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Quantum Delta-Kicked Rotor: Experimental Observation of Decoherence
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We report on the experimental observation of environment induced decoherence in the quantum delta-
kicked rotor. Ultracold cesium atoms are subjected to a pulsed standing wave of near resonant light.
Spontaneous scattering of photons destroys dynamical localization thereby giving rise to a quantum
diffusion, which approaches the classical diffusion with an increasing degree of decoherence. This
tendency is enhanced by a stronger stochasticity in the underlying classical system. A comparison with
theoretical predictions is presented. [S0031-9007(98)06007-4]

PACS numbers: 03.65.Bz, 05.45.+b, 42.50.Lc, 72.15.Rn

It is nowadays widely accepted that sensitive dependynamics becomes susceptible to the decohering effects
dence on initial conditions does not occur in closed—anaf spontaneous emission by decreasing the laser-atom de-
generic—single particle quantum systems. Nonethelessning. The “environment” in this case is, of course, the
because of the quantum classical correspondence (QC&xcuum fluctuations. Measurements of the atomic mo-
principle, quantum mechanics must contain the macromentum distribution, as a function of time and detuning,
scopic limit and thus be able to describe classical chaogrovide a direct examination of the loss of coherence in
Employing solely the usual semiclassical limiit— 0 is  quantum system. Although we dwt perform the semi-
not entirely satisfactory. In this world; is not equal to classical limitz — 0 in the laboratory, which would be
zero. No matter how small it is, after the Ehrenfest timemandatory in order to demonstrate QCC experimentally,
quantum effects start to play. This time might be verywe will see thasomedynamical features characteristic for
long in an “integrable world,” but chaotic systems are wellthe classical DKR (C-DKR) are partially restored in the
known to develop highly complex phase space structures dp-DKR by increasing the coupling with the environment.
order/ in logarithmically short times-In(1/74). Accord- To model our system, we first note that although spon-
ing to Zureket al. [1], this difficulty is eliminated by real- taneous emission plays a key role in our experiment, the
izing that it is not possible to isolate macroscopic systemsletuningé;, = w; — wo (Where w; and wy denote the
from their environment. The coupling of a quantum sys-optical and the atomic transition frequency, respectively)
tem to extraneous degrees of freedom destroys the quantumill typically be 2 orders of magnitude larger than the
coherences. This explains why macroscopic superpositiomatural linewidth. We therefore neglect spontaneous emis-
states are not observed and reconciles the semiclassicbn for the moment. Then, adopting the notation which
limit of quantum mechanics with classical dynamics. has been used in [6], we write the Hamiltonian in dimen-

The purpose of this Letter is to experimentally inves-sionless form as

tigate environment induced decoherence of dynamically 2 N
localized states in the quantuéfitkicked rotor (Q-DKR) H=2 —& cos ¢ Z f(t —n), @
[2]—a topic which has already been addressed in various 2 n=1

theoretical studies [3—5]. Our experimental system conwhere /() specifies the temporal shape of the “kicks.”
sists of a gas of ultracold cesium atoms which are subWe will not explicitly give the relations between the di-
jected to a pulsed standing wave of near resonant light. Imensionless and the “real” parameters as they are the same
this atom optics realization of the Q-DKR [6], the quantumas in [6] with one exception: Instead 6f.;; = Q2?/5, we
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write Qepr = Q2(s45/845 + sa4/84s + s43/843), Where  widths of the beam waist and the atomic cloud entail a rea-
the terms in brackets take account of the different dipolesonably narrow distribution ot with rms spread of 10%
transitions between the relevant hyperfine levels in cesiurand kyean = 0.9kmax, Where kmax is the kicking strength

(F =4— F'=5,4,3). Inour simulations we assumed on the beam axis. In the following, when specifyirg
equal populations of the Zeeman sublevels, yieldinghis always refers tocmean. The pulse spacing used is
numerical values for they; of s4s = 11/27, s44 = 7/36, T = 20 us(k = 2.1). Note that both the Rabi frequency
and s43 = 7/108; 84; are the corresponding detunings. ) and the pulse spacinfj are held constant throughout
Note, however, that different magnetic sublevels willthe whole work. Varied are only the pulse widthT =
experience different ac stark shifts. For the smallesp0-580 ns) and the detuningdys/27 = 0.62—4.0 GHz
detuning used in this work a 5% spread in the couplingo the blue of theF = 4 — F’ = 5 transition). The lat-
strength results. Whereas Moatal. [6] used Gaussian ter is monitored by overlapping the kicking beam with the
pulses to model their experimental situation, the shape dfapping beam and measuring the beating frequency using
our pulses is much closer to rectangular (dimensionlesa fast photodiode and a spectrum analyzer. After trapping
pulse widtha). Then, for an infinite train of kicks, the and cooling, the trap is turned off leaving the atoms in

Hamiltonian (1) can alternatively be written as the F = 4 ground state. They have at most:a chance

p? o0 per spontaneous scattering to fall into the= 3 ground
H=—7——-«k Z sindmam) cod¢ — 2mmt), (2) state. In order not to let them steal away, we leave the re-
2 m==—00 pumping beam on during the experiment. This produces

where we have defined = ak such that in the limit a small additional heating due to incoherent transitions
a — 0, k — o (ak finite) Eq. (2) reduces to the usual back to theF = 4 state, which, however, is of no im-
DKR Hamiltonian H = p?/2 — x cos¢>.__,.8(t —  portance as for our parameters heating effects are negli-
n). The sinc function is defined as sin¢ = sin(x)/x.  gible altogether. According to the work of Dyrting [3], the
Interpreting Eg. (2) classically, the fundamental reso-+elative contribution to the energy diffusion arising from
nances are located at, = 27m with widths given by recoil heating (as opposed to diffusion due to decoherence)
Spm = 4/ sindmam) [7]. Employing the Chirikov is smaller thanl/(2E,) whereEj,, is the saturation en-
overlap  criterion, we derive the condition ergy (see below). In this work, heating contributes less
k sindmram) = 7?/4 for the destruction of the last than 1% to the overall diffusion. Its insignificance is also
Kolmogorov-Arnold-Moser (KAM) torus in the interval supported experimentally: By blocking the retroreflected
[om> pm+1]. From this, we can immediately infer that beam, thus turning the standing wave into a traveling wave,
there will be aregular region in phase space around the momentum diffusion effectively disappears. To mea-
mg = 1/a even for very largec. For smallerx values, sure the atomic momentum distribution we use a time-of-
there will be a transition (as one goes to largewvalues) flight technique with a “freezing molasses” [6]. The main
to a mixed phase space structure around some criticahformation extracted from the momentum distribution is
me < mg. In this work, the experimental parameters

that imply the smallest degree of chaoticity are= 17 300
and « = 0.03, yielding a critical integer momentum

of nc = pc/k =2mwmc/k = 87. We have actually
observed these KAM boundaries, so it was easy to make
sure that they did not affect the measurements.

Our experimental setup is very similar to that of Moore /\200'
et al.[6]. Approximately 10° cesium atoms are initially N
trapped and laser cooled in a standard magneto-optic trap N:
(MOT). The atomic gas’ temperature aftera 20 ms cooling v

phase (by increasing the detuning and decreasing the inten- 100}
sity of the trapping beam) is slightly below 10K. The

position distribution of the trapped atoms has a FWHM of

200 um. The modulated periodic potential is generated by

a third laser diode. The beam passes through an 80 MHz 0 . . . . .
acousto-optic modulator (AOM) and a single mode opti- 0 20 40 60 8 100

cal fiber. The collimated beam with a measured waist of number of kicks

20 = 1 mm is then retroreflected from a mirror outside FIG. 1. Kinetic energy(n?/2) as a function of number
the vacuum cell to generate the one-dimensional poteﬁ_lf kicks. The experimental (circles) and simulation (solid
tial, which is temporally modulated via the rf supply to IN€S) results are fok = 12.5, k = 2.1, and @) 7 = 0.76 X

X . . 1072, (b) p =23 X 1072 and € n =4.6 X 1072, The
the AOM. Taking reflection losses at the windows of thecorresponding detunings amas/2m = 4, 1.3, and 0.62 GHz,

containing glass cell into account, the Rabi frequency inespectively. The parameters for the analytical (dashed lines)
the center of the MOT i€) /27 = 310 MHz. The finite traces areD, = 13 andN* = 14 (5 values as above).
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its kinetic energy. Whereas its determination does not corterm H;,, = —luk ¢ Z,IN=1 8(t — n) to the Hamiltonian
stitute a problem for small energies, the experimental un¢l), where( is either 0 or 1{{) = n, anduk is the recaoil
certainties grow for higher energies due to the fact that amomentum projected onto the kicking beam axischo-
considerable portion of the energy is contained in the wingsen randomly from the intervil-1, +1]). We justify this
of the measured distributions. We estimate the systematigrocedure by the small degree of internal atomic excita-
errors to be roughly 30% for the largest energies measuretdon and by the fact that a mixing of internal and trans-
whereas the relative errors are approximately 10%. lational degrees of freedom does not alter the Q-DKR
We now turn to the description of the experimental re-behavior significantly even if the excited state proba-
sults. In the absence of spontaneous emission the atomidlity is large [9]. In Fig. 2, we show the dependence
momentum distribution initially diffuses, followed by the of the quantum diffusion coefficient defined &3.. =
onset of dynamical localization. Spontaneous emissiotimy_.(n?)/N on the rate of decoherenag. To gain
introduces decoherence to the Q-DKR. This destroysome understanding for this dependence, we heuristically
dynamical localization and results uantum diffusion derive an analytical expression fd,. as follows. We
(we use this term to refer to momentum diffusiaft  first assume that one spontaneous scattering event causes
ter the quantum break time). Figure 1 displays the meaeomplete decoherence between the atomic wave function
sured growth of the atoms’ kinetic energy with time for and the Floquet states [5]. Then, realizing that the mea-
different detunings. The initial diffusion rate is held sured diffusion at a given instant will be a mixture of
constant by choosing smaller pulse widths for smaller deeontributions from different atoms at different stages of
tunings. For the three displayed traces, the probabilitietheir time evolution, the diffusion coefficient can be written
for spontaneous emission per kick aje= 0.76 X 1072, asD. = > ;_,n(l — n)*D(k), whereD(k) is the time-
2.3 X 1072, and4.6 X 1072, respectively (with errors be- dependent diffusion coefficient in the absence of spon-
low 10%). The initial “classical-like” diffusion can clearly taneous emission. Note that we have neglected heating
be distinguished from the quantum diffusion. Althougheffects. This formula is the same as Eq. (6.12) in Ref. [4],
0.76 X 1072 seems to be a small scattering probability,which was derived there using more rigorous arguments.
one can see that there is considerable quantum diffusiodsing D(k) = Dy exp(—k/N™) [4], we arrive at
even in this case of large atom-laser detun(ifig /27 = N*D
4.0 GH2). It should be mentioned that Goetsch and Gra- D, = 1220 3)
ham [3] claim that Mooreet al. [8] might actually have I+ nN

seen decoherence due to spontaneous emission in th@ihere the parameter®, and N* denote the initial
phase modulated standing wave experiment. Note that Wgiffusion coefficient and the crossover time, respectively
cannot increase the detuning any further while maintainingy* > 1 has been used). Along similar lines, one can
a high chaoticity because of the limited power provided byg|so derive an expression for ttime-dependerdiffusion

the kicking beam laser diode. However, we would like tocoefficient and, by a summation over the number of kicks,
point out that we observe almost perfectly shaped expo-

nential momentum distributions (the signal to noise ratio
is typically 200:1) in spite of the nonzero quantum diffu-
sion rate. This appears to be contradictory at first sight, / f
as an exponential momentum distribution is the hallmark 5f . ®

of localization. But a similar behavior has been found /.

in the case of a phase modulated potential [5]. There it 4t . .
has been shown, based on analytic calculations, that in : doe

the case of a not too large quantum diffusion, the momen- Qst Yy

tum distribution remains essentially exponential. Experi- oy

mentally, delocalization reveals itself via energy diffusion 2t .
rather than a transition from exponential to Gaussian line 1%y
shapes. This is especially true when one considers a re- Y
alistic signal to noise ratio of the charge-coupled device
(CCD). The finite quantum diffusion, originating from ) )
less than one scattered photon over the whole time evolu- 0 0.02 0.04 0.06

tion, reflects the extreme vulnerability of quantum coher- il

ences, although the system we are dealing with is far from

the semiclassical regime. As we shall see, the underlying!G. 2. Quantum diffusion coefficiertD.. versus probability
classical chaoticity contributes much to this vulnerability. for SPontaneous scattering per kigk Experimental (circles)

and simulations (dots) results far = 12.5 andk = 2.1. The

Also displayed in Fig. 1 are the analytic results (see bef)arameters for the analytical (solid line) traces are the same as

low) and those of Monte Carlo wave function simulations.in Fig. 1. The dashed line shows the perturbative behavior, i.e.,
The latter were carried out by simply adding an interactiorgq. (3) without saturation.

=)
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the time dependence of the kinetic eney= (n>/2).  scattering rate; changes as well, which, however, results
The final results can be expressed$N) = ¢"D, + in a weaker dependence according.jo~ . The ex-
(1—-4¢")D. and E(N)=D.N/2+ [(Dy — D.)/ perimental results are depicted in Fig. 3 together with the
2][(1 — ¢™)/(1 — q)], whereg = (1 — n)exp(—1/N*).  analytically calculated dependence. Again, we find good
Note that Eq. (3) is not compatible with the results foragreement, which confirms—albeit indirectly—the'
a quantum-kickedparticle (which corresponds to the dependence of the quantum diffusion rate. The physical
present situation) found in [4]. There, a power-law de-significance of this dependence becomes obvious when
pendenceD.. ~ n'/3 is predicted for small noise levels. writing Eq. (3) as(D-./Dy)/n = N* ~ (x/k)? (neglect-
This discrepancy arises from the different decoherenceng saturation effects). This quantity can be considered,
processes considered. In Ref. [4], decoherence prdeosely speaking, a measure for “vulnerability of quantum
gresses gradually and is caused not only by momenturmoherences” (the noise induced decoherence divided by
diffusion but also by an associated spatial spreadinghe noise strength). Interestingly enough, the vulnerabil-
which accelerates the process. In the present situatioity is larger for a more classical system and also increases
however, there is no time for such an interplay becauswith an increasing degree of chaoticity in the correspond-
the coherence is destroyed by a single event of sponing C-DKR.
taneous emission. Returning to Figs. 1 and 2, we find At this point, it is natural to ask to what extent the
consistency between the measured data and the analytiGtbms behave as classical particles. Let us introduce
expressions forDy = 13 and N* = 14. These values a measure for classicality &6 = rz/t., where 1 is
imply a saturation energy in the absence of spontaneoufe Ehrenfest time and. = 1/7 is the lifetime for the
emission ofEg; = (n?/2)a = DoN*/2 =~ 90, which is  quantum coherencesC = 1 means that coherences are
roughly what one would infer from the experimental datadestroyed within the Ehrenfest time implying a classical-
displayed in Fig. 1. Note that the diffusion coefficient like behavior. Using the expressions in [4], we can write
predicted by the analytical formula given in [2] is consis-the classicality parameter & = n InQ27/k)/ In(x/2).
tent withDy = 13 for a « = 13.7, which is in reasonable As expected,C increases with a stronger coupling to
agreement with ouk = 12.5. the environment and with a decreasing Planck’s constant.

From Eqg. (3) we see that the quantum diffusion notSomewhat surprising is the fact that a higher degree of
only depends on the rate of decoherence as discussetaos results in a lower classicality. Although this is
in the previous paragraph, but also &g and N*. The not in contradiction with the arguments presented in the
main dependence is governed by the numerator, where@&stroduction (the more chaos, the stronger the quantum
the denominator is responsible for a saturationnper-  corrections make themselves felt), it seems strange that—
turbative regime [4]). The former critically depends on by increasingk —the quantum diffusion approaches the
the degree of (classical) chaosM8D, ~ «x*. We have classical behavior and yet the degree of classicality
measured this dependence by varying the pulse widthdecreases. This result reveals that there ® one-to-
from 330 to 580 ns while leaving the detuning unchangedne correspondence between the ratio quantum/classical
(86./27 = 3.4 GHz). This implies that the spontaneous diffusion and classicality [10]. In conclusion, we would
like to emphasize that by no means do we claim any
degree of chaos in the presented quantum system. A
coupling to an environment alone, i.e., without performing
the semiclassical limiti — 0, does not render quantum
dynamicsequalto classical dynamics. Even if the noise
level was so high that the energy diffusion looked
essentially classical, the Wigner function representing
the atomic dynamics would stilhot display sensitive
dependencaor would it look anything like a point in a
classical phase space. The often too lavishly used notion
of “driving a quantum system back to classical behavior”
only makes sense in the semiclassical limit.

This work was supported by the Royal Society of New
Zealand Marsden Fund and the University of Auckland
Research Committee.
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FIG. 3. The measured (circles) quantum diffusion coefficients ] )
D.. as a function of classical chaos parametefor & = 2.1 *Present address: FOM Institute for Atomic and Molecular
and 845/2m = 3.4 GHz. The lines show the analytical results Physics, Kruislaan 407, 1098 SJ Amsterdam, The
with (solid line) and without (dashed line) saturation. Netherlands.
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