
H0 ¼ 69þ17

−8 km s−1 Mpc−1 (B. P. Abbott et al., 2021). This
also spurred other groups to use gravitational wave data to
estimate the Hubble constant (Finke et al., 2021).
Binary neutron star mergers were thought to be a source of

short gamma-ray bursts (Berger, 2014) with the gamma rays
ejected in a jet perpendicular to the orbital plane of the binary,
namely, parallel to the orbital angular momentum of the
system (Shibata et al., 2006). Hence, the observation of the
gamma rays and the estimation of the observation angle with
respect to the jet ιwill provide much important information for
understanding the formation of jets from the binary neutron

star mergers. GW170817 and GRB 170817A provided such
critical data (Abbott et al., 2017k). The gravitational wave
data indicate that the viewing angle to the source is anti-
alinged, namely, the angular momentum vector of the system
is pointing away from us. The estimation of the cosine of the
inclination cos ι is that it is constrained to the range
½−1.00;−0.81� at 68.3% confidence or, equivalently,
½−144°; 180°� (Abbott et al., 2017d). The Hubble constant
question can also be inverted, namely, to use the previously
determined Hubble constant measurements as a prior and
produce an improved estimate on the inclination angle ι. Using
the Hubble constant from the cosmic microwave background
measurement of the Planck mission (Ade et al., 2016) the
68.3% confidence band for cos ι is ½−1.00;−0.92�, or
½157°; 177°� for the inclination angle ι. Using the supernova
produced value for the Hubble constant (Riess et al., 2016),
the similar constraints are ½−0.97;−0.85� for cos ι and
½148°; 166°� for ι (Abbott et al., 2017j). The parameter
estimates for GW170817 were further updated by Abbott
et al. (2019c).

2. GW190425

LIGO and Virgo announced the detection of gravitational
waves from another possible binary neutron star merger,
GW190425 (B. P. Abbott et al., 2020a). This was observed
in the third Advanced LIGO–Advanced Virgo observing run,
O3. The event was confidently detected only in the LIGO-
Livingston detector. Virgo was taking data, but the SNR was
too low for it to contribute to the detection. LIGO-Hanford
was not on line during this event. As a consequence there was
a large uncertainty in the sky position of the source,
∼8300 deg2. The luminosity distance was estimated to be
159þ71

−69 Mpc, much farther than the ∼40 Mpc distance for
GW170817. Because of the large sky position uncertainty and
large distance, no electromagnetic counterpart to GW190425
was observed. For the parameter estimation a phenomeno-
logical waveform (Hannam et al., 2014) is used, namely,
PhenomPv2NRT (Dietrich et al., 2019); this model incorpo-
rates spin precession and tidal interactions (Dietrich,
Bernuzzi, and Tichy, 2017). We quote here the results using
the high-spin prior (dimensionless spin magnitudes for the
two initial neutron star of χ < 0.89). An interesting conse-
quence of the observation of GW190425 was the relative large
masses for what are assumed to be a pair of neutron stars. The
chirp mass was estimated to be 1.44þ0.02

−0.02M⊙, and total mass
was estimated to be 3.4þ0.3

−0.1M⊙; for comparison, GW170817
had, when also using a high-spin prior, estimates for a chirp
mass of 1.188þ0.004

−0.002M⊙ and a total mass of 2.82þ0.47
−0.09M⊙. For

GW190425 no tidal effects were observed, and a limit for the
combined dimensionless tidal deformability was set at Λ <
1100 (B. P. Abbott et al., 2020a).

D. Neutron star–black-hole binaries

The merger of a neutron star–black hole binary is another
source of gravitational waves. These events are interesting for
a number of reasons. If the black hole is not too massive, the
neutron star could be tidally disrupted before crossing the
event horizon (Stachie et al., 2021) and could be a source of
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gamma rays (Stone, Loeb, and Berger, 2013; Berger, 2014) or
a kilonova (Kawaguchi et al., 2016; Foucart, 2020; Metzger,
2020; Mochkovitch et al., 2021). This could also provide
information on the equation of state for the neutron star
material (Harry and Hinderer, 2018). The formation mecha-
nisms for neutron star–black hole binaries are also an
important area of study (Broekgaarden and Berger, 2021).

1. GW200105 and GW200115

LIGO and Virgo have detected gravitational waves from
two neutron star–black hole binary mergers (R. Abbott et al.,
2021f). These were both detected in January 2020 during the
second half of observing run O3 (O3b). GW200105 was
detected at LIGO-Livingston, while LIGO-Hanford was not
observing; the SNR for the event in Virgo was low, implying
that this was essentially a single detector observation. Virgo
data were used for parameter estimation, yielding mass
estimates (low-spin prior) of 8.9þ1.1

−1.3M⊙ (90% credible inter-
vals) for the presumed black hole, and 1.9þ0.2

−0.2M⊙ for the
presumed neutron star. The estimated luminosity distance was
280þ110

−110 Mpc. GW200115 was detected by all three LIGO-
Virgo detectors. The mass estimates (low-spin prior) were
5.9þ1.4

−2.1M⊙ for the presumed black hole, and 1.4þ0.6
−0.2M⊙ for the

presumed neutron star. The estimated luminosity distance is
310þ150

−110 Mpc. No electromagnetic or neutrino counterparts to
these events were detected.
For parameter estimation pBilby was used (Smith et al.,

2020) (see Sec. X.C), as was RIFT (Lange, O’Shaughnessy,
and Rizzo, 2018) (see Sec. X.E). To verify the results
LALInference was also used (Veitch et al., 2015). The
primary parameter estimation analysis did not assume that
tidal effects were present. The phenomenological model
IMRPhenomXPHM (Pratten et al., 2021) and the EOBNR
model SEOBNRv4PHM (Ossokine et al., 2020) were used.
These models included the effects of orbital precession and
higher-order modes, although the presence of these effects
was not observed for either event. The possible tidal defor-
mation of the neutron stars was investigated using models that
include such an effect; these assume that spins are aligned
with the orbital angular momentum. These are the phenom-
enological IMRPhenomNSBH (Thompson et al., 2020) and
the EOBNR SEOBNRv4_ROM_NRTidalv2_NSBH (Matas
et al., 2020) models. Tidal deformation was not observed.

VII. TESTING GENERAL RELATIVITY

The observations of gravitational waves by LIGO and Virgo
now present a possibility to test general relativity in a way that
was never possible before. The parameter estimation methods
used to examine the gravitational wave signals are inherently
model dependent. For the analyses conducted by LIGO and
Virgo, the basic assumption is that general relativity is correct.
However, the same parameter estimation methods can be
extended to encompass alternatives to general relativity. The
general-relativistic models can be extended and parameter
estimation can then be conducted, and if the additional
parameters produce nonzero estimates it could be evidence
of a violation of general relativity. Model comparison methods
such as those described in Sec. III.C can be applied directly

between general relativity and the alternative model. In this
section we summarize the methods used by LIGO and Virgo
to test general relativity. We discuss the specific results in
Sec. VI, where the summary of some of the observed results
from LIGO-Virgo parameter estimation are presented. The
first detection, GW150914 (B. P. Abbott et al., 2016b),
provided the first opportunity to conduct numerous tests of
general relativity (B. P. Abbott et al., 2016f). The first three-
detector observation, GW170814, allowed for an examination
of the polarization of gravitational waves and to test their
consistency with general relativity (Abbott et al., 2017c).
Subsequently, in their first three observing periods O1, O2,
and O3a (O3a is the first 6 months of O3), LIGO and Virgo
observed a total of ∼50 gravitational wave signals from
compact binary coalescence (B. P. Abbott et al., 2019c; R.
Abbott et al., 2021c), and these observations have provided
further opportunities to test general relativity (B. P. Abbott
et al., 2019g; R. Abbott et al., 2021d). Not all candidates were
included in the analyses testing general relativity: this is
reserved for the best candidates. Hierarchical analyses in tests
of general relativity were also employed by Carullo et al.
(2021) and Ghosh, Brito, and Buonanno (2021).
For the tests of general relativity based on the LIGO-Virgo

O1 and O2 results presented by Abbott et al. (2019g), it was
assumed that inconsistencies in general relativity would occur
in the same fashion for all events, regardless of the properties
of the source. In the latest LIGO-Virgo study of R. Abbott
et al. (2021d), which includes O3a, this approach was
loosened and a hierarchical inference technique from Isi,
Chatziioannou, and Farr (2019) and Zimmerman, Haster, and
Chatziioannou (2019) was used for some tests. For every
gravitational wave event that is tested, the parameters asso-
ciated with a violation of general relativity are selected from
some universal distribution that has been created from
inference on all of the events. While this distribution is not
initially known, it can be resolved with an appropriate
description of gravity (beyond general relativity) and the data
from numerous events. One can then do tests by comparing
the derived distribution with what one expects from general
relativity.
The observation of gravitational waves from a binary

neutron star merger GW170817 (Abbott et al., 2017d)
provided further tests of general relativity, especially due to
the long period of time that the signal was observable in the
LIGO-Virgo operating frequency band and its large SNR
(Abbott et al., 2019f). The observation of a gamma-ray signal
1.7 s after the binary neutron star merger allowed for unique
tests of general relativity and Lorentz invariance (Abbott
et al., 2017k).
As with any parameter estimation routine, the model for the

signal is of critical importance. For the gravitational waves
produced by binary black holes, the LIGO-Virgo analyses
have used the effective-one-body SEOBNRv4 waveforms
(Bohé et al., 2017) (specifically, the frequency domain
SEOBNRv4_ROM) for nonprecessing spins for the black
holes. To account for precessing spins the phenomenological
waveforms IMRPhenomPv2 (Hannam et al., 2014; Husa
et al., 2016; Khan et al., 2016) were used (Abbott et al.,
2019g). For some of the events, higher-order modes were
taken into account, and for these the SEOBNRv4HM model
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(Babak, Taracchini, and Buonanno, 2017; Ossokine et al.,
2020) and the IMRPhenomPv3HM model (Khan et al., 2019;
Khan et al., 2020) were employed. These waveforms for
binary black holes also address the inspiral, merger, and
ringdown for the black holes. For gravitational waves from
binary neutron stars, the effects of the tidal deformations of the
neutron stars must be taken into account. As such, LIGO and
Virgo have used the NRTidal models (Dietrich, Bernuzzi, and
Tichy, 2017; Dietrich et al., 2019) for the necessary additional
phase factor. The presence of eccentricity has been ignored in
the binary black hole and binary neutron star models used by
LIGO-Virgo to date (Abbott et al., 2019f, 2019g). As described
in Sec. VI.A, uncertainties in the calibration of the detector data
are introduced as part of the overall parameter estimation and
the introduced parameters associated with detector response
function; in the end there is a marginalization over these
parameters (B. P. Abbott et al., 2016e).

A. Signal residual test

The parameter estimation methods used by LIGO and Virgo
are run on detected signals. This is typically done using
LALInference (Veitch et al., 2015). From this a best fit (in
terms of the maximum likelihood) waveform is produced.
After subtracting the best fit waveform from the observed
gravitational wave data, one then performs a test to see if the
remaining residual is consistent with Gaussian noise. This
method has been applied to all ten gravitational wave signals
detected during O1 and O2 that were produced by binary
black holes (Abbott et al., 2019g); the method was further
explained by B. P. Abbott et al. (2020b). The waveform model
was IMRPhenomPv2 (Hannam et al., 2014; Husa et al., 2016;
Khan et al., 2016). This method was also applied for tests of
general relativity for the events in the second LIGO-Virgo
catalog (R. Abbott et al., 2021c) and was further discussed by
Ghonge et al. (2020). For O3a the signal residual test was
conducted on a further 24 binary black hole produced
gravitational wave signals (R. Abbott et al., 2021d).
For the ten binary black hole produced gravitational wave

signals reported on by Abbott et al. (2019c), the best fit
waveforms were produced and subtracted from a 1 s stretch of
the LIGO and Virgo data, with the merger time in the middle.
Since the model waveform was constructed to adhere to
general relativity, by substracting the best fit model waveform
one should be left with a residual that resembles the noise of
the detector. The residual is tested to confirm this assumption.
LIGO and Virgo have used the BayesWave (Cornish and
Littenberg, 2015; Littenberg and Cornish, 2015) algorithm to
conduct these tests; see Sec. X.F for a description of
BayesWave. With the signal substracted, BayesWave
analyzes the residual data streams from the two or three
detectors involved in the detection. Three models are consid-
ered: one in which the data contain an elliptically polarized
gravitational wave signal that is coherent in the different data
streams plus Gaussian noise, one in which there are uncorre-
lated noise transients (glitches) and Gaussian noise, and one in
which there is only Gaussian noise. BayesWave then
calculates Bayes factors for model comparison. A p value
is computed to take into account the variable background. A
consequence of this analysis is also a network SNR for the

presence of a coherent gravitational wave signal in the
different residual data streams. Figure 14 displays this process
for the gravitational waves detected from the binary black hole
merger GW170104 (Abbott et al., 2017g). Further examples
from the LIGO-Virgo observations are summarized in Sec. VI.

B. Inspiral-merger-ringdown consistency for binary black holes

The estimated parameters from the inspiral part of a binary
black hole system can be compared with the parameters
estimated from the signal pertaining to the merger and

FIG. 14. Gravitational wave signal of GW170104 detected by
the two Advanced LIGO detectors. Top panel: time-frequency
expression of the data from LIGO-Hanford. Second panel: time-
frequency expression of the data from LIGO-Livingston. Third
panel: time series for the data from the two detectors. The LIGO-
Livingston data were inverted to account for a sign difference
with respect to LIGO-Hanford and adjusted by 3 ms because of
the difference in the arrival times. This time-series data were
filtered with a 30–350 Hz bandpass. The black line is the
waveform corresponding to the maximum likelihood from
parameter estimation using the precessing spin model. The
maximum-likelihood waveform is subtracted from the gravita-
tional wave data, and the residuals are then displayed in the
bottom panel. A statistical analysis of the residuals shows that
they are more consistent with Gaussian noise than with the
presence of the remaining coherent gravitational wave energy.
See Abbott et al. (2017g) for more details.
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ringdown of the final black hole; see Ghosh et al. (2016,
2018). The basic assumption for this test is that the underlying
theory that describes the inspiral, merger, and ringdown is
general relativity. As such, one should be able to conduct
parameter estimation on the different parts of the gravitational
wave signal and recover the same physical parameters that
describe the system. For the binary black hole systems the
goal is to estimate the mass and spin of the final black hole
remnant from the low-frequency inspiral part of the signal, and
then again for the high-frequency merger-ringdown part of the
signal (Abbott et al., 2019g). An important goal will be to
observe overtones in addition to the fundamental ringdown
mode of the remnant and test the no-hair theorem (Giesler
et al., 2019). Isi et al. (2019) analyzed LIGO data for
GW150914 and claimed that there was evidence at the
3.6σ level for the presence of the l ¼ m ¼ 2 quasinormal
mode and one overtone. The LIGO-Virgo analysis of R.
Abbott et al. (2021d) also searched for the presence of
overtones and found evidence for GW190521 (Bayes factor
of 19.5) and GW150914 (Bayes factor of 4.3).
A separation between the inspiral and merger-ringdown

regimes must be chosen for the analysis. The final black hole
mass and spin are obtained from the initial masses and spins
using numerical-relativity fits (Healy, Lousto, and Zlochower,
2014; Hofmann, Barausse, and Rezzolla, 2016; Healy and
Lousto, 2017; Jiménez-Forteza et al., 2017), and the Kerr
innermost stable circular orbit frequency is then computed
from the final mass and spin using the expressions
given by Bardeen, Press, and Teukolsky (1972). This fre-
quency is used as the transition from inspiral to merger
ringdown. With that, the remnant’s final spin and mass are
estimated using the low-frequency inspiral part of the signal,
and then again for the high-frequency merger-ringdown part
of the signal. The Bayesian parameter estimation is done
with LALInference (Veitch et al., 2015), with the spin
precessing phenomenological IMRPhenomPv2 (Hannam
et al., 2014; Husa et al., 2016; Khan et al., 2016) and
IMRPhenomPv3HM (Khan et al., 2019, 2020) waveforms,
plus the effective-one-body SEOBNRv4 waveform for
binary black holes with spins that are nonprecessing
(Bohé et al., 2017). For the two frequency regions, the
source parameters are estimated, and comparisons are then
done with simulations from numerical relativity (Hofmann,
Barausse, and Rezzolla, 2016; Healy and Lousto, 2017;
Jiménez-Forteza et al., 2017). In this way the final remnant’s
mass Mf and dimensionless spin χf ¼ cjS⃗fj=GM2

f are
calculated from the data before and after the innermost
stable circular orbit and compared for consistency. This is
done by calculating the overlap of the posterior distributions
for these parameters. The test also calculates the posteriors
on the final mass and spin deviation parameters and quotes
the quantile of this distribution at which the general relativity
predicted value is recovered (Ghosh et al., 2018). Finally,
this analysis tests the emission of energy and angular
momentum predicted by general relativity, especially in
the nonlinear phase of the merger ringdown.
This test was done for seven of the ten binary black hole

mergers observered during O1 and O2 that had sufficient SNR
for both parts of the signal. When uniform priors for the
masses and the magnitude of the spins plus priors for the spin

directions that are isotropic were used, the parameter estima-
tion and analysis for the final black hole remnant and spin
magnitude were found to be consistent in the inspiral part of
the signal and the merger-ringdown part of the signal. This
analysis was then repeated for 12 events in O3a, also while
using uniform priors for the deviation parameters. No devia-
tions from general relativity were observed (B. P. Abbott et al.,
2019g; R. Abbott et al., 2021d); see Sec. VI.B.1 for an
example using GW150914.
The inspiral-merger-ringdown test has also been done while

including higher-order modes with the IMRPhenomPv3HM
waveform (Khan et al., 2019, 2020) using pBilby (Smith
et al., 2020) for parameter estimation; see Sec. X.C for more
information on BILBY. This was done for GW190412 and
GW190814 (R. Abbott et al., 2020b; 2021d). Similarly, the
inspiral-merger-ringdown analysis was demonstrated using
the NRSur7dq2 waveform (Blackman et al., 2017) and the
RIFT package (Lange, O’Shaughnessy, and Rizzo, 2018) for
parameter estimation (Breschi et al., 2019); see Sec. X.E for
more information on RIFT.

1. Remnant properties

LIGO-Virgo also examined just the ringdown signal from
binary black hole mergers (R. Abbott et al., 2021d). The
remnant after the merger will initially be a nonspherical
object, but by the no-hair theorem it must come to equilibium
as a Kerr black hole. The excited remnant ringdown results in
the emission of different damped sinusoidal signals, quasi-
normal modes, that depend only on the final mass and spin of
the Kerr black hole, plus the integer indices of the modes. The
information from the observation of gravitational waves from
the ringdown would hence describe the final state of the
remnant. A comparison can then be made to the energy and
angular momentum emitted through gravitational waves dur-
ing the inspiral. For the parameter estimation of signals
containing only the ringdown a time-domain formulation of
the likelihood is used. This method avoids the contribution of
spurious frequency contributions from the premerger phase, or
an abrupt windowing around the peak of the signal that would
result in Gibbs phenomena (Carullo, Pozzo, and Veitch, 2019;
Isi et al., 2019). Another ringdown analysis is based on the
EOB waveforms and concentrates on the gravitational
wave signal and damping time for a particular mode (220)
(Brito, Buonanno, and Raymond, 2018). All of the results
from both analyses show consistency of the ringdown
parameter estimation with those derived from the full
inspiral-merger-ringdown signal.
Another possible effect associated with the remnant, and

outside of the theory of general relativity, concerns the effect
of echoes on the generated gravitational waves. This could
pertain to exotic compact objects like fuzzballs (Lunin and
Mathur, 2002; Mathur, 2008) and gravastars (Mazur and
Mottola, 2001, 2004). With such an object there may be a
surface, between the light ring and the location where the
event horizon would be, that would reflect gravitational
waves. In such a case, when two compact objects merge
and emit gravitational waves, some of the signals created
would be reflected off this surface, producing the so-called
gravitational wave echoes. In fact, a cavitylike structure could
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be created, and a series of echo signals would be emitted,
successively smaller in amplitude. This effect was claimed to
have been observed in the LIGO data for GW150914 by
Abedi, Dykaar, and Afshordi (2017). As presented by R.
Abbott et al. (2021d), LIGO and Virgo implemented a
signal template search for echoes of ringdown signals from
binary black hole mergers. A Bayes factor is calculated
between the presence of inspiral-merger-ringdown-echo
signals and the general relativity predicted inspiral-
merger-ringdown signal. The data from 31 binary black
hole mergers were analyzed. No evidence for the presence of
echoes was found.

C. Parametrized tests of gravitational waveforms

Since general relativity is a nonlinear theory, simple or
closed form solutions are rare. Binary orbital systems, losing
energy through the emission of gravitational waves, are
described through post-Newtonian approximations, namely,
expressing the orbit in terms of varying orders of v=c
(Blanchet et al., 1995, 2004, 2005; Blanchet, 2014). For
the standard gravitational wave parameter estimation for a
LIGO and Virgo detected signal, the various post-Newtonian
approximants are summed together to form the model of the
signal. However, if general relativity is not the correct theory
to describe gravitational phenomena, a discrepancy might
arise between the observation and the general-relativistic
model. Tests are done on general relativity by allowing for
a phase shift for the different post-Newtonian approximate
terms. Parametric deviations are also added to phenomeno-
logical parameters in the merger-ringdown phases. In terms of
parameter estimation, this is the introduction of an additional
phase parameter for each term in the post-Newtonian expan-
sion (Meidam et al., 2018).
This approach to testing general relativity is divided among

the three parts of the signal: inspiral, intermediate stage, and
merger ringdown. In the study of the ten binary black hole
events from O1 and O2 reported on by Abbott et al. (2019c),
the IMRPhenomPv2 waveforms (Hannam et al., 2014; Husa
et al., 2016; Khan et al., 2016) are used, and the modifications
to the various phase terms are added to the expansion terms
for this model (Abbott et al., 2019g). In addition, the
SEOBNRv4_ROM waveform (Bohé et al., 2017) was applied
to search for parametrized modifications in the inspiral. For
the inspiral part of the signal, δϕi represents the additional
phase for the ith Newtonian or post-Newtonian term. The
intermediate stage has two possible perturbations to the
phenomenological coefficients: β2 and β3. For the final
merger-ringdown part of the signal, the three phase perturba-
tions to the phenomenological coefficients are denoted by α2,
α3, and α4. With the general notation that pi represents the
waveform coefficients ϕi, αi, and βi, the parameter estimation
code LALInference (Veitch et al., 2015) is modified to
make the adjustment pi → ð1þ δpiÞpi. If the parameter
estimation produced δpi is consistent with 0, then there is
no evidence for a violation of general relativity. The LIGO-
Virgo studies conduct these tests by varying one δpi parameter
at a time and calculate their posterior distribution functions
(Abbott et al., 2019g). A theory for gravity other than general
relativity would probably cause a deviation in all of the δpi

parameters. This simplifying choice is made because, if all of
the parameters vary together, the correlations are so strong that
at current SNR no meaningful constraints can be made; this
was displayed with GW150914 by B. P. Abbott et al. (2016f).
Figure 15 uses the data from the five loudest gravitational
wave signals during O1 and O2 from binary black hole
mergers to set upper bounds on the magnitude of the post-
Newtonian parameters corresponding to the inspiral part of the
gravitational wave signal δϕi. This study was repeated for 24
binary black produced gravitational wave signals from O3a
(R. Abbott et al., 2021d).

D. Spin induced quadrupole moment

A new test of general relativity by LIGO-Virgo for their
binary black hole merger events concerns the possible
inducement of a quadrupole moment due to the spin of the
black hole (R. Abbott et al., 2021d). The spin of a black hole χ
will create a quadrupole moment Q given by

Q ¼ −κχ2m3; ð37Þ

where m is the black hole mass and κ depends on the object.
With general relativity, a black hole will have κ ¼ 1. A
neutron star could have κ in the range of ∼2 to 14 (Harry
and Hinderer, 2018; R. Abbott et al., 2021d), while for a
boson star it could be several hundred (Chia and Edwards,
2020). A spin induced quadrupole moment will change the

FIG. 15. Upper bounds at 90% confidence for the post-New-
tonian binary inspiral parameters δϕi that are testing general
relativity. Results are presented for the five loudest binary black
hole produced gravitational wave signals in O1 and O2. For the
five individual events, the upper bounds are given based on the
IMRPhenomPv2 waveform model. A final bound is then calcu-
lated from the five events together by combining the individual
posteriors for δϕi. A combined result is also presented for the
SEOBNRv4 waveform. See Abbott et al. (2019g) for more
details. From LIGO Laboratory, 2016.
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phase of the inspiraling compact binary. The LIGO-Virgo
study makes a simplifying assumption that, for a binary black
hole, each object will have the same κ parameters. The spin
induced phase variation is included in the waveforms, and
parameter estimation is done in estimating the deviation of κ
from 1 for the binary black hole mergers observed in O1, O2,
and O3a. The resulting distribution for the deviation of κ is
consistent with zero, hence supporting the validity of general
relativity (R. Abbott et al., 2021d).

E. Polarization tests

General relativity predicts only two tensor polarization
modes for gravitational waves, while alternative theories of
gravity could produce vector or scalar modes (Chatziioannou,
Yunes, and Cornish, 2012); see also Will (2006), Berti et al.
(2015), and Callister et al. (2017), which give many references
for alternative theories of gravity that can produce different
combinations of these polarizations. The two LIGO detectors
are relatively well aligned with respect to one another, with
only the curvature of Earth over the 3000 km displacement
causing a slight misalignment. As such, it is not possible for
just the two LIGO detectors to observe and test the polari-
zation of the detected gravitational waves. However, the
addition of a third detector to the network, Virgo, especially
because of its orientation with respect to the LIGO detectors,
provides for the means to probe the polarization state of the
observed gravitational waves. When Advanced Virgo joined
O2 it quickly participated in three gravitational wave obser-
vations that could be used to test the polarization content of
the signals, specifically, the two binary black hole produced
signals GW170814 (Abbott et al., 2017c) and GW170818
(Abbott et al., 2019c), and the binary neutron star produced
signal GW170817 (Abbott et al., 2017d).
For the first three-detector observation of gravitational

waves GW170814, a model comparison was done between
the scenarios where the gravitational waves were entirely of a
tensor polarization, entirely of a vector polarization, or
entirely of a scalar polarization. The responses of the
interferometric gravitational wave detectors differ for the
tensor, vector, and scalar polarizations (Callister et al.,
2017; Isi and Weinstein, 2017). The LIGO-Virgo Bayesian
parameter estimation software LALInference (Veitch et al.,
2015) is used to analyze the three-detector data. The particular
interferometer responses for the various polarizations change
the estimates for the sky location and luminosity distance for
the source; however, the estimates for the masses and spins
remain unchanged. For GW170814 LIGO and Virgo calcu-
lated a Bayes factor exceeding 200 for a pure tensor
polarization model relative to a pure vector tensor model;
the Bayes factor exceeded 1000 for the preferences of a pure
tensor polarization model relative to the pure scalar polari-
zation model (Abbott et al., 2017c). A subsequent reanalysis
of GW170814 using cleaned and recalibrated data reported a
Bayes factor of 30 for tensor versus vector polarization, and
220 for tensor versus scalar polarization (Abbott et al.,
2019g). A similar study of the binary black hole produced
event GW170818 gave a Bayes factor of 12 for tensor versus
vector polarization, and 407 for tensor versus scalar polari-
zation (Abbott et al., 2019g).

A further 17 events have been studied in this way in O3a (R.
Abbott et al., 2021d). The analysis done for O3a is distinct
from previous analyses, as it uses a Bayesian version of the
null-stream test of polarizations suggested by Gürsel and
Tinto (1989).
The binary neutron star merger event GW170817 produced

even stronger evidence in support of general relativity and
tensor gravitational wave polarization. The pure tensor polari-
zation model compared to the pure vector polarization model
was favored with a log10 Bayes factor of 20.81, while the pure
tensor polarization model compared to the pure scalar polari-
zation model was preferred with a log10 Bayes factor of 23.09.
These substantially larger Bayes factor results, as opposed to
those from the binary black hole observations, are due to a
variety of factors. The location on the sky of GW170817 could
be determined extremely well from electromagnetic observa-
tions. The network SNR of GW170817 was large, and the
position of the source in the sky was beneficial for a
polarization test given the orientation of the detectors
(Abbott et al., 2019f; Wong et al., 2020; Takeda, Morisaki,
and Nishizawa, 2021).
LIGO and Virgo have searched for alternative polarizations

in continuous gravitational wave signals (Abbott et al.,
2018c), and in the stochastic gravitational wave background
(B. P. Abbott et al., 2019e; R. Abbott et al., 2021b). Note that
with these studies there is a search for every possible
combination of the different polarizations; see Secs. IX.A
and IX.B for more details.

F. Gravitational wave propagation

According to general relativity the speed at which gravi-
tational waves propagate should be equal to the speed of light.
This can now be tested. The mergers of a binary neutron star
systems were thought to be a source of short gamma-ray
bursts. This was confirmed with the coincident observation of
gravitational waves from a binary neutron star merger,
GW170817 (Abbott et al., 2017d), and a gamma-ray burst,
GRB 170817A, 1.7 s after the merger time (Abbott
et al., 2017k).
The parameter estimation for the GW170817 signal pro-

vided the time at which the two neutron stars coalesced. In
addition, the observations of a short gamma-ray burst were
made by the Fermi GBM (Goldstein et al., 2017) and the
anticoincidence shield for the spectrometer for the
INTEGRAL (Savchenko et al., 2017). The recorded signals
from LIGO, Fermi GBM, and INTEGRAL are displayed in
Fig. 16, and the 1.7 s delay is apparent.
The gravitational wave parameter estimation routines for

this binary neutron star merger produce an estimate of the
luminosity distance to the source. With the gravitational wave
data the luminosity distance was estimated to be 40þ8

−14 Mpc
(Abbott et al., 2017d). However, the follow-up multimessen-
ger observing campaign identified the source of GW170817
and GRB 170817A to be in the galaxy NGC 4993. Redshift
measurements of the galaxy and the use of the cosmological
expansion Hubble constant then provided a comparable
estimation of the distance to the source to be 42.9þ3.2

−3.2 Mpc
(Abbott et al., 2017e).
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In principle, once one has a measurement of the arrival time
difference between the gravitational waves and the gamma
rays, plus an estimate of the distance, that will allow for a
calculation of the difference in the speeds. To compare the
speed of light c with the speed of gravity vg, one should use
the most conservative estimate for the distance, namely, the
lower limit of 26 Mpc. One does not know, however, the time
of the emission for the gamma rays relative to the time of the
merger of the neutron stars. While it likely could correspond
to the 1.7 s observation, one can assume that the gravitational
waves and gamma rays were emitted simultaneously. In this
case, the speed of gravity would be faster than the speed of
light and the difference in the speeds would be Δv ¼ c − vg,
Δv=c ≈ −3 × 10−15. Another conservative assumption could
be that the gamma emission happened 10 s after the merger
(Ciolfi and Siegel, 2015; Rezzolla and Kumar, 2015). In this
case Δv=c ≈ 7 × 10−16. As such, the GW170817 and GRB
170817A data from LIGO, Virgo, Fermi GBM, and
INTEGRAL were used to constrain the difference between
vg and c to be (Abbott et al., 2017k)

−3 × 10−15 ≤
Δv
c

≤ þ7 × 10−16: ð38Þ

Another method to probe the validity of general relativity is
to conduct parametrized tests of the propagation of gravita-
tional waves. From GW170817 and GRB 170817A one
knows that vg is extremely close to c. From relativity a
particle of mass m, momentum p, and energy E will have
these quantities related by

E2 ¼ p2c2 þm2c4: ð39Þ

For a particle traveling at speed c, E ¼ pc and the rest mass is
m ¼ 0. To test general relativity with the propagation features
of gravitational waves, the following dispersion relation can
be assumed:

E2 ¼ p2c2 þ Aαpαcα: ð40Þ

A massive graviton would be reflected with α ¼ 0 and
A0 ¼ m2

gc4, but other possible modifications to the dispersion
relation would be testable for α ≠ 0. LIGO and Virgo made
such an assumption in their examinations of the gravitational
wave signals that they have observed. The demonstrated small
difference between c and vg and the large distance from the
source allows for the gravitational wave amplitude in the
frequency domain to be expressed simply as

h̃ðfÞ ¼ BðfÞeiΦðfÞ; ð41Þ

and the modification to the dispersion relation introduces a
slight change to the phase term δΦðfÞ. This phase modifi-
cation is introduced into the parameter estimation routines.
Posterior probability distributions are then generated for the
Aα parameters; this is done for one particular value of α at a
time for values between 0 and 4, including noninteger values
(Abbott et al., 2019g).
LIGO and Virgo have used the ten gravitational wave

signals from binary black holes detected in O1 and O2 to
constrain Aα for a number of α values. The limit on the
graviton mass is consequently constrained to mg ≤
4.7 × 10−23 eV=c2 (Abbott et al., 2019g). A similar analysis
using the gravitational wave signal data from the binary
neutron star merger GW170817 gives a limit on the graviton
mass of mg ≤ 9.51 × 10−22 eV=c2 (Abbott et al., 2019f). The
phase modification increases δΦðfÞ with the distance to the
source and, since the binary black hole mergers are at a larger
distance, they provide a better limit onmg. A total of 31 events
from O1, O2, and O3a have been analyzed in this fashion,
producing a graviton mass limit of mg ≤ 1.76 × 10−23 eV=c2

with 90% credibility. For comparison, the limit set on the
graviton mass from studies of the Solar System ephemerides is
mg ≤ 3.16 × 10−23 eV=c2 (Bernus et al., 2019, 2020).

VIII. RATES AND POPULATIONS

Based on all observed gravitational wave signals, one can
use statistical methods to estimate the rates of binary black
hole or binary neutron star mergers and describe the pop-
ulation of these systems in the Universe. With 50 announced
gravitational wave detections to date it is possible to use
statistical methods to make statements about how often

FIG. 16. Observations of GW170817 by LIGO, and GRB
170817A by Fermi GBM (Goldstein et al., 2017) and INTE-
GRAL (Savchenko et al., 2017). Top row: Fermi GBM light
curve for gamma-ray energies between 10 and 50 keV. Second
row: Fermi GBM light curve for gamma-ray energies between 50
and 300 keV. Third row: light curve from INTEGRAL for
100 keV to 80 MeV. Bottom row: time-frequency map from
the coherent sum of the data from LIGO-Livingston and LIGO-
Hanford. See Abbott et al. (2017k) for more details.
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compact binary mergers happen, and what the probable
formation scenarios for these binaries might be. R. Abbott
et al. (2021a) reported that LIGO and Virgo recently com-
pleted such studies from the O1, O2, and O3a detections
described in catalog GWTC-2 (R. Abbott et al., 2021c); these
studies are based on the 47 compact binary mergers, where the
gravitational waves were detected with a false-alarm rate of
fewer than one per year. A similar rate and population study
was presented by Abbott et al. (2019k) based on the 11
compact binary produced gravitational events for O1 and O2
presented in the catalog GWTC-1 (Abbott et al., 2019c). We
summarize here the latest methods used by LIGO and Virgo to
make statistical statements about the rate of compact binary
mergers and their possible formation scenarios.

A. Binary black holes

For the most recent LIGO-Virgo rate and population study
of binary black hole mergers presented by R. Abbott et al.
(2021a), it is required that both primary objects have masses
exceeding 3M⊙ at 90% credibility and that they are detected
with a false-alarm rate of fewer than one per year. This
produces 44 events, although it excludes GW190814 (R.
Abbott et al., 2020d), with its masses of m1 ¼ 23.2þ1.1

−1.0M⊙
and m2 ¼ 2.59þ0.08

−0.09M⊙. The small secondary mass is consid-
ered to be an outlier and is difficult to explain via binary
formation; see Sec. VI.B.3.
These studies have a number of important goals. One

pertains to the mass and spin distributions of the black holes in
these merging binary systems. Part of the complexity for this
study concerns the possible mass limiting effects from pulsa-
tional pair-instability supernova processes (Spera and Mapelli,
2017; Farmer et al., 2019). As discussed upon the detection of
GW190521 (R. Abbott et al., 2020c, 2020e) (Sec. VI.B.4), it
is difficult to explain the formation by stellar processes of
black holes in the mass range ∼64M⊙–135M⊙. For compo-
nent masses up to ∼50M⊙ one can imagine formation via
common envelope evolution, which also produces nearly
aligned spins; see Kalogera (2000), Belczynski, Kalogera,
and Bulik (2002), Dominik et al. (2015), and Eldridge et al.
(2017). Black holes could also form via dynamical processes
in dense environments; they would not be affected by pulsa-
tional pair-instability supernova processes if they were formed
by previous mergers (Kulkarni, Hut, and McMillan, 1993;
Sigurdsson and Hernquist, 1993; Portegies, Simon, and
McMillan, 2002). Such a dynamical formation could create
binary black holes where the distribution of spins for the
component masses is isotroptic (Rodriguez et al., 2016).
Primordial black holes are another possible formation channel
(Carr and Hawking, 1974; Carr, Kühnel, and Sandstad, 2016);
in this case the black holes would not have significant spin,
but what they do have would be isotropic in direction
(Fernandez and Profumo, 2019).
The observation of gravitational wave events by LIGO and

Virgo can also provide evidence of the minimum mass of
black holes formed by astrophysical processes, as opposed to
primordial formation, where any mass could in principle be
possible. As already noted, a component mass for GW190814
is m2 ¼ 2.59þ0.08

−0.09M⊙; the question is whether this is a black

hole or a heavy neutron star. But, even when excluding
GW190814, strong limits can be placed on the minimum
black hole mass. Important research questions concern how
gravitational wave observations can be used to distinguish
between neutron star and low-mass black hole mass distri-
butions, and how to explain the formation of these compact
objects (Fishbach, Essick, and Holz, 2020).
Another important question pertaining to the masses of

observed binary black hole systems regards the distribution
of the mass ratio, namely, q ¼ m2=m1. The observations by
LIGO and Virgo seem to indicate that roughly equal mass
binary systems are preferred, but there are important excep-
tions, as seen with GW190412 and GW190814; see
Sec. VI.B.3.
The observed gravitational wave signals from binary black

holes also provide important information on the spins of the
initial component masses. Both the magnitudes of the spins
and their orientation with respect to the orbital plane give
evidence as to the possible formation of the binary system.
Finally, it is important not only to estimate the rate of binary

black hole mergers but also to determine whether this rate may
change with redshift. For example, is there a similarity
between the black hole merger rate and the star formation
rate (Madau and Dickinson, 2014)?
LIGO and Virgo are already in a position to give inform-

ative statements on all of these questions. Here we present a
review of how these statistical studies are conducted and
summarize the latest results from the GWTC-2 catalog from
R. Abbott et al. (2021a).

1. Statistical methods

The recent LIGO-Virgo results provided by R. Abbott et al.
(2021a) were based on the modeling approaches of Mandel,
Farr, and Gair (2019), Thrane and Talbot (2019), and Vitale
et al. (2020). Bayesian hierarchical methods were used to
estimate the parameters of the binary black hole population
given Ndet individual events detected by LIGO and Virgo; the
data for these events are represented by di, i ¼ 1;…; Ndet.
This is accomplished by parametrizing the prior distribution of
individual black hole merger parameters such as their masses
and spins, putting a hyperprior distribution on these popula-
tion parameters or hyperparameters. The individual parame-
ters and hyperparameters are then both estimated, and the
posterior distribution of the population parameters is extracted
by marginalizing over the parameters of individual events. It
also needs to be taken into account that the number of detected
black hole merger events Ndet is a random variable with a
Poisson distribution with expectation given by NξðΛÞ, where
N denotes the total number of events expected during the
observation period and ξðΛÞ is the fraction of detectable
binaries for a population with hyperparameter Λ. This detec-
tion fraction is estimated using injections as described by
R. Abbott et al. (2021a). Let dijθi denote the observation of
the ith black hole merger given that parameter vector θi (with
p components, such as mass, spin, and redshift) and LðdijθiÞ
denote the likelihood for events i ¼ 1;…; Ndet. θi are assumed
to be conditionally independent with joint population distri-
bution depending on a hyperparameter vector Λ. This model
can be represented as follows in a hierarchy of priors, where
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the first level of the hierarchical prior comprises the prior
distributions of individual parameters θi and Ndet, and the
second level consists of the hyperprior distribution of the prior
parameters Λ and N:

dijθi ∼ LðdijθiÞ; independent for i ¼ 1;…; Ndet;

θijΛ ∼ πðθijΛÞ; independent for i ¼ 1;…; Ndet;

Ndet ∼ Poisson½NξðΛÞ�;
Λ ∼ πðΛÞ;
N ∼ πðNÞ.

Using Bayes’s theorem and conditional independence and
denoting θ ¼ ðθ1;…; θNdet

Þ and d ¼ ðd1;…;dNdet
Þ, the joint

posterior distribution is given by

πðΛ; θ; NdetjdÞ

∝ ½NξðΛÞ�Ndete−NξðΛÞYNdet

i¼1

LðdijθiÞπðθijΛÞπðΛÞπðNÞ

and, marginalizing over all θi and N [where πðNÞ ∝ 1=N and
a log-uniform prior allows for marginalization over N
(Fishbach, Holz, and Farr, 2018; Mandel, Farr, and Gair,
2019)] gives the following marginal posterior distribution of
the population parameters:

πðΛjdÞ ∝
YNdet

i¼1

1

ξðΛÞ
�Z

LðdijθiÞπðθijΛÞdθi
�
πðΛÞ. ð42Þ

The integrals in Eq. (42) are the marginal likelihoods for each
detected event and can be estimated by importance sampling
as described in Eq. (13), with samples obtained from impor-
tance density q equal to the individual likelihood LðdijθiÞ and
a default prior π∅. This enables one to reuse posterior samples
from each event that were obtained under a different prior
rather than rerunning the MCMC simulations with the
hierarchical prior.
The likelihoods are implemented in GWPopulation

(Talbot et al., 2019) and PopModels, which are available
on GitLab.2 Similarly, one can obtain the following marginal
posterior distribution of a parameter θj (j ¼ 1;…; p, e.g.,
mass, spin, and redshift) by marginalizing over Λ and all other
parameters θi−ðjÞ:

πðθjjdÞ ∝
Z �YNdet

i¼1

�Z
LðdijθiÞπðθi−ðjÞjΛÞdθi−ðjÞ

ξðΛÞ
��

πðΛÞdΛ.

ð43Þ

2. Binary black hole models

LIGO and Virgo have used models of various complexities
to attempt to describe the mass distribution of the black holes

in merging systems. We now give a summary of the models
given by R. Abbott et al. (2021a).
The simplest is the truncated model, where there are two

hard cutoffs between a minimum mass and a maximum mass,
with a power-law form for the primary (most massive) mass,
and the mass ratio. The high-mass cutoff is assumed to
correspond to where the pair-instability mass gap begins
(Spera and Mapelli, 2017; Farmer et al., 2019). Note that
the truncated model need not finish where the pair-instability
gap is. If there are merger products forming new binaries, the
maximum mass is higher. To find the mass gap in the presence
of these mergers would require a model allowing for second
generation black holes, such as in the study of Kimball et al.
(2020). This model depends on four parameters.
The broken power-lawmodel makes slight modifications to

the truncated model. The hard lower-mass cutoff is replaced
by a smoothing function. There is also a break, at some mass,
in the power law between the two cutoffs, thereby changing
the slope of the mass distribution. In this way, the formation of
black holes by means not prevented by pair-instability super-
novae can be avoided. This model has seven parameters.
The power-law + peak model is also a slight modification

of the truncated model. The hard cutoff at the low-mass limit is
again replaced by a smoothing function. For large masses
there is the addition of a Gaussian peak. This peak would try
to address an excess of events that are limited from being more
massive by pulsational pair-instability supernovae (Talbot and
Thrane, 2018). This model has eight parameters.
Finally, the multipeak model is an extension of the power-

law + peak model. However, for the multipeak model two
peaks are assumed. The assumption is that with this model
hierarchical binary black hole mergers can be addressed,
namely, the possible population of second generation black
holes. This model has 11 parameters. See Fig. 17 for a
graphical representation of these mass distribution models,
which were used by R. Abbott et al. (2021a).
The next important question addressed by LIGO-Virgo is

whether the binary black hole merger rate depends on redshift
(Fishbach, Holz, and Farr, 2018). The simplest model assumes
that there is no dependence on redshift; this is what is referred
to as the nonevolving model, which has no parameters. A
redshift dependance is addressed in the power-law evolution
model, where the binary black hole merger rate density is
assumed to vary as a power law with 1þ z. This model has
one parameter.
Finally, the binary black hole mergers should describe the

distribution of spins for the initial component masses. These
distributions must describe the magnitude and direction of the
spins. For the spin direction the reference is typically the
orbital angular momentum vector, and one tries to describe
the distribution of the tilts with respect to this. The models for
the spin distributions try to encompass different binary black
hole formation scenarios. The simplest model, called the
default model, assumes the same spin distribution for each
initial black hole component. A beta distribution, depending on
mean and variance parameters, describes the spin magntitude
(Wysocki, Lange, and O’Shaughnessy, 2019). The distribution
for the tilt tries to describe two formation channels. For black
hole binaries formed by dynamical processes, the component
for the tilt distribution of the progenitor black holes is isotropic.

2See https://git.ligo.org/daniel.wysocki/bayesian-parametric-
population-models.
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However, for binaries formed in the isolated field of stellar
progenitors the spins are more likely to be aligned with the
orbital angular momentum, and hence a Gaussian distribution
(depending on some variance) is assumed to be about the tilt of
zero. A mixing parameter describes the relative number of
binary black holes systems formed between these field and
dynamic scenarios. This spin distribution was introduced by
Talbot and Thrane (2017). The default model depends on four
parameters.
The Gaussian spin model works by describing spins in

terms of the effective spin parameter χeff and the effective
precession spin parameter χp. A bivariate Gaussian distribu-
tion is used to describe the mean and standard deviation for
χeff and χp, plus the correlation between them. Hence, this
model has five parameters.
The multispin model simultaneously addresses both mass

and spin distributions. The goal is to see whether there is a
variation in the binary black hole spin distribution as a
function of mass. There is a hard cutoff for the masses, like
the truncated model, but there are also Gaussian components
for the two initial masses, in addition to the power law. This is
somewhat similar to the power-law + peak model. Each
possible mass distribution can have its own independent spin
distribution from the default model. The multispin model
depends on 12 spin parameters and 10 mass parameters.
Comprehensive descriptions of all of these models were given
by R. Abbott et al. (2021a).

3. Binary black hole population results from GWTC-2

The LIGO-Virgo detections presented by R. Abbott et al.
(2021c) led to a number of important conclusions that were
reported on by R. Abbott et al. (2021a). Gravitational wave
observations are currently describing the rates of compact
binary coalescences, and we can expect that future detections
will continue to improve our knowledge about black holes and
neutron stars in the Universe.
The merger rate for binary black hole systems is reported to

be 23.9þ14.3
−8.6 Gpc−3 yr−1. This estimation has used the power-

law + peak distribution for mass, and the nonevolving model
for redshift distribution. The distribution for the most massive
black holes is not well fit by a simple power law. Instead, there
appears to be a break in the distribution (a change in the power
law, or the presence of a peak) in the neighborhood of 40M⊙.

This may be the influence of pulsational pair-instability
supernova processes. The power-law distribution for the
higher masses reaches a maximum of 86þ12

−13M⊙. The estima-
tion of the low-mass limit for black holes from the data from
binary mergers is highly dependent on whether or not
GW190814 (R. Abbott et al., 2020d) is included in the study.
If ignored, the studies give a preference for a lower black hole
mass at around 7M⊙. However, with the lower mass in
GW190814 estimated to be 2.59þ0.08

−0.09M⊙ and, if that object
is assumed to be a black hole, then the estimation for the lower
mass limit for the black hole mass distribution falls to 2.6M⊙
to 3M⊙.
The binary black hole merger rate as a function of redshift

does not appear to be uniform. The analysis reveals a
preference for models where the binary black hole merger
rate increases with redshift, but not as fast as the increase in
star formation rate with redshift (Fishbach and Kalogera,
2021). Specifically, the power-law evolution model was used
to describe the redshift, while two mass models were used,
namely, power law + peak and broken power law. The merger
rate is assumed to depend on the redshift z, as ð1þ zÞκ. In
such a case the binary black hole merger rate at z ¼ 0 is
estimated to be 19.3þ15.1

−9.0 Gpc−3 yr−1. For the broken power-
law mass model the redshift dependence for the merger rate
goes as κ ¼ 1.8þ2.1

−2.2 and κ ¼ 1.3þ2.1
−2.1 for the power-law + peak

model. It is interesting to compare these numbers with the star
formation rate estimate of κ ¼ 2.7 given by Madau and
Dickinson (2014). The probability that the binary black hole
merger rate dependence κ > 0 is about 90% for both mass
distribution models.
The ensemble of the observed binary black hole merger

signals seems to display an interesting distribution for the
component spins. The measured distribution for the effective
precession spin parameter peaks at χp ≈ 0.2. This peak in the
distribution is consistently present with the different spin
models. Systems with a nonzero χp will experience orbital
precession. Consequently, this effect should not be expected to
be rare in stellar mass binary black hole systems.
Distributions are also generated for the effective spin

parameter χeff, measuring the component spins aligned with
the orbital angular momentum. The mean of the χeff distri-
bution is μeff ¼ 0.06þ0.05

−0.05 , but with a standard deviation of
σeff ¼ 0.12þ0.06

−0.04 , implying that many systems have χeff < 0, or

FIG. 17. Representation of different mass distribution models used by R. Abbott et al. (2021a) to describe the rates and mergers of
binary black holes in the Universe. From R. Abbott et al., 2021a.
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at least one component mass with its spin being misaligned by
more than 90° from the orbital angular momentum. The
estimate is that 12% to 44% of the binary black hole systems
have a mass component with a spin misaligned by more than
90° from the orbital angular momentum. This suggests that
these binaries would be formed from dynamic processes,
whereas aligned spin systems could be from the field
formation of isolated stellar progenitors. Note that analysis
of Roulet et al. (2020) found less support for negative χeff ,
possibly due to tidally torqued stellar progenitors.
Finally, the observed spin distributions do not seem to

depend on the masses of the progenitors. A black hole formed
by the merger of two roughly equal mass progenitors would
have an effective spin of approximately χ ≈ 0.7. This would
lead to the assumption that heavier black holes would have
more spin. The preference for higher spin for the heavier black
holes is not statistically significant.
The distributions for the mass, redshift, and spins for

binary black holes will become better understood with future
observations. The full presentation of the population proper-
ties of binary black holes was given by R. Abbott
et al. (2021c).

B. Binary neutron stars

LIGO and Virgo have observed gravitational waves from
two neutron star mergers, GW170817 (Abbott et al., 2017d)
and GW190425 (B. P. Abbott et al., 2020a), as reported in
GWTC-2 (R. Abbott et al., 2021c). With the assumption that
the initial neutron stars are nonspinning, and that there is a
uniform distribution for their masses between 1M⊙ and
2.5M⊙, the rate of binary neutron star mergers is then
estimated to be 320þ490

−240 Gpc−3 yr−1. With the additional
estimate that there is one Milky Way equivalent galaxy
(MWEG) per Mpc3 (Kopparapu et al., 2008), this rate then
becomes 32þ49

−24 MWEG−1 Myr−1 (R. Abbott et al., 2021c).

C. Neutron star–black hole binaries

The gravitational wave observations of two binary systems
containing a neutron star and a black hole were recently
reported by LIGO and Virgo (R. Abbott et al., 2021f);
see Sec. VI.D.1. From these two events, and assuming
that they represent neutron star–black hole binary systems,
a merger rate density of 45þ75

−33 Gpc−3 yr−1 is calculated.
Another analysis takes into consideration other events
observed by LIGO and Virgo where the primary mass is in
the range of 2.5M⊙ to 40M⊙ and the secondary mass is in the
1M⊙ to 3M⊙ range. Under these conditions the neutron star–
black hole binary merger rate density is estimated to be
130þ112

−69 Gpc−3 yr−1. See R. Abbott et al. (2021f) for more
details on these derivations.

IX. OTHER SIGNAL SEARCHES FOR LIGO AND VIRGO

There are many other sources of gravitational waves
targeted by LIGO and Virgo. Here we summarize the signal
searches and associated parameter estimations for short- and
long-duration transients (bursts), continuous waves from
pulsars, and a stochastic gravitational wave background.

These types of signals have yet to be observed, but sophis-
ticated methods are in place for attempts at detection and then
associated parameter estimation. In the absence of a detection,
limits on various parameters have been set.

A. Stochastic gravitational wave background

The superposition of many independent gravitational wave
sources will produce a stochastic gravitational wave back-
ground (Christensen, 2019). Just as there is a cosmic micro-
wave background, it is likely that gravitational waves were
created in the early Universe, creating a stochastic background
that could be observable today. These cosmological sources
would be quantum fluctuations in space-time during inflation,
phase transitions, or cosmic strings. Astrophysical processes
throughout the history of the Universe could also create a
stochastic background. These sources would include binary
black hole and binary neutron star mergers, supernovae,
pulsars, magnetars, or other processes. The observation of
gravitational wave events from binary black hole and binary
neutron star mergers (Abbott et al., 2019c) implies that there is
a stochastic background that may be measurable by LIGO-
Virgo in the coming years (Abbott et al., 2019e).
Another assumption is that the stochastic gravitational wave

background is isotropic, namely, that the characteristics of the
gravitational waves are independent of their direction. As
such, the LIGO-Virgo correlation analysis tries to determine
the energy density of gravitational waves in the Universe. The
normalized energy density of the stochastic background is
expressed as

ΩGWðfÞ ¼
f
ρc

dρGW
df

; ð44Þ

where ρGW is the energy density of gravitational waves,
the closure density of the Universe is ρc ¼ 3H2

0c
2=8πG, c

is the speed of light, G is Newton’s constant, and H0 ¼
67.9 km s−1 Mpc−1 (Ade et al., 2016). One can assume the
following power-law form for the energy density:

ΩGWðfÞ ¼ Ωα

�
f
fref

�
α

: ð45Þ

The reference frequency fref provides the location at which
the limit on Ωα is set.
The level of the stochastic gravitational wave signal will be

far below the detector noise in the LIGO and Virgo interfer-
ometers. The assumption, however, is that there is a common
signal present in the different detectors, whereas the noise is
independent between the detectors. A correlation analysis
using the data from pairs of detectors will allow for the
extraction of the common signal (Christensen, 1992; Romano
and Cornish, 2017). Consider first a simple model where the
signal in detector k

sðkÞðtÞ ¼ hðtÞ þ nðkÞðtÞ; k ¼ 1; 2; ð46Þ

is the sum of a gravitational wave signal, which is the same in
all detectors, and noise nðkÞðtÞ, which is unique to each
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detector. It is assumed that h ≪ nðkÞ. A simple correlation
between the data from two detectors would then give
(Christensen, 1992)

cov(sð1ÞðtÞ; sð2ÞðtÞ) ¼ cov(hðtÞ þ nð1ÞðtÞ; hðtÞ þ nð2ÞðtÞ)
¼ cov(hðtÞ; hðtÞ): ð47Þ

This again assumes that the noise in the two detectors is
independent and not correlated (exceptions are explained
later). In reality, the detectors are located at different locations
on Earth. Hence, there is a reduction of the correlation due to
the nonalignment of the detectors and their physical separa-
tion. This effect is encompassed as follows in what is known
as the overlap reduction function:

γðfÞ ¼ 8

5π

Z
2π

0

dϕ
Z

π

0

sin θ½F1þF2þ þ F1þF2þ� cos ðk · xÞ;

ð48Þ

where the detector response functions for two detectors [see
Eqs. (22) and (23)] depend not only on the direction of the
gravitational wave source, ðϕ; θÞ in an Earth centered coor-
dinated system, but also on their positions on Earth and
relative orientations. For an isotropic stochastic gravitational
wave background the waves of frequency f come from all
directions, namely,

k ¼ 2πf
c

ðsinϕ sin θ;− cosϕ sin θ; cos θÞ; ð49Þ

and x is the vector from the vertex of detector 1 to the vertex of
detector 2.
The LIGO-Virgo stochastic background search produces a

cross-correlation statistic ĈIJðfaÞ, defined as

ĈIJðfaÞ ¼
2

T
Re½s̃�I ðfaÞs̃JðfaÞ�
γIJðfaÞS0ðfaÞ

; ð50Þ

where I and J refer to particular detectors in the network, fa is
the frequency in bin a, T is the length of time used to calculate
the Fourier transform, γIJðfaÞ is the normalized overlap
reduction function between detectors I and J (Christensen,
1992), s̃IðfaÞ is the Fourier transform of the strain time series
in detector I [see Eq. (30)], and the spectral shape for a flat
background is given by

S0ðfaÞ ¼
3H2

0

10π2f3a
ð51Þ

(Abbott et al., 2019e). The expected value of the cross-
correlation statistic is such that in each frequency bin

hĈIJðfaÞi ¼ ΩGWðfaÞ: ð52Þ

The variance of the cross-correlation statistic, assuming that
the gravitational wave signal is much smaller than the detector
noise, is given by

σ2IJðfaÞ ¼
2

TΔfa
PIðfaÞPJðfaÞ
γ2IJðfaÞS20

; ð53Þ

whereΔfa is the frequency resolution between the bins fa and
faþ1, PIðfaÞ is the one-sided noise PSD for detector I.
The next step is to create an optimal estimator of the energy

density of the stochastic background, namely (Abbott et al.,
2019e),

Ω̂IJ
ref ¼

P
awðfaÞ−1ĈIJðfaÞσ−2IJ ðfaÞP

awðfaÞ−2σ−2IJ ðfaÞ
; ð54Þ

with

σ−2IJ ¼
X
a

wðfaÞ2σ−2IJ ðfaÞ; ð55Þ

where the optimal weighting factors for the spectral shape
ΩGWðfÞ are

wðfÞ ¼ ΩGWðfrefÞ
ΩGWðfÞ

ð56Þ

for the fixed reference frequency fref, such as the power-law
shape defined in Eq. (45).
With multiple detector baselines (three, for example, for

LIGO-Virgo), the final estimator is

Ω̂ref ¼
P

IJΩ̂
IJ
refσ

−2
IJP

IJσ
−2
IJ

; ð57Þ

σ−2 ¼
X
IJ

σ−2IJ ; ð58Þ

where the sum is over the different independent baselines IJ.
One can define a log-likelihood function that compares the

stochastic background from model M with the cross-correla-
tion from the data as follows (it is assumed that the detector
noise is Gaussian):

lnLðĈIJ
a jΘÞ ¼ −

1

2

X
IJ;a

½ĈIJ
a − ΩðMÞ

GWðfajΘÞ�2
σ2IJðfaÞ

; ð59Þ

where the parameters for the model are represented by Θ. A
cosmologically produced stochastic background in the LIGO-
Virgo frequency band is predicted to be approximately flat,
α ¼ 0, while a background created by binary black hole and
binary neutron star mergers throughout the history of the
Universe would have α ¼ 2=3 in the LIGO-Virgo observa-
tional band. Prior probabilities are then defined and the
parameters can be estimated. While this statistical approach
used by LIGO and Virgo is a combination of frequentist and
Bayesian methods, it has been shown that the generated results
are the same as what can be derived from a fully Bayesian
analysis (Matas and Romano, 2021). This LIGO and Virgo
parameter estimation method for the stochastic background
search is based on the presentation of Mandic et al. (2012); the
approach was recently expanded to use nested sampling to
create the posterior distributions (Callister et al., 2017).
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No stochastic gravitational wave background has been
detected by LIGO-Virgo, so upper limits have been set that
depend on α and are based on the data from observing runs
O1, O2, and O3. This includes marginalization over the
calibration uncertainties. Data in the 20–1726 Hz band were
used. For α ¼ 0 a 95% credible level upper limit was set at
fref ¼ 25 Hz to be Ω0 < 5.8 × 10−9, and for α ¼ 2=3 the
upper limit for fref ¼ 25 Hz is Ω2=3 < 3.4 × 10−9 (B. P.
Abbott et al., 2019e; R. Abbott et al., 2021b). Just as there
are anisotropies in the cosmic microwave background, there
could be such anisotropies in the stochastic gravitational
wave background. LIGO and Virgo also search for an
anisotropic gravitational wave background. No such back-
ground has been observed (B. P. Abbott et al., 2019l; R.
Abbott et al., 2021h). It is likely that an astrophysically
produced stochastic background would be anisotropic
(Jenkins and Sakellariadou, 2018).
General relativity predicts two polarizations for gravita-

tional waves. This is similar to electromagnetic radiation.
Gravitational waves have a quadrupole form, and one says that
they have a tensor polarization. Alternate theories of gravity
predict scalar and vector polarizations as well. A Bayesian
parameter estimation method using nested sampling, includ-
ing model comparison, has been developed in order to search
for a stochastic gravitational wave background containing
scalar and vector polarizations (Callister et al., 2017). This has
been applied to the Advanced LIGO O1 (Abbott et al., 2018d)
and O2 (Abbott et al., 2019e) data. Bayesian odds were
computed for having a stochastic background of any polari-
zation present in the data versus Gaussian noise. Another set
of computed Bayesian odds compared models having vector
and scalar polarizations relative to the general-relativistic
prediction, which simply has the tensor polarizations. No
background was detected for any polarization and upper limits
have been set on their energy densities. Using the O3 LIGO-
Virgo data and doing a marginalization over the polarization
spectral index α, the upper limit on a scalar polarization

stochastic gravitational wave background is ΩðSÞ
GWð25 HzÞ ≤

2.1 × 108 at the 95% credible level, while for the vector

polarization the limit is ΩðVÞ
GWð25 HzÞ ≤ 7.9 × 109 (R. Abbott

et al., 2021b).
The search for a stochastic gravitational wave background

depends on correlations between two or more detectors since
the signal level is far below the noise in an individual
detector. An assumption in the analysis is that the noise in the
different detectors is independent, and not correlated. Two
colocated detectors would have the best relative orientation
for detection sensitivity. But being colocated would likely
lead to correlated noise. This was the case for the initial
LIGO S5 stochastic search involving the two colocated H1
(4 km) and H2 (2 km) interferometers (Aasi et al., 2015a). It
was impossible to eliminate correlated noise below 460 Hz.
Consequently the upper limit on the energy density of the
stochastic gravitational wave background was set at
ΩGWðfÞ < 7.7 × 10−4ðf=900 HzÞ3. With the LIGO and
Virgo (and KAGRA) sites separated by thousands of kilo-
meters one might naively expect that there would be no
correlated noise. However, this is not the case. The
Schumann resonances are formed by electromagnetic

standing waves in the spherical cavity between the surface
of Earth and the ionosphere (Schumann, 1952; Schumann
and König, 1954). The cavity is excited by lightning
strikes around the world (Price and Melnikov, 2004).
Magnetometers at the LIGO and Virgo sites have confirmed
the presence of correlated magnetic fields (Thrane,
Christensen, and Schofield, 2013); correlations have also
been observed when the KAGRA site in the network is
included (Coughlin et al., 2018). Coincident magnetic
bursts, short-duration transients (tens to hundreds of milli-
seconds in duration), have also been observed in the network
(Kowalska-Leszczynska et al., 2017). Different mitigation
schemes have been proposed (Thrane et al., 2014; Coughlin
et al., 2016). The LIGO-Virgo searches for an isotropic
stochastic background now ensure that correlated magnetic
noise is not corrupting the search.
A Bayesian parameter estimation approach for addressing

correlated magnetic noise in the LIGO-Virgo stochastic back-
ground searches was introduced by Meyers et al. (2020). The
models used for the parameter estimation consider the spectral
shape and amplitude of a stochastic background, namely,
Eq. (45), and also the magnetic noise contamination from the
structure of the Schumann resonances and the magnetic noise
transfer functions in LIGO and Virgo. An artificial signal
injection study showed that it was possible to estimate the
parameters describing a stochastic gravitational wave back-
ground and the magnetic field transfer function in the three
LIGO-Virgo gravitational wave interferometers. This method
was used to address possible coherent magnetic field coupling
in the LIGO-Virgo O3 stochastic background search; the
Bayes factor for the presence of magnetic contamination was
sufficiently low, showing that this possible correlated noise
did not affect the study (R. Abbott et al., 2021b).
The method used by Meyers et al. (2020) that employed

parameter estimation to distinguish a stochastic gravitational
wave background from magnetic contamination can also be
used to distinguish between different stochastic backgrounds
with different slopes, or a stochastic background described
by a broken power law, as could be produced by phase
transitions in the early Universe. This method was described
by Martinovic et al. (2021). They showed that spectral
separation for multiple backgrounds could be difficult for
the Advanced LIGO–Advanced Virgo network, but possible
with third generation detectors such as the Einstein Telescope
(Punturo et al., 2010) and the Cosmic Explorer (Abbott et al.,
2017a; Reitze et al., 2019). The third generation detectors will
be able to observe almost all binary black hole mergers in the
observable Universe, plus many binary neutron star mergers
(Regimbau et al., 2017); these events can then be subtracted
from the data and allow for the observance of a cosmologi-
cally produced stochastic background at a level of ΩGW ∼
3 × 10−12 at 15 Hz (Sachdev, Regimbau, and Sathyaprakash,
2020). However, using parameter estimation techniques for
spectral separation the sensitivity limit can be reduced to
ΩGW ∼ 4.5 × 10−13 for cosmic strings and ΩGW ∼ 2.2 × 10−13

for broken power-law models from phase transitions at 25 Hz
(Martinovic et al., 2021).
The ability to use parameter estimation for spectral sepa-

ration of the stochastic gravitational wave background has
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been addressed in many studies. We summarize those here that
are applicable to LIGO-Virgo or third generation ground-
based detectors. A frequentist method to conduct component
separation method was presented by Parida, Mitra, and
Jhingan (2016); it uses Fisher information matrices and
maximum-likelihood estimation and was proposed to replace
MCMC methods. Filters for broken power laws have been
proposed to distinguish various stochastic backgrounds
(Ungarelli and Vecchio, 2004). Yet another approach
(Biscoveanu, Talbot et al., 2020) attempts to directly observe
the stochastic background produced by binary black hole
mergers throughout the history of the Universe. To do this one
must cut the data into time segments and assign a probability
for the presence of a binary black hole produced gravitational
wave signal. Bayesian parameter estimation methods are used
to generate the probability for the presence of such a signal,
concentrating specifically on low amplitude signals that would
not be directly detected using standard signal search methods
(Smith and Thrane, 2018).

B. Continuous-wave signals

A rotating neutron star that is highly magnetized will often
emit regular pulses of electromagnetic radiation. These are
known as pulsars. Such a rotating neutron star with some sort
of nonaxisymmetric shape will emit gravitational waves
(Zimmermann and Szedenits, 1979; Jones and Andersson,
2002). These signals would be quasiperiodic and of long
duration, with amplitudes and frequencies that are essentially
constant. The gravitational wave signal would be sinusoidal at
signal frequency fs, related to the neutron star rotation
frequency fr by fs ¼ 2fr. There are other mechanisms that
could produce gravitational waves at other frequencies,
harmonics, and the rotation frequency itself (Jones, 2010;
Glampedakis and Gualtieri, 2018). In this review we concen-
trate on signals obeying the relationship fs ¼ 2fr.
There are different strategies for searching for a continuous

gravitational wave signal from a rotating neutron star. A
targeted search attempts to find a signal from a known pulsar.
In this case the location of the source on the sky is known, as is
the rotational information (such as the rotational frequency
and the phase) from electromagnetic observations. A directed
search concentrates on interesting locations on the sky, such as
a supernova remnant; such a location may contain a rotating
neutron star, but there is no information about the parameters
associated with the rotation. An all-sky search attempts to find
continuous gravitational wave signals at every location on the
sky, and then over a large range of parameters pertaining to
rotation. LIGO and Virgo have conducted numerous searches
for continuous-wave signals, although no detection has been
made. In the first three observational runs of the advanced
detector era these included (B. P. Abbott et al., 2017b, 2019a,
2019h, 2019m, 2019n; R. Abbott et al., 2020a).
The observed gravitational wave signal from a rotating

neutron star would have the form

hðtÞ ¼ Fþðt;ψÞh012ð1þ cos2ιÞ cosϕðtÞ
þ F×ðt;ψÞh0 cos ι sinϕðtÞ; ð60Þ

where h0 is the magnitude of the gravitational wave, ψ is the
polarization angle, ι is the angle between the line of sight and
the pulsar’s spin axis, and ϕðtÞ describes the phase evolution.
Fþðt;ψÞ and F×ðt;ψÞ represent the response of an interfero-
metric detector to the gravitational wave of the two polar-
izations, and the polarization angle is ψ ; these response
functions also account for the sky position and the orientation
of the detector (Jaranowski, Królak, and Schutz, 1998; Abbott
et al., 2004). The detected signal will have a phase evolution
that can be expressed as the following Taylor series:

ϕðtÞ ¼ ϕ0 þ 2π½fsðT − T0Þ þ 1
2
_fsðT − T0Þ2

þ 1
6
f̈sðT − T0Þ3 þ � � ��; ð61Þ

where the signal arrival time at the Solar System barycenter is
T ¼ tþ δt ¼ tþ r⃗ · n⃗=cþ ΔT, the signal phase for the fidu-
cial time T0 is ϕ0, the detector position with respect to the
barycenter of the Solar System is r⃗, the unit vector pointing
toward the pulsar is n⃗, the speed of light is c, and relativistic
corrections to the arrival time are within ΔT (Taylor, 1994;
Abbott et al., 2004; Christensen et al., 2004). The time
derivative _fs is small for the majority of pulsars, and timing
noise is typically much larger than f̈s. When radio observa-
tions give information on fs and _fs, heterodyning by
multiplying the data by exp½−iϕðtÞ� followed by low-pass
filtering and resampling will then produce a model with four
unknown parameters: h0, ψ , ι, and ϕ0. The uncertainties of the
frequency and frequency derivative give two other parameters
(Christensen et al., 2004; Umstätter et al., 2004; Dupuis and
Woan, 2005).
Christensen et al. (2004) first applied MCMC methods to

such gravitational wave signals using simulated data. A
Metropolis-Hastings algorithm (Gilks, Richardson, and
Spiegelhalter, 1996) was first applied to a signal described
by the four parameters h0, ψ , ι, and ϕ0. In such a case the sky
position and signal frequency are assumed to be known from
electromagnetic observations. The MCMC method was suc-
cessfully demonstrated. A fifth parameter was then added, the
uncertainty in the frequency of the sourceΔf. This would be a
situation where a potential source has a known location, but an
unknown rotation frequency. A presumed rotating neutron star
at the locations of SN1987A (Zhang et al., 2018; Cigan et al.,
2019) or Scorpius X-1 (Shklovsky, 1967) would be examples
of this application. A subsequent study then expanded the
number of parameters to six by also including the uncertainty
of the frequency derivative of the rotating neutron star Δ _f
(Umstätter et al., 2004). The study presented methods to
sample a posterior distribution with delayed rejection, repar-
ametrizaton, and simulated annealing. This is an improved
method for searching for a signal at a known sky location, but
where information on the neutron star rotation parameters is
lacking. While one MCMC routine would run per computing
core, an extension of the technique would be to have many
MCMC techniques running on different computer processors,
changing the rotation parameter prior probabilities and giving
a search over a larger range of frequencies. The Bayesian
methods were further extended by Dupuis and Woan (2005),
who developed a more complete structure for a signal search
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and parameter estimation with gravitational wave data, and
then applied to known radio pulsars. They also applied the
method with data from multiple detectors while looking for a
coherent signal.
A new version of parameter estimation for continuous-

wave signals from known pulsars was developed and
presented by Pitkin et al. (2012); this version used nested
sampling (Skilling, 2006). The possibilities for model
selection were also discussed. This method was realized
with LALInference (Veitch et al., 2015). Further devel-
opments were presented by (Pitkin et al., 2017).
The Advanced LIGO–Advanced Virgo signal searches have

used these Bayesian methods, along with subsequent technical
developments. For a search of the LIGO O1 data, the Bayesian
nested sampling method was applied in the search for
gravitational waves from 200 known pulsars (Abbott
et al., 2017b).
The original raw L1 and H1 data have a sampling rate of 16

384 Hz but were then heterodyned according to the phase
evolution known from electromagnetic observations. Low-
frequency noise was removed with a low-pass filter and then
downsampled to one data point per minute. The bandwidth of
the search was then 1=60 Hz. The uncertainty in the phase
evolution for a pulsar were addressed with the applied nested
sampling routine.
Using the data from two detectors also provided the ability

to calculate various Bayes factors for the comparison of
different models such as the presence of a coherent signal
in both detectors, incoherent and different signals in the two
detectors, or simply independent Gaussian noise in each
detector. OS=N represents the ratio of the probability that
two detectors have a coherent continuous-wave signal to the
probability that both detectors merely contain independent
Gaussian noise.OS=I represents the ratio of the probability that
two detectors have a coherent continuous-wave signal to the
probability that each detector has an independent signal or
noise with respect to the other detector. For the 200 pulsars
given by Abbott et al. (2017b), the distribution of OS=N and
OS=I values is displayed in Fig. 18. The pulsar PSR J1932þ
17 had a value of OS=I ≈ 8; however, it was not claimed that
this was significant for a detection, especially considering the
Jeffreys scaling (Jeffreys, 1961). The pulsar PSR J1833–0827
had OS=N ≈ 2.5 × 1012, but an insignificant OS=I ≈ 3 × 10−6,
which was claimed to be from interference in the data. No
other signals had significant probabilities for containing a
continuous-wave signal. As such, no gravitational wave signal
was claimed to be observed from these 200 pulsars (Abbott
et al., 2017b).
This nested sampling method was then extended to a search

for a signal at not only twice the rotation frequency (from the
l ¼ m ¼ 2 mass-quadrupole mode) but also the rotation
frequency (from the l ¼ 2, m ¼ 1 mode) itself. A narrow-
band time series is made for both frequencies, and this
Bayesian analysis then coherently searches for the two signals
together; the pulsar inclination angle parameter and the
polarization angle are assumed to be the same for the two
frequencies. If a pulsar had a rotation glitch, as observed from
electromagnetic observations, within the time period of the
gravitational wave observations, then an additional parameter

was added to the analysis, namely, an unknown phase offset
after the glitch. Data were used from Advanced LIGO
observing runs O1 and O2 and the search targeting 222
known pulsars with rotation frequencies of 10 Hz or larger. No
gravitational wave signal was found at either frequency for
any of the pulsars, and various limits were placed for physical
parameters associated with the pulsars (Abbott et al., 2019n).
Using LIGO-Virgo data from O3, combined with the data

from O1 and O2, this same Bayesian search has been
conducted for gravitational wave signals from five pulsars.
While again no signals were observed, important limits have
been placed on the pulsars’ equitorial ellipticities, limiting
them to less than 10−8 (R. Abbott et al., 2020a). A search has
also been done with O3 data for continuous gravitational
waves from young supernova remnants (R. Abbott et al.,
2021i), as well as an all-sky search for isolated neutron stars
(R. Abbott et al., 2021j); again no signals have been detected.
A method to search for nontensorial polarizations in

continuous gravitational wave signals has been developed.
For alternative theories of gravity, this typically involves the
addition of vector and scalar polarization modes. There exists
a means to detect gravitational wave signals of any mixture of
polarizations and measure the polarization content (Isi et al.,
2015). Using nested sampling one can then implement model
selection (Pitkin et al., 2017); this can be a comparison for the
presence of a gravitational wave signal versus only noise or, if
a signal is present, the polarization content (Isi, Pitkin, and
Weinstein, 2017). The method was used to analyze the
Advanced LIGO O1 data for possible continuous gravitational
wave signals from 200 known pulsars. The search targeted
possible tensor, vector, and scalar polarizations. No signals of
any of the polarizations were detected, so upper limits were
placed on the amplitudes of signals for the various polar-
izations (Abbott et al., 2018c).

FIG. 18. Probability ratios OS=I and OS=N for the search for
continuous gravitational wave signals from 200 known pulsars
using Advanced LIGO O1 data. From Abbott et al., 2017b.
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Convolutional neural networks were presented by
Dreissigacker et al. (2019) as a means of conducting a search
for continuous gravitational waves. The method appears to be
promising in terms of the speed of the analysis. However,
more work is needed in order to improve the probability of
detection.
Using a MCMC scheme to optimize the F statistic, a

technique was developed for a hierarchical follow-up of
potential continuous gravitational wave events produced in
semicoherent searches over a large parameter space (Ashton
and Prix, 2018). This method uses an affine-invariant ensem-
ble sampler (Foreman-Mackey et al., 2013).

C. Core-collapse supernovae

One of the most important possible signal source for LIGO
and Virgo would be from a core-collapse supernova (CCSN)
(Gossan et al., 2016; Radice et al., 2019; Abdikamalov,
Pagliaroli, and Radice, 2020). Gravitational wave observa-
tions from CCSNe can aid in our ability to discern the
explosion mechanisms of stars. The extremely complicated
nature of CCSNe creates a challenge for estimating the
physical parameters. The last few years have seen much
progress in the development of numerical codes for simulating
the physics of CCSNe, including gravitational wave emission
(Müller, 2020).
LIGO and Virgo have not yet observed gravitational waves

from CCSNe (B. P. Abbott et al., 2020e). CCSNe offer a
unique opportunity to conduct multimessenger astronomy,
with the chance to observe gravitational waves, electromag-
netic radiation, and neutrinos from the CCSNe. In fact, the
importance of multimessenger astronomy was displayed with
the electromagnetic and neutrino observations of SN1987A
(Bionta et al., 1987; Hirata et al., 1987). The timescale for a
CCSN produced gravitational wave signal is short (about 1 s
or less). CCSNe are an important target for LIGO and Virgo
gravitational wave observations (B. P. Abbott et al.,
2019j, 2020e).
The emission of electromagnetic radiation from a CCSN

can be delayed for seconds to days due to the high densities of
the charged particles present. The photons are forced to do a
random walk through the material in order to exit (Rabinak
and Waxman, 2011; Waxman and Katz, 2017). On the other
hand, gravitational waves and neutrinos can exit instantly
from the core of the star, and they will carry important
information about the physical processes, such as the core
collapse and the revival of the shock wave (Kuroda et al.,
2017). It is impossible to derive analytical expressions for
gravitational waves from CCSNe that capture the complexity
involved with all the physical processes: high energy particle
physics, nuclear physics, general relativity, and thermody-
namics. The predicted gravitational wave signals are a product
of the numerical simulations, but these can take months to run
for a single waveform capturing all of the complicated physics
in the three dimensions (Bruenn et al., 2020). Parameter
estimation methods will need to work with these conditions,
so imaginative methods are required.
Summerscales et al. (2008) used a maximum–a posteriori

approach to attempt to separate the gravitational wave signal
produced by a CCSN from the detector noise. They justified

the Gaussian assumption for the likelihood using the principle
of maximum entropy (Jaynes, 1957a, 1957b), as the Gaussian
distribution maximizes the entropy among all distributions
with the same mean and variance and can thus be interpreted
as the most conservative in this class of distributions. Instead
of sampling from the posterior distribution, they found the
parameter values that maximized the posterior distribution.
The gravitational waveforms derived via the inference meth-
ods would be compared to a catalog of simulated waveforms.
The catalog would presumably contain a large number of
predicted signals generated by covering a large volume of the
physical parameter space. To do this, they would compare
their estimated waveforms to the CCSN gravitational wave
signal waveforms from the catalog of Ott et al. (2004). The
assumption is that the waveform derived from inference would
be most similar to the simulated signal in the catalog that has
the physical characteristics most in agreement with the real
CCSN. To quantify the success of the routine, Summerscales
et al. (2008) used a simple cross-correlation between the
gravitational waveforms from inference and the catalog of
simulated CCSN waveforms.
A method using principal component analysis (PCA) was

introduced to decompose the signals in a CCSN gravitational
wave catalog, and to create an orthonormal basis vector set
(Heng, 2009). With the CCSN catalog used (Dimmelmeier
et al., 2007) (employing a large range of rotation rates) 12
principal component vectors were sufficient to reconstruct the
catalog waveforms with a match exceeding 0.9.
The use of PCAwas extended by Röver et al. (2009), who

used a Metropolis-within-Gibbs sampler (Gelman et al.,
2014) to reconstruct CCSN gravitational waveforms using
principal component regression (PCR). The CCSN catalog
that was used had various progenitor masses, initial spins,
initial differential spins, and nuclear equations of state
(Dimmelmeier et al., 2008). The PCA eigenvectors are first
calculated from the waveform catalog. A signal from the
catalog (but not used in creating the PCA eigenvectors) was
injected into simulated LIGO detector noise. With Bayesian
inference, information about the signal was derived. This
was accomplished by generating the posterior probability
distribution functions of the PCA eigenvector amplitudes
and the pulse arrival time. Attempts were made to use the
reconstructed signal and the amplitudes of the PCA eigen-
vectors to give information about the CCSN physical
parameters. The match between the reconstructed signal
and the waveforms from the catalog was quantified with a χ2

value. This study had limited success in making a clear
association to the physical parameters.
The reconstruction of CCSN signals using Bayesian PCR

was further developed by Edwards (2017) with a birth-death
RJMCMC (Green, 1995). In such an analysis the number of
principal components was not fixed in advance but rather
treated as an additional parameter to be estimated. Model
selection was addressed via model averaging.
Edwards, Meyer, and Christensen (2014) subsequently

showed that one can gain important astrophysical information
from the PCA coefficients derived with the PCR methods
described by Röver et al. (2009). By sampling from the
posterior predictive distribution one can derive credible
intervals for some physical parameters, including the ratio
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of the rotational kinetic energy to the gravitational energy of
the inner core at the bounce. Two supervised machine-
learning methods were also applied so as to classify the
precollapse differential rotation profile, and it was shown that
the techniques are effective at discriminating between differ-
ent rapidly rotating progenitors to the CCSN. The study
displayed a constrained optimization approach for model
selection that provided a value for the appropriate number
of principal components for the Bayesian PCR models.
As described in Sec. IV, the estimation of the noise PSD is

critical for gravitational wave parameter estimation. For a
short-duration transient gravitational wave signal, the most
accurate parameter estimation of the signal qualities would
occur if the noise PSD is estimated simultaneously with the
signal parameters. Edwards, Meyer, and Christensen (2015)
displayed parameter estimation methods for CCSNe while
simultaneously estimating the noise PSD. Often in gravita-
tional wave signal searches it is assumed that the noise present
has a Gaussian distribution, that it is stationary, and that the
PSD has been determined from observations at a different time
than when a signal is present. However, the observed LIGO
and Virgo data can violate these assumptions (B. P. Abbott
et al., 2020b). Hence, an incorrect estimation of the noise PSD
generally would affect the parameter estimation results. This
was addressed by Edwards, Meyer, and Christensen (2015),
whose Bayesian semiparametric method employed a non-
parametric Bernstein polynomial prior for the noise PSD with
weights given from a Dirichlet process distribution. The
Whittle likelihood then provided an update. A Metropolis-
within-Gibbs sampler (Gelman et al., 2014) provided the
posterior samples. In addition to the noise estimation, a
rotating CCSN gravitational wave signal was injected into
simulated Advanced LIGO noise, and the reconstruction
parameters were estimated using the PCR method described
by Röver et al. (2009) and Edwards, Meyer, and Christensen
(2014). An example is displayed in Figs. 19 and 20. A CCSN
signal (A1O10.25 from the catalog) (Abdikamalov et al.,
2014) was injected into simulated Advanced LIGO noise

with SNR ¼ 50. The CCSN signal was reconstructed
(Fig. 20) while the noise PSD was simultaneously estimated
(Fig. 19).
The physics behind a CCSN is complicated and complex.

The way in which the explosion happens has not yet been
completely explained. Different models exist and lead to
different parameter estimation results. For example, one
mechanism that has been proposed is a neutrino driven
explosion; this would apply to slowly rotating progenitors.
Another possibility is a magnetorotational driven explosion,
which applies for progenitors that are rapidly rotating. A
comprehensive review of CCSN explosion mechanisms was
presented by Janka (2012). The resulting gravitational wave
signals from these mechanisms are different and could be
distinguished by parameter estimation. Logue et al. (2012)
showed that one could differentiate between different mag-
netorotational explosion mechanisms. Assuming the
Advanced LIGO sensitivity, they claimed that this differ-
entiation could be done for CCSNe in the Milky Way (at
distances less than 10 kpc). For neutrino driven explosions
their method could differentiate between different models for
CCSN source distances up to 2 kpc. The parameter estimation
method applies PCR and nested sampling (Skilling, 2006);
calculated Bayesian evidence supports the most probable
CCSN mechanism for the explosion. Powell et al. (2016)
continued this line of research with the use of nested sampling
for providing evidence for CCSN explosion mechanisms. This
was tested by embedding simulated signals in real LIGO
detector data in order to understand the effects of nonsta-
tionary and non-Gaussian noise. They claim with their method
the Advanced LIGO–Advanced Virgo network at design
sensitivity could establish whether the mechanism for the
explosion is neutrino driven for CCSNe in the Galaxy and
rapidly rotating core collapse to the Large Magellanic Cloud.
The subsequent study presented by Powell, Szczepanczyk,
and Heng (2017) used three-dimensional CCSN simulations
as a means to reject noise transients. The importance of
applying these methods to the data from third generation

FIG. 19. Example in which the noise PSD was estimated while a
CCSN signal was also reconstructed. With the assumption of an
Advanced LIGO noise curve, the estimation of the log PSD for
this noise is displayed. The 90% credible region is in shaded pink
(small band), while the posterior median is in dashed blue (line).
The solid gray (large band) is the log periodogram. From
Edwards, Meyer, and Christensen, 2015.

FIG. 20. Reconstruction of a gravitational wave signal from
rotating core CCSNe, in particular, the signal A1O10.25 from
Abdikamalov et al. (2014), that was embedded in simulated
Advanced LIGO noise with a SNR ¼ 50. The shaded pink band
is the 90% credible interval, the dashed blue line is the posterior
mean, and the solid black line is the A1O10.25 signal. From
Edwards, Meyer, and Christensen, 2015.
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gravitational wave detectors was presented by Roma
et al. (2019).
Abdikamalov et al. (2014) presented two methods to use

CCSNe produced gravitational wave data to estimate the
parameters. One was the total angular momentum of the inner
core at the bounce. Another was the ratio of the inner core’s
rotational kinetic energy to gravitational energy. Their model
for the CCSN included the effects of rotation, gravitation,
electron capture during collapse, and the nuclear equation of
state. They also assumed noise at the level of Advanced LIGO
at design sensitivity. Their first method used a template bank
from their simulations (124 models), and they then used
matched filtering to estimate the total angular momentum to
20% for rapidly rotating cores, and 25%–35% for slowly
spinning cores. A Bayesian nested sampling model selection
technique was applied to estimate the differential rotation. The
Bayesian approach used PCA and expanded on the work of
Röver et al. (2009) and Logue et al. (2012) and was able to
successfully describe the precollapse differential rotation
profile.
A frequentist approach to the problem of parameter

estimation for gravitational waves observed from CCSNe
was presented by Engels, Frey, and Ott (2014). PCA is applied
to CCSN waveform catalogs. A least squares solution relates
the PCA eigensolution to the physical parameters. The method
was successfully demonstrated for CCSN signals injected into
detector noise, and for then identifying important CCSN
parameters that are responsible for the form of the gravita-
tional wave signal.
Bizouard et al. (2021) used frequentist parameter estima-

tion methods to address the information that can be extracted
from protoneutron stars formed after a CCSN. Specifically, the
information comes from the observed g-mode signal (gravity
modes) (Kokkotas and Schmidt, 1999). From the time
evolution of the g mode, as described by Torres-Forné et al.
(2019) and potentially observable in the gravitational wave
signal, it was shown that it is possible to estimate a relation-
ship between the evolving protoneutron star (PNS) massMPNS

and the radius RPNS. They show that one can observe how the
ratio MPNS=R2

PNS evolves with time. The model with the best
fit to the data (time-frequency evolution) is chosen by the
Akaike information criterion (Spiegelhalter et al., 2002;
Mukhopadhyay and Ghosh, 2003). When we assume the
design sensitivity noise levels for the Advanced LIGO–
Advanced Virgo network, it is stated that the mass-radius
evolution for a PNS could be observable for sources within the
Milky Way. For third generation detectors such as the Cosmic
Explorer and Einstein Telescope, the observable range could
extend to around 100 kpc.
Edwards (2021) tested deep convolutional neural networks

on simulated gravitational wave signals from CCSNe with
rotating progenitors in order to determine the nuclear equation
of state. The study used the 1834 gravitational waveforms
from Richers et al. (2017), which were generated from
simulations using axisymmetric general-relativistic hydrody-
namic scenarios. These simulations consisted of 98 rotation
profiles and 18 equations of state. With the convolutional
neural network framework of Edwards (2021), who examined
the temporal and visual patterns in the gravitation waves from

rotating CCSNe, correct classifications at the level of 64% to
72% were achieved. If the signal set is then reduced to the five
equations of state with the largest probability estimates for a
given test signal, the identification success rises to 91%–97%.
The effects of the inclusion of detector noise will be the goal of
a future study using these convolutional neural network
methods.
An information-theoretic approach to the detection of

unmodeled short-duration transient gravitational wave signals
was presented by Lynch et al. (2017). After a detection by a
short-duration transient signal search, parameter estimation
was done with MCMC methods and nested sampling. Ad hoc
models such as sine-Gaussians, Gaussians, and damped
sinusoids were used; the parameters associated with these
models were then estimated. It was claimed that the generated
Bayes factors could improve the detection efficiency.
The BayesWave analysis pipeline (Cornish and

Littenberg, 2015; Cornish et al., 2021) described in
Sec. X.F can be used to reconstruct unmodeled transient
gravitational wave signals. It can also be used to differentiate
between gravitational wave transient signals (coherent across
the detector network) and transient noise (incoherent across
the detector network). An accurate reconstruction of the
gravitational wave from a CCSN will certainly be an asset
in studies pertaining to understanding the signal source.

D. Long-duration transients

An important potential gravitational wave signal is a long-
duration unmodeled transient. Signal search pipelines have
been developed to look for these signals in LIGO-Virgo data
(Thrane et al., 2011; Thrane, Mandic, and Christensen, 2015).
These searches target signals lasting tens of seconds up to
potentially weeks. Pattern recognition methods are used to
search for structure in time-frequency maps produced from the
data. Long-duration gravitational wave signals have been a
target for LIGO-Virgo (Abbott et al., 2018b, 2019i). Coughlin
et al. (2014) presented a method for estimating model
parameters from the observed time-frequency map of the
data using nested sampling.
This method was further developed to look for gravitational

wave signals after the merger of a binary neutron star
coalescence (Banagiri et al., 2020). Assuming that there
was a massive neutron star remnant that survived for some
time after the merger, there could be oscillations in the
remnant, thereby producing gravitational waves. The produc-
tion of gravitational waves in such a scenario is difficult to
predict, especially with respect to the phase of any oscillation.
The study presented a means to probe for the presence of long-
duration postmerger gravitational wave signals, and to put
limits on or measure various properties of the postmerger
remnant. A phase-agnostic likelihood was produced that used
only the spectral content of the signal. Simulated data with the
O2 Advanced LIGO noise sensitivity were used. The physical
parameters that were attempted to be constrained were the
gravitational wave amplitude, the start time of the signal, the
spin-down timescale, a model-dependent spin-down param-
eter that can change the overall spin-down rate, and the initial
gravitational wave frequency. It was assumed that the sky
position and distance to the source were known, similar to
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GW170817. Nested sampling was used, specifically the
PyMultiNest package of Buchner et al. (2014).
Depending on the models for the postmerger remnant, the
study demonstrated the potential to constrain various param-
eters, such as the ellipticity of the remnant and its brak-
ing index.

E. Cosmic strings

Gravitational waves offer a unique way to display new
physics, and one example would be cosmic strings. These are
remnants of a false vacuum and manifest themselves as one-
dimensional topological defects. If they exist, they would have
been made after a spontaneous symmetry phase transition
(Kibble, 1976, Vilenkin and Shellard, 2000). Many different
field theories could be responsible for producing cosmic
strings; grand unified theories in the early Universe could
produce them (Kibble, 1976, Vilenkin and Shellard, 2000).
They could be produced when inflation is terminating
(Sakellariadou, 2009).
Cosmic string loops have periodic oscillations, and as such

they produce gravitational waves. The gravitational waves are
created by cusps, kinks, and kink-kink collisions. The gravi-
tational waveforms are calculable (Damour and Vilenkin,
2000, 2001, 2005). The gravitational wave signals and emitted
power depend on the string tension; this is typically represented
as Gμ, where G is Newton’s constant and μ is the linear mass
density of the string (with c ¼ 1 assumed).
Because the waveforms for cosmic string produced gravi-

tational waves can be calculated, LIGO and Virgo search for
their signals with a template-based search. No such gravita-
tional waves have been detected by LIGO or Virgo (B. P.
Abbott et al., 2018e, 2019j; R. Abbott et al., 2021g). The
absence of the detection of a stochastic gravitational wave
background also constrains cosmic string parameters (B. P.
Abbott et al., 2018e, 2019e; R. Abbott et al., 2021g). If a
short-duration gravitational wave signal from a cosmic string
were detected, parameter estimation methods could be applied
using the known form of the waveforms (Kuroyanagi
et al., 2012).
Bayesian parameter estimation methods can be used to

constrain cosmic string parameters with the results from a
stochastic gravitational wave background search. Given a
model for cosmic string formation and the string tension, a
stochastic background can be predicted. Various cosmic string
models M exist (Lorenz, Ringeval, and Sakellariadou, 2010;
Blanco-Pillado, Olum, and Shlaer, 2014; Auclair et al., 2019)
that will produce a stochastic gravitational wave background

and an associated energy density ΩðMÞ
GWðfa;Gμ; NkÞ that

depends on the string tension Gμ and the frequency fa,
and Nk is the number of kinks per cosmic string loop
oscillation. These would then be inserted into Eq. (59) as
follows, using for the parameters Gμ and Nk:

lnLðĈIJ
a jGμ;NkÞ¼−

1

2

X
IJ;a

½ĈIJ
a −ΩðMÞ

GWðfa;Gμ;NkÞ�2
σ2IJðfaÞ

: ð62Þ

For priors, in the LIGO-Virgo observing run O3 cosmic string
analysis the string tension prior is log uniform for

10−18 < Gμ < 10−6. Because no cosmic strings signals were
detected, let alone any stochastic background, various ranges
of the Gμ − Nk parameter space are excluded for different
models (R. Abbott et al., 2021g). Note that a cosmic string
origin for GW190521 was investigated, but a log10 Bayes
factor of ∼30 strongly favors a binary black hole origin for the
signal over a cosmic string origin (R. Abbott et al., 2020e).

X. PARAMETER ESTIMATION PACKAGES FOR
GRAVITATIONAL WAVES

Here we give a description of major software packages that
have been made available for parameter estimation of gravi-
tational waves. This is not an exhaustive list. Further refer-
ences to smaller packages or code for specific tasks such as
spectral density or population parameter estimation can be
found in the respective sections of this review.

A. LALInference

LALInference (Veitch et al., 2015) is the original and
primary tool that is currently used by LIGO and Virgo for
parameter estimation of gravitational wave signals. It pro-
vides a flexible and open-source tool kit3 and consists of a C

library with postprocessing functions implemented in
PYTHON. It can make use of all waveform approximants
implemented in LAL and provides implementations of two
independent samplers: a parallel tempering MCMC scheme
(Gilks, Richardson, and Spiegelhalter, 1996) and nested
sampling (Skilling, 2012).

B. PyCBC

In contrast to LALInference which is written in C,
PyCBC (Biwer et al., 2019) is a PYTHON-based suite of
functions for parameter estimation of compact binary coa-
lescence signals. It is an open-source tool kit available on
GitHub. Several waveform models are available, implemented
either directly in PyCBC or via calls to LAL, where the
Whittle likelihood function equation (6) is used. The user can
choose among three ensemble MCMC samplers: EMCEE

(Foreman-Mackey et al., 2013), its parallel-tempered version
PTEMCEE (Vousden, Farr, and Mandel, 2016), and KOMBINE, a
kernel-density-based, embarrassingly parallel ensemble
sampler.4 PyCBC is also using a dynamical nested sampling
algorithm (Nitz et al., 2021), DYNESTY (Speagle, 2020).

C. BILBY

The package BILBY is a collection of PYTHON-based
routines for Bayesian parameter estimation of gravitational
waveform parameters. It aims to provide a more user-friendly
suite of computational tools than LALInference through
modularization. Its core library is not specific to the analysis
of gravitational waves but can be used for general parameter
estimation problems. The core library passes user-defined
likelihood and prior to various samplers and returns the results

3Available at https://lscsoft.docs.ligo.org/lalsuite/.
4See https://github.com/bfarr/kombine.
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in an HDF5 file. The PYTHON software package PESummary
(Hoy and Raymond, 2020) can be used for processing and
visualizing the results. The user has the choice of the MCMC
samplers EMCEE (Foreman-Mackey et al., 2013), PTEMCEE

(Vousden, Farr, and Mandel, 2016), and PyMC3 (Salvatier,
Wiecki, and Fonnesbeck, 2016), and various versions of
nested samplers such as DYNESTY (the default) (Speagle,
2020), NESTLE (Barbary, 2021), CPNest (Veitch et al., 2021),
PyMultiNest (Buchner et al., 2014), PyPolyChord
(Handley, Hobson, and Lasenby, 2015), UltraNest
(Buchner, 2016, 2019), DNest4 (Brewer and Foreman-
Mackey, 2016), and NESSAI

5 (Williams, Veitch, and
Messenger, 2021). Its gravitational wave specific library
allows the user to define their own waveform models but
includes standard waveform approximants for transient sig-
nals via the LALSimulation package (LIGO Scientific
Collaboration, 2018). The standard likelihood is Eq. (6) and
implementations of the current gravitational wave detectors
and their location, orientation, and PSDs are provided. A
further functionality is provided by enabling hierarchical
Bayesian inference on populations. A parallelized version
of nested sampling implemented in pBilby enables the use
of hundreds or thousands of CPUs of a high-performance
computing cluster and yields a reduction in computation time
that scales almost linearly with the number of parallel
processes (Smith et al., 2020) and provides an efficient
implementation for population inference (Talbot et al.,
2019). BILBY also has a MCMC sampler, Bilby-MCMC
(Ashton and Talbot, 2021). A detailed description of this
software package6 was given by Ashton et al. (2019) and
Romero-Shaw et al. (2020).

D. BAJES

The PYTHON-based package BAJES (Breschi, Gamba, and
Bernuzzi, 2021) implements a Bayesian inference pipeline for
compact binary coalescence transients that has the flexibility
to combine different datasets and physical models. Like BILBY,
it provides a user-friendly modular software with minimal
dependencies on external libraries but specific functionalities
for multimessenger astrophysics. Algorithms for sampling
from the posterior distribution are based on EMCEE (Foreman-
Mackey et al., 2013), parallel tempering the MCMC approach
with a variety of proposal distributions, and nested sampling
(Skilling, 2006).

E. RIFT

RIFT, which stands for rapid parameter inference on gravi-
tational wave sources via iterative fitting, provides fast
methods to infer parameters of coalescing, precessing com-
pact binary systems. The algorithm is based on original work
by Pankow et al. (2015) and was described in detail by
O’Shaughnessy, Blackman, and Field (2017) and Lange,
O’Shaughnessy, and Rizzo (2018). RIFT achieves a consid-
erable saving in computation time through a combination of
strategies: considering candidate signals on a regular grid of

the parameter space and interpolating the likelihood values
over the grid; marginalizing the likelihood over the extrinsic
parameters using an adaptive Monte Carlo integration scheme;
given training data, interpolating the log marginal likelihood
using Gaussian processes; using an adaptive Monte Carlo
method to sample from the marginal posterior distribution of
the intrinsic parameters; and, finally, iterating the fitting and
sampling procedures over revised training data. Using graphi-
cal processing units for some of the elementary operations of
the RIFT algorithm, a further substantial improvement of
computation time can be obtained (Wysocki et al., 2019).7

F. BayesWave

BayesWave is an open-source suite of C++ functions
scripted in PYTHON. It has been designed to robustly estimate
gravitational wave signals, noise, and instrumental glitches
without relying on any prior assumptions of waveform
morphology. Its main importance lies in the morphology-
independent waveform reconstruction.8 BayesWave models
instrumental transients and burst signals using a Morlet-Gabor
continuous wavelet frame where the number and placement of
the wavelets is variable and estimated by a transdimensional
RJMCMC algorithm. It can simultaneously estimate the noise
power spectral density using the BayesLine algorithm
(Littenberg and Cornish, 2015). Detailed descriptions of the
methodology were given by Cornish and Littenberg (2015)
and Cornish et al. (2021).

G. BAYESTAR

The rapid determination of the source location (sky position
and distance) is of great importance to multimessenger
astronomy. BAYESTAR (Singer and Price, 2016; Singer et al.,
2016) provides such a rapid sky-localization code that yields
Bayesian estimates of the three-dimensional information
within minutes. This is accomplished by fixing the values
of the intrinsic parameters to the values from the detection
pipeline, computing the posterior distribution of the extrinsic
parameters, and approximating the marginal posterior distri-
bution of the sky location via numerical integration. BAYESTAR
exploits the fact that almost all of the information needed for
producing a sky position estimate can be extracted from the
matched filter trigger, plus the detectors’ signal arrival times,
amplitudes, and phases. Hence, BAYESTAR need not use the
intrinsic parameters when estimating only the sky localization.

XI. CONCLUSIONS

Beyond the detection of gravitational waves, Bayesian
statistical methods have played a pivotal part in estimating
the physical parameters of gravitational waveform models. We
have given a comprehensive review of Bayesian methodology
used for parameter estimation with an in-depth focus on
Bayesian computational techniques for characterizing the

5See https://github.com/mj-will/nessai.
6Available from theGit repository https://git.ligo.org/lscsoft/bilby/.

7The source code is available at https://github.com/oshaughn/
research-projects-RIT.

8BayesWave is available on GitLab at https://git.ligo.org/lscsoft/
bayeswave.
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posterior distribution of waveform parameters. Simulation-
based posterior computation methods in their various forms,
such as Gibbs sampling, Metropolis-Hastings algorithms,
Hamiltonian MCMC techniques, adaptive MCMC methods,
RJMCMC approaches, nested sampling, parallel tempering,
and combinations thereof, have been the predominant tech-
niques used for estimating the waveform parameters of signals
observed by ground-based detectors. General methods for
accelerating the convergence of MCMC algorithms (Robert
et al., 2018) as well as reduced-order models and surrogate
waveform models (Canizares et al., 2015; Setyawati, Pürrer,
and Ohme, 2020) will prove essential for future applications,
particularly for third generation observatories (Smith et al.,
2021). Moreover, the newly emergent machine-learning
methodology based on neural networks and deep learning
offers promise for gravitational wave applications. For short
burst signals like the black hole mergers that have been
observed by LIGO-Virgo, it has thus far been adequate to
estimate the instrumental noise characteristics in terms of its
power spectrum separately from the waveform parameters and
treating the power spectrum as fixed for the purpose of
parameter estimation. State-of-the-art MCMC methods now
also quantify the remaining uncertainty in the spectral density
estimates and estimate the noise power spectrum and wave-
form parameters simultaneously using a semiparametric
approach. For longer duration signals, it will be important
in the future to take the time-varying nature of instrumental
noise into account and develop robust methods for estimating
evolutionary spectra. Bayesian methods for checking model
assumptions such as stationarity (Cornish and Littenberg,
2015; B. P. Abbott et al., 2020b; Edwards et al., 2020) and for
assessing model fit such as posterior predictive checks
(Gelman et al., 2014), some of which were already discussed
by R. Abbott et al. (2021a), will need close attention and
further development as tools to scrutinize the validity of the
results.
This review has included a summary of results and

conclusions for the various detections during the first three
observations runs of LIGO-Virgo that could be drawn from
parameter estimation. An exhaustive overview of Bayesian
model comparison methods has been given and based on
these, and conclusions from the tests of general relativity have
been detailed. The hierarchical Bayesian modeling approach
and its application to estimating the rates of compact binary
mergers, as well as to inference on possible formation
scenarios, have been explained. With ever increasing sensi-
tivity of the ground-based detectors, the number of detections
in future observing runs will surge and hierarchical Bayesian
methods for estimating population parameters, such as their
merger rates, mass spectra, and spin distributions, will become
more and more important.
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