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Mixing internal and external atomic dynamics in the kicked rotor

Hubert Ammann and Nelson Christensen
Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

~Received 4 August 1997!

A modified atomic version of the quantumd-kicked rotor is considered. In contrast to previous studies, we
do not eliminate the excited-state amplitude. This gives rise to a mixing of internal and translational atomic
dynamics. A semiclassical argument suggests that this could conceivably result in momentum delocalization.
However, our analysis shows that the added complexity fails to destroy dynamical localization.
@S1063-651X~98!01301-4#

PACS number~s!: 05.45.1b, 72.15.Rn, 03.65.Bz
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I. INTRODUCTION

In spite of the well-known arguments supporting the no
existence of genuine quantum chaos@1#, a few models with
positive Lyapunov exponents have been reported. An
ample is the many-particle quantum system considered
Parmenter and Yu@2#. One peculiarity of their model is the
functional dependence of a certain effective Hamiltonian
the wave function. This situation presumably does not oc
in more elementary single-particle problems. We note, ho
ever, that quantum chaos has also been reported in com
tively simple models, for example, in Weigert’s cat map@3#,
but there the kinetic energy of the particle grows expon
tially with time and many would consider such an u
bounded explosion as unphysical. Is quantum chaos co
quently possible only in systems that possess an am
complexity? What degree of complexity is necessary in or
for quantum chaos to occur?

The answer to these questions is not known; it is not e
clear whether they are the right questions to ask. If they
then it is certainly still worthwhile to look for quantum chao
in systems with a modest degree of complexity. The simp
classical chaotic system is indisputably thed-kicked rotor
~DKR! @4#. The fact that its quantum counterpart shows d
fusion in momentum space only until the so-called quant
break time but dynamical localization afterward means t
only a limited number of Floquet states are involved in t
dynamics, which in turn entails quasiperiodicity and er
lack of chaos. Dynamical localization is therefore oft
termed ‘‘suppression of chaos,’’ implying that there wou
be chaos if there was not localization. We do not agree w
this notion, if only in the sense that delocalization is certai
necessary~but by no means sufficient! for chaotic behavior
in quantum DKR models. It has been shown that delocal
tion can be achieved by adding noise@5# to the system, but
this introduces randomness by itself and is as such not in
spirit of classical chaos theory. More impressive is the r
toration of diffusive energy growth by a periodic, incomme
surate modulation of the kick strength@4,6#. However, this
still does not introduce sensitive dependence~as can be seen
for example, from the time reversibility of the dynamics in
computer experiment!.

In this paper we will add some more complexity to t
quantum DKR without sacrificing the strict periodicity of th
driving force and without introducing noise. The atomic r
571063-651X/98/57~1!/354~5!/$15.00
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alization of the quantum DKR@7# offers such a possibility if
one takes the dynamics of the internal atomic state into
count. So far, in all related work, the excited-state populat
of the atom was assumed to be negligible by virtue of a la
laser-atom detuning. One is then left with the wave funct
for the atomic ground state alone and the internal and ex
nal dynamics are decoupled. It is well known, however, t
in general the electronic and translational degrees of freed
of an atom moving in an optical potential cannot be se
rated from each other@8#. This mixing gives rise to the ex
tremely rich and beautiful behavior observed with atoms s
pended in near-resonance light fields. In order to gain so
insight into the effect of such mixing on the dynamical l
calization, we have chosen to study a modification of
atomic realization of the DKR, one that is simple enou
such that the Floquet operator can be constructed ana
cally.

We will consider a two-level atom in a classical standi
wave, where the latter is turned on and off periodically~a
sequence of short square pulses! and spontaneous emission
neglected. The analysis is therefore similar to atomic be
deflection in optical standing waves@9#. Then, pictured semi-
classically, the effect of a ‘‘kick’’ on the atom depends n
only on its position, as in the DKR, but also on its intern
state. If the time evolution of the latter does not have
same periodicity as the pulse sequence~or if it is not periodic
at all, perhaps even irregular!, then one would expect this
situation to be comparable to a modulated DKR. Therefo
delocalization and a higher degree of dynamical irregula
would not come as a surprise.

The structure of this paper is as follows. In Sec. II w
introduce our model of a two-level atom within a period
cally modulated one-dimensional optical lattice. The resu
for a typical example are presented in Sec. III. A comparis
with the DKR is given in Sec. IV. Finally, a summary an
some ideas for further studies are contained in Sec. V.

II. ATOMIC DYNAMICS

Let us consider a two-level atom with ground stateug&,
excited stateue&, and transition frequencyv0 . In order to
simplify the description of the atom in the light field w
change to the interaction pictureu g̃ &5exp(ivt/2)ug& and
u ẽ &5exp(2ivt/2)ue&, with v being the frequency of the ex
ternal field. Further, we assume the detuning to be smaD
354 © 1998 The American Physical Society
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57 355MIXING INTERNAL AND EXTERNAL ATOMI C . . .
5v2v0!v0 . Neglecting spontaneous emission, the dip
and rotating-wave approximations yield the familiar Sch¨-
dinger equation@8#

i\
]c̃

]t
5S p2

2m
2

\D

2
s32

\v1~x, t !

2
~s11s2! D c̃,

c̃5S c̃e~x, t !

c̃g~x, t ! D , ~1!

wherep2/2m is the kinetic energy associated with the atom
center-of-mass momentump and the term withv1(x,t)
52V cos(kx)f(t) describes the coupling between the ato
and a prescribed classical standing wave,V is the Rabi fre-
quency corresponding to a single traveling wave,k5v/c is
the wave number, and the functionf (t) accounts for turning
the external field on and off. The time dependence off (t) is
taken to be a periodic sequence of square pulses of dura
t and pulse spacingT such thatf (t)51 for mT<t,mT
1t (m50,1,2,... ) andf (t)50 otherwise. We further restric
ourselves to the case of short interaction timest!1/kv,
where v is an upper bound for the velocity that the ato
acquires in this course of time. This condition implies th
during the interaction time the atom does not move appre
bly compared to the laser wavelength and the operator of
kinetic energy in Eq.~1! can be discarded~Raman-Nath ap-
proximation! @9#. Under this condition, it is possible to ex
plicitly calculate the operatorsÛI andÛF , which specify the
evolution of the atomic state during the interaction time a
the free atomic evolution between the light pulses, resp
tively. The Floquet operatorÛ is then simply given byÛ
5ÛF•ÛI . In order to constructÛI , we proceed as follows
At t50, the statec̃(0) is projected onto the eigenstates
the Hamiltonian in Eq.~1! neglecting the kinetic-energy term
~‘‘dressed states’’! @8,10#. As time evolves, the amplitudes i
this basis simply pick up a phase that is proportional to
interaction time and the corresponding eigenenergy. N
that both the eigenvectors and the eigenenergies are pos
dependent, although the variablex appears just as a param
eter. Then we project the statec̃(t) back onto the basis in
the interaction picture. The procedure is straightforward a
yields for the matrix elements of the operatorÛI

^ẽ uÛI uẽ &5cosS Vefft

2 D1 i
D

Veff
sin S Vefft

2 D , ~2a!

^ẽ uÛI ug̃ &5 i
v1

Veff
sin S Vefft

2 D , ~2b!

^g̃ uÛI ug̃ &5^ẽ uÛI uẽ &, and^g̃ uÛI ue&5^ẽ uÛI ug̃ &. The ef-
fective Rabi frequency is given byVeff(x)5Av1

2(x)1D2.
Note that the spatial period of the diagonal elements ofÛI is
equal tol/2, whereas for the off-diagonal elements it isl.
This implies that a stated(p2p0)ug̃ & only couples to states
d(p2p022 j \k)ug̃ & andd„p2p02(2 j 11)\k…uẽ &, where
j is an integer~the same is true ifẽ↔g̃ !. The free evolution
operatorÛF is diagonal and can be easily written down
the momentum representation
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^ẽ uÛFuẽ &5exp@2 in2v r~T2t!1 iD~T2t!/2#, ~3a!

^g̃ uÛFug̃ &5exp@2 in2v r~T2t!2 iD~T2t!/2#, ~3b!

where we have setn5p/\k and the recoil frequencyv r , is
given byv r5\k2/2m.

Equations~2! and ~3! fully determine the time evolution
of an initial atomic state, although it is not possible to wr
down the general solution for an arbitrary number of perio
T analytically. After a rescalingt/T, we are left with four
model parameterst/T, v rT, VT, andDT. In order to facili-
tate the comparison with the DKR, we change to the se
parameters

a5t/T, ~4a!

k̄ 58v rT, ~4b!

kg54av rV
2T2/AV21D2, ~4c!

b5V/D. ~4d!

Herea andb are parameters that do not appear in the DK
model, where the pulse is assumed to be ad kick (a→0)
and the detuning in the atomic realization of the DKR
taken to be much larger than the Rabi frequencyb!1. It is
easy to check that fora,b!1 our model reduces to th
system considered in Ref.@7# if one replacesn by n/2 ~in the
DKR literature n corresponds to an atomic momentump
5n2\k!. We will see below that with the definition of th
generalized ‘‘kicking strength’’kg of Eq. ~4c!, the energy
diffusion at an early stage of the time evolution is propo
tional to kg

2 as is the case for the DKR. Note finally that
the new notation the condition for the Raman-Nath appro
mation readsn!8/a k̄ , which can be fulfilled for anyn by
choosinga small enough.

III. RESULTS FROM A TYPICAL EXAMPLE

We have calculated the time evolution of a given init
atomic state numerically by using Eqs.~2! and ~3! and ap-
plying a fast Fourier transform algorithm. In all our calcul
tions, the momentum axis was descretized in steps of
photon momentum\k. The behavior of the system was an
lyzed for a broad range of parameter values. As an illus
tion, consider he case where we havekg511, k̄ 51.5, a
50.005, andb50.13. Note thatkg dictates the degree o
classical chaos in the limiting casea,b!1. Momentum dif-
fusion is obtained only for large enough kicking strength
such that the corresponding phase-space structure is glo
chaotic. As is well known, in the classical version of th
DKR the last Kolmogorov-Arnold-Moser boundary is d
stroyed forkg*1. Further, the parameterk̄ has the usual
meaning of an effective Planck constant and the pulse w
a is set to be small enough to guarantee the validity of
Raman-Nath approximation. Finally, the parameterb is a
measure of the degree of internal atomic excitation and
chosen in this representative example to yield an interm
ate upper-state population.

Initially, we assume the atom to be in the internal grou
state. Its translational state is taken to be a coherent Gaus
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356 57HUBERT AMMANN AND NELSON CHRISTENSEN
wave packet~on the above-mentioned grid in momentu
space!, which is centered aroundn50 with a full width at
half maximum ofDn57. Figure 1 displays the upper-sta
probability as a function of the number of kicks. As can
seen, the probability fluctuates around 20% and create
situation that could conceivably have a chance of destroy
localization, at least according to the semiclassical reaso
in the Introduction. However, it turns out that dynamic
localization persists despite the mixing of the internal a
external dynamics. Figure 2 illustrates the situation after
evolution of the wave function through 1000 kick and fr
evolution cycles. As can be clearly seen, both the ground
excited momentum distributions have become exponenti
localized. Apparently, our semiclassical arguments were
simplistic.

The transition from momentum diffusion to localization
displayed in Fig. 3. We have plotted̂n2/2& for the ground
and the excited state as well as the total kinetic energy of
atom as a function of time. For all cases the moment

FIG. 1. Probability of the two-level atom occupying the excit
state as a function of the number of kick and free evolution cyc

The parameters used werekg511, k̄ 51.5,a50.005, andb50.13.

FIG. 2. Ground- and excited-state momentum probability dis
butions; both are exponentially localized. For convenience
excited-state distribution was displaced down by the amount i
cated by the arrow on the upper right.
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width rapidly increases at an early stage of the time evo
tion, but localization eventually sets in. To conclude, w
mention that the contribution of the excited state to the to
kinetic energy is almost as large as the one from the grou
state wave function, although the upper-state probability
only 20%. Therefore, the upper-state momentum distribut
is, on the average, less localized than its ground-state c
terpart.

IV. COMPARISON WITH THE d-KICKED ROTOR

While our model is strictly not a direct analog of th
DKR, a comparison can still be made. As was already m
tioned, the system reduces to the DKR whena,b!1, so one
can compare our model to the DKR by examining the kine
energies at an equivalent value of kick strengthkg . Because
our model tracks the behavior of a two-level atom, with
wave function that is a superposition of ground and exci
states, it has no direct classical counterpart. The DKR li
provides us with a means to connect our model to the c
sically chaotic regime.

In Fig. 4 we have plotted the total kinetic energy vers
the number of kicks for the parameter setkg57, k̄ 51, a
50.005, and three different values ofb. The initial condi-
tions were the same as in Sec. III. Trace 1 hasb51025, so

s.

-
e
i-

FIG. 3. Kinetic energy for the ground state and the excited s
vs the number of kicks:~a! 60 kicks and~b! 1000 kicks. The top
trace is the total kinetic energy.
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57 357MIXING INTERNAL AND EXTERNAL ATOMI C . . .
small that the system is in fact very close to the DKR;
excited-state probability is less than 1027. This DKR-like
case can now be compared with situations where the in
play between electronic and translational degrees of free
plays a more significant role. Forb50.04 ~trace 2!, the en-
ergy growth closely follows the one corresponding to neg
gible excitation during the first;70 kick and free evolution
cycles. This time is needed for the upper-state populatio
build up ~not shown! before it saturates at approximate
15%, while fluctuations similar to the ones displayed in F
1 persist. For large values ofb ~trace 3,b510!, the excited-
state probability reaches a value slightly above 50% ri
after the first kick. Consequently, the energy in Fig. 4 de
ates from the DKR behavior much earlier than observed
the previous case of medium excitation. However, in spite
these deviations, one can still distinguish between a mom
tum diffusion and a localization regime even for this case
strong mixing. One further aspect is noteworthy for this l
ter case. If the degree of excitation is large, we have noti
that the upper-state probability always fluctuates quite err
cally around 50% and that the corresponding autocorrela

FIG. 4. Total kinetic energy vs the number of kicks forkg57,

k̄ 51.0, anda50.005: ~a! 150 kicks and~b! 1000 kicks. Traces
1–3 haveb51025, 0.04 and 10, respectively. The dashed line
the classical DKR energy diffusion.
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functions decay rapidly. This is not true for intermediate
low excitation.

While the details of the traces displayed in Fig. 4 depe
critically on the model parameters chosen, we can state
following with respect to a comparison of our two-level sy
tem with mixed dynamics with the conventional DKR. Ne
ther the diffusive energy growth rate nor the saturation le
depends markedly on the degree of internal atomic exc
tion. This implies that the formula for the diffusion rat
which is well established within the DKR model, is app
cable to the model considered here too. We finally wo
like to point out that a saturation of the two-level atom
momentum spread was not observed when the quantum r
nance condition was fulfilled@11#. For k̄ an integer multiple
of 4p, the kinetic energy grows quadratically with time ju
as with the quantum DKR. However, this result is of mo
erate relevance for an atomic system, as the quadratic
crease is expected to be absent if the restriction to inte
values of\k on the momentum axis is lifted, which for a
atom moving in one dimension would be the proper thing
do @7#.

It is interesting to note that decoherence between
ground and excited state alone~i.e., without affecting the
coherence of the translational degree of freedom! destroys
localization. As a first naive modification of our model, w
randomly changed the phase between the two internal s
after every kick. Then the internal degrees of freedom m
act as an ‘‘environment’’ coupled to the translational motio
Our preliminary calculations indeed indicate that if the ra
dom phase changes are sufficiently large then the momen
diffusion mimics the classical evolution. The effects of d
coherence on this two-level system are a topic of contin
further research.

V. CONCLUSION

In summary, we have analyzed the behavior of a tw
level atom in a time-dependent classical standing wa
where the internal atomic dynamics have been taken
account. For negligible population of the upper state,
model reduces to the previously investigated atomic real
tion of the DKR@7#. By adding this extra degree of freedom
semiclassical arguments and an analogy to the modul
DKR @4,6# suggest that the dynamical localization observ
in the quantum DKR could possibly be destroyed and o
could thus hope for more irregularity in the correspondi
dynamics. However, our numerical studies have shown
the localization mechanisms are apparently more robust
anticipated. Irrespective of the atomic initial conditions, t
interaction strength, and the degree of internal excitati
one always observes the characteristic exponential enve
for the momentum probability distribution. This is somewh
startling when one considers the quite erratic time dep
dence of the electronic excitation and the fact that the fo
experienced by an atom in the light field depends on
internal state. Surprisingly, the additional complexity of
atom with internal dynamics fails to destroy dynamical l
calization.

The work presented in this paper could be extended do
a number of different avenues. It would be interesting to
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358 57HUBERT AMMANN AND NELSON CHRISTENSEN
whether the abolition of the Raman-Nath approximation a
the retention of nonadiabatic terms essentially changes
of our results. Also interesting would be studies on the eff
of optical polarization gradients and the inclusion of mo
realistic atomic models with complex hyperfine structure a
corresponding Zeeman sublevels. However, we suspect
regardless of these possible modifications, a sensitive de
et

ev

m
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ny
t

d
at
n-

dence on initial conditions, a characteristic trait of classi
chaos, will still be absent.
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