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Delta Kick Cooling: A New Method for Cooling Atoms
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We present a new technique for cooling atoms below the photon recoil temperature. Free expansion
and a subsequent application of a pulsed potential narrows the momentum distribution provided the
atoms were initially well localized. Time scales for this cooling mechanism are shorter than those for
other techniques. We give the one dimensional results for quantum and classical distributions of atoms
initially held in an optical lattice or a dipole trap. The pulsed lattice potential is the same as that used
in the recent atom optics realization of the quantum delta kicked rotor. [S0031-9007(97)02699-9]

PACS numbers: 32.80.Pj, 03.65.Sq, 05.45.+b, 42.50.Vk

The application of various optical techniques to coolrequired for adiabatic [8,10], evaporative [11], Raman
atoms is an active and important discipline in atomic[12], or VSCPT [5] cooling schemes. Free expansion for
physics. The study of supercooled atomic gases or theomeus, followed by a single delta kick (actually of the
wave nature of matter via atomic optics relies on effi-order of a few hundred ns), will produce temperatures of
cient cooling schemes. The magneto-optic trap [1] and few times the recoil limit. Temperatures far below the
Sisyphus cooling [2] can initially cool the atoms to recoil limit can be obtained by applying DKC to atoms
sub-Doppler temperatures, while Raman cooling [3] andnitially held in an optical dipole trap. Ultimately the
velocity-selective coherent population trapping (VSCPT)cooling limit is set by spontaneous emission. Our analysis
[4,5] serve as all optical techniques for achieving subreis restricted to one dimension. DKC conserves phase space
coil temperatures; the recoil temperature in terms of theensity.
atom’s masan and photon momenturik is defined by Let us introduce the basic idea behind DKC in general
kzTwe/2 = (ik)*/2m. Evaporative cooling can dramati- terms, starting with classical considerations and then
cally increase the phase space density of the atoms. Tlpesenting a quantum argument. Let a single atom
culmination of this effort was the observation of Bose-be described by the Hamiltonial, = p?/2m + U(x),
Einstein condensation [6,7]. Optical lattices [8] and op-which determines the atom’s dynamics for< 0. At
tical dipole traps [9] are used both to hold atoms at fixedt = 0 we extinguish the potentid/(x) and subsequently
locations and to cool them further when coupled with adi-pulse it on again after a certain free expansion time
abatic [8,10], evaporative [11], or Raman [12] coolingT. Multiplying U(x) with a Gaussian pulse in time

schemes. exd—( — T)2/27-,2,], and assuming a short enough pulse
The cooling technique described in this Letter origi-width 7,, the Hamiltonian for > 0 becomes

nated from the study of chaotic systems. The quantum 2

delta kicked rotor (DKR) has provided insight into basic H, = 5—m + V()o@ —T), @

issues of quantum systems which exhibit chaotic behav-

ior in the classical regime [13—15]. It is normally un- \yhere v (x) is related toU(x) by V(x) = 27 7,U(x).
derstood that during the initial evolution of the rotor its Note that the kick strength can be varied by choosing
energy grows diffusively, be it in the classical or quantumg, appropriate pulse width. A classical ensemble of
domain. It may therefore be surprising that with a judi- 53t0ms localized around the bottom Bfx) will, upon its
cious choice of free expansion time and kicking Strengthextinction, expand and atoms with differing momentum
the energy of the rotor may be considerably reduced aftgy; separate in space. After a long enough tirife

the first kick. The condition for this to occur is an initial tne momentum of the atoms will essentially be a linear
localization of the rotor state in configuration space. function of x, p = mx/T, a fact exploited in time of

The work of Mooreet al. provided a bridge between fjight measurements. Assuming that after free expansion
the DKR and atom optics. In order to observe dynamicale atomic cloud is still confined to some regicty

localization they exposed ultracold Na atoms to a pulseqvhereU(x) can be approximated by a harmonic potential
optical lattice [14]. With this atomic optics realization of U(x) =~ mw?x2/2 within R, a kick will change the

the DKR one can envisage a new cooling technique fof,omentum of each atom hyp = dU/dx = x = p. By

atoms. The above mentioned initial condition for enerGysetting the pulse width to an appropriate value dependent

extraction.frpm the rotor is an initigl localization of the 4 the free expansion time, all the atoms will be nearly at
atom to within a fraction of one optical wavelength. We (o5t after the kick. This condition is fulfilled ik, ~ 1

show that atoms under these conditions can be furthgfnere
cooled by what we call the delta kick cooling (DKC)
technique. The time scale for DKC is shorter than that Ko = V27 T,0°T. 2
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There are two main reasons why the atoms’ velocitythe kicked rotor (with the difference that the delta kick oc-
after the kick will not be perfectly zero. First, the curs just once). It is amusing to note that the classical
ensemble has a finite initial spread in space with the effecitochasticity parameter that traditionally appears in the
that p = mx/T will be only approximately fulfilled, the chaos literature and which governs whether the system’s
approximation improving with better initial localization behavior will be chaotic or regular is just o [13—15].
and longer free expansion time Second, the kicking For optimal coolingk,, is close to one, which implies that
potential will only be harmonic within a finite region in the corresponding kicked rotor system is at the border be-
spaceR, which in turn limits the free expansion time  tween integrability and chaos [15].

There is obviously a trade-off faf, and as a rule of thumb Consider a minimum uncertainty Gaussian state within
one can state the following: The tinfeshould be chosen the lattice potential/ (x), (x2) = o2 and{p?) = h?/402.
such that the atomic cloud “covers” the regiBrbefore Let the atoms expand freely for a tinfe followed by the
applying the kick. delta kick. Immediately after the kick one can show that

The quantum mechanical argument basically yielddhe momentum spread is
the same results. The time evolution operatgr and e 2 5
the kick operatorUx are derived from the Hamiltonian (p*) = 4 Kam [1 — e—S(trEk?+ﬁ2T2kf/4cr§m2>]

Eq. (1), vielding Ur = exd—ip>T/2mh] and Ux = 407 8KT?
exd—iV/hr]. Starting with an atom in the ground state _ hka 224 T o) 3)
(a minimum uncertainty wave packet) 6f(x) which is 202 € ’

then shut off U broadengy (x)|?; the phase off(x) will

be a quadratic function of after free expansion. The An appropriate choice of and k. produces a reduction
following kick does not affect the magnitude ¢fx), but  in the momentum width. Figure 1 displays an example
influences its phase. Matching the corresponding phader Cs atoms(A = 852 nm) initially in the ground state
changeV (x)/ to the phase the atom has picked up duringof a potential with a depth ot/g = 10° Uwee (Uree =
free evolution again produces a near minimum uncertaint}izk,z/zm). After free expansion for 3.5ns, followed
wave packet, but as the width &f(x)|> has broadened by a kick with k; = 1.14 (7, = 190 ns), the final mo-

by a factorQ, |#(p)|? will be narrowed by the same mentum spread is reduced frofp?) = 15.8(fik;)* to
factor Q and the energy will be reduced roughly B¢.  (p?) = 2.48(hk;)>. Note that the optimak,, which is

As in the classical picture, the energy reduction will bereadily obtained by minimizing the expression given in
more pronounced with longer, with a limit set by the Eq. (3), is slightly larger than one, meaning that an op-
finiteness of the regiolR. One can derive a quantum timal kick will actually overcompensate the phase of the
expression for the matching condition as in the classicalvave function. This can be seen in Fig. 1(b), where the
case, which yieldsc, (1 + 1/w?T?) = 1, showing their phase of the final wave function is shown to exhibit a
equivalence for large enough small positive curvature at the center; also in Fig. 1(a) one

It is interesting to note that the reduction in the momen-can recognize small bumps in the final momentum distri-
tum distribution is formally similar to pulse compression bution, very similar to those of compressed optical pulses.
in optics with a fiber-grating pair [16]. There the phaseAnother subsequent kick will only marginally reduce the
of the optical pulse changes due to self-phase moduléinetic energy.
tion (analogous to the atoms’ free expansion shift), while A classical analysis predicts the same reduction in
matching this phase to that induced by anomalous grouthe momentum distribution width. Classically, the free
velocity dispersion of a grating pair (analogous to theexpansion followed by the delta kick is just the standard
kick) produces the compression.

As a first example, and as an illustration of these gen- @ 5 ()
eral statements we will now apply DKC to atoms ini-
tially held in an optical lattice [8,10], which for one
dimension is intimately connected to the kicked rotor
appearing in the quantum chaos literature [14]. Two
counterpropagating laser beams (wave numhberand
frequency w;) produce a standing wave. We assume
a two level atom (transition frequency,), and a de- oz
tuning A = wy — w; sufficiently large compared to the 6 -8
natural linewidth. The standing wave produces a periodic
potential of the formU(x) = (—Uy/2) co42k;x), where  FIG. 1. (a) Initial momentum distribution (dashed curve) for
Uy = hQ2/4A = 1Q./4 and Q is the Rabi frequency Cs atoms with o, = 2.0 X 10724, (p*) = 15.8(fik,)>, and
for a single beam. With these definitions, the frequencyfinal distribution [solid curve(p?) = 2.48(/ik,)’]. (b) Phase

. - - . e of the wave function after free expansion (dashed curve) and
in the harmonic approximation becomes= +/ rec Letr, after kick (solid curve), as well as the periodic potential (dot-

wherew,.. = fikj/2m. GivenU(x) one can write down dashed curve). Arrows indicate spatial FWHM before and after
V(x) and Eq. (1) becomes the celebrated Hamiltonian fofree expansion.
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map [15]. Starting with a phase space probability densityroximation). Figure 3 displays the results of a numeri-
characterized by the same widths as thos@xtk)|> and  cal calculation for an optical lattice with a well depth
| (p)|?, followed by free expansion fof and the delta of Uy = 103U,.. Instead of optimizing the expansion
kick, the resulting momentum width is again given bytime and kick strength for each initial temperature, we
Eq. (3). Figure 2 displays the evolution of the classicalshow the final temperatures for three different but fixed
phase space density, from its initial value, to after freesets of parameters, which correspond to the optimized
expansion, and then after the kick. The free expansionalues for initial temperatures @07 .., 30T, and be-
stretches the distribution in the direction, but leaves low 15T (Twec = 200 nK for Cs). Not surprisingly, the
the energy of the ensemble unchanged. The kick theaptimized free expansion time is longer for smaller ini-
“rotates” the elongated distribution by an angle in phasdial temperatures: 2.2, 2.7, and 3. The correspond-
space, which minimizes the final energy. The aboveng pulse widths are 290, 240, and 190 ns; the degrees of
mentioned overcompensation is displayed by the fact thaivercompensatior, are 1.06, 1.11, and 1.14. In Fig. 3
the long axis of the final distribution is not strictly parallel the initial lattice temperature determines the Bolzmann
with thex axis. This reduces the energy in the tails whichdistribution of the population of states. A value®f= 0
arise from a deviation of the cosine potential from theimplies all atoms are in the ground state of a lattice well.
harmonic potential for largek values. A longer free Extinguishing the lattice leaves atoms with a net kinetic
evolution time would make the tails more pronounced.,energy and associated translational temperature which is
thereby increasing the energy. then reduced by the action of the kick. We also note that
In the quantum calculation up to now we have con-adiabatic cooling produces lower temperatures than DKC.
sidered only the lattice ground state. This is equivalenThe time scale for DKC is much shorter.
to neglecting an initial thermal excitation of the atoms As discussed above, the condition for cooling atoms by
held in the lattice. Assumed in what follows are CsDKC relies on their initial localization in configuration
atoms thermally distributed in the modes of the trap-space to a fraction oR. Traditional optical dipole
ping potential. For the temperatures used the populateaps [9] may also serve as a means of initially holding
states are reasonably approximated by those of a hathe atoms. We will show that the lowest temperatures
monic oscillator. We start with an initial density matrix achievable via DKC utilize dipole traps. Consider Na
p = e /b7 /7 whereH is the harmonic oscillator ap- atoms moving in the transverse direction with respect to a
proximation of the lattice Hamiltonian arigithe partition  red detuned laser beam, which is focused to a waist size
function. The final density matrix is calculated by well w = 12 um, providing a potential of the fornt/(x) =
known formulas using the appropriate free evolution andJo[1 — exp(—2x2/w?)] with a well depth ofUy/kp =
the kick operator{J/» and Uk, respectively, where it/x =~ 2 MK = 830T,c (Trec = 2.4 uK for Na). The atoms
the true lattice Hamiltonian is used (not its harmonic ap-are assumed to be thermally distributed in the modes of
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2t FIG. 3. Final versus initial temperature for Cs atoms in an
) ) ) ) ) ) optical lattice; well depth ofUy = 10°U,.. No temperature
6 -4 2 0 2 4 6 change (solid curve) and translational temperature after instan-
normalized position taneous elimination of the lattice (dot-dashed curve); the two

curves will coincide for large temperatures. DKC results opti-
FIG. 2. Evolution of the classical phase space density: initiaimized for initial lattice temperatures 607,.. (curvea), 30T .
(top), after free expansion (middle), and after the kick (bottom).(curve b), and less than5T,.. (curvec, classical analysis dot-
Same parameters as in Fig. 1. ted curve). Adiabatic cooling [8] (curva).
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the harmonic approximation of the trapping potential, thephase will match the curvature of the kicking potential if
calculation of the final temperature being essentially theone chooses, for example, a beam waist of4 and a
same as the one described in the lattice section. Figuregbtential depth ofUy/kz = 0.9 mK (1 W peak power,
displays the results, again for three different but fided AA = 4.8 nm) and a pulse width of, = 3.70 us. This
and 7, obtained by minimizing the final temperature for results in cooling the atoms down to a temperature of
initial temperatures ofl0T ., 17w, and below0.17 .. 5 X 10 3T.. For this example the pulse still reasonably
In the 10T, case, a free expansion time of 27u4 and approximates a delta kick as the relative displacement of
a pulse duration of, = 850 ns reduces the temperature the atoms during the kick is of the order 2. The
down to T, while for an initial temperature of average probability for atomic excitation i§ 3, indicat-
[17], a free expansion time of 5&s and pulse time of ing that scattering of DKC light will ultimately limit the
7, = 385 ns reduces the temperature2d X 1072T,..  expansion time: LongeF require larger beam waists and
For initial temperatures less than 7., a free expansion thus, as the power is limited, a smaller detuning thereby
time of 94us and pulse time ofr, = 224 ns, DKC increasing the photon absorption rate. It has yet to be de-
reduces the temperature20X 1073 Tr.. termined whether longer pulses might be suited for DKC
One could envisage other similar DKC scenarios.as well, which would somewhat relax the above stated
Reaching ultralow temperatures in the conventional dipoleestrictions. We note that specifically designed kicks, in
trap described above depends on the difficult task ofhe spirit of the work of Mielnik [18], may provide other
effectively Raman cooling atoms within a strong potentialinteresting examples of wave function manipulation.
[17]. This could possibly be overcome by using a more The kicked rotor is a system that has always been
novel, blue detuned dipole trap which confines the atomassociated with energy gain when viewed classically or
in a free-space-like environment, where efficient Ramamuantum mechanically. As shown in this Letter, a state
cooling has recently been demonstrated [12]. The trajnitially well localized in position space may have its
could be eliminated and after a fixed time a pulse frommomentum distribution narrowed. Atoms localized in
another beam, of appropriate size and intensity, wouldingle wells of an optical lattice can be cooled to near
flash on. Still another possibility would consist of using T,.. by eliminating the lattice for a fews, then pulsing
a traditional dipole trap as described, but increasing th& on again for some hundreds of ns. Optical dipole traps
region R by using a second kicking beam with a largerused similarly, but with free expansion times in the order
beam waist. Consider for example a red detuned opticadf 100 us, may ultimately cool atoms to belol® > Ty..
dipole trap for Na atoms with a single beam focused to a This work was supported by the Swiss National Sci-
12 um waist, a potential well depth dff,/kz = 2 mK,  ence Foundation, the Royal Society of New Zealand
with the atoms afl,... The trap is then shut off and the Marsden Fund, and the University of Auckland Research
atoms expand for a longer period of time, say J48  Committee.
A second beam is then pulsed on. The free evolution
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