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Mixing internal and external atomic dynamics in the kicked rotor
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A modified atomic version of the quantuskicked rotor is considered. In contrast to previous studies, we
do not eliminate the excited-state amplitude. This gives rise to a mixing of internal and translational atomic
dynamics. A semiclassical argument suggests that this could conceivably result in momentum delocalization.
However, our analysis shows that the added complexity fails to destroy dynamical localization.
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I. INTRODUCTION alization of the quantum DKIR7] offers such a possibility if
one takes the dynamics of the internal atomic state into ac-
In spite of the well-known arguments supporting the non-count. So far, in all related work, the excited-state population
existence of genuine quantum chda$ a few models with  of the atom was assumed to be negligible by virtue of a large
positive Lyapunov exponents have been reported. An exiaser-atom detuning. One is then left with the wave function
ample is the many-particle quantum system considered bfpr the atomic ground state alone and the internal and exter-
Parmenter and Y{2]. One peculiarity of their model is the nal dynamics are decoupled. It is well known, however, that
functional dependence of a certain effective Hamiltonian orn general the electronic and translational degrees of freedom
the wave function. This situation presumably does not occuff an atom moving in an optical potential cannot be sepa-
in more elementary single-particle problems. We note, howtated from each othe]. This mixing gives rise to the ex-
ever, that quantum chaos has also been reported in compat&€mely rich and beautiful behavior observed with atoms sus-
tively simple models, for example, in Weigert's cat ni&, pended in near-resonance light fields. In order to gain some
but there the kinetic energy of the particle grows exponeninsight into the effect of such mixing on the dynamical lo-
tially with time and many would consider such an un- calization, we have chosen to study a modification of the
bounded explosion as unphysical. Is quantum chaos consatomic realization of the DKR, one that is simple enough
quently possible only in systems that possess an ampfeuch that the Floguet operator can be constructed analyti-
complexity? What degree of complexity is necessary in ordefally.
for quantum chaos to occur? We will consider a two-level atom in a classical standing
The answer to these questions is not known; it is not eveivave, where the latter is turned on and off periodicaty
clear whether they are the right questions to ask. If they areséquence of short square pulsasd spontaneous emission is
then it is certainly still worthwhile to look for quantum chaos Neglected. The analysis is therefore similar to atomic beam
in systems with a modest degree of complexity. The simplesteflection in optical standing wavg]. Then, pictured semi-
classical chaotic system is indisputably theicked rotor ~ classically, the effect of a “kick” on the atom depends not
(DKR) [4]. The fact that its quantum counterpart shows dif-only on its position, as in the DKR, but also on its internal
fusion in momentum space only until the so-called quantun$tate. If the time evolution of the latter does not have the
break time but dynamical localization afterward means thaame periodicity as the pulse sequetumif it is not periodic
only a limited number of Floquet states are involved in theat all, perhaps even irregularthen one would expect this
dynamiCS, which in turn entails quasiperiodicity and ergoSituation to be Comparable to a modulated DKR. Therefore,
lack of chaos. Dynamical localization is therefore oftendelocalization and a higher degree of dynamical irregularity
termed “suppression of chaos,” implying that there would Would not come as a surprise.
be chaos if there was not localization. We do not agree with The structure of this paper is as follows. In Sec. Il we
this notion, if only in the sense that delocalization is certainlyintroduce our model of a two-level atom within a periodi-
necessarybut by no means sufficienfor chaotic behavior cally modulated one-dimensional optical lattice. The results
in quantum DKR models. It has been shown that delocalizafor a typical example are presented in Sec. lll. A comparison
tion can be achieved by adding noi&d to the system, but with the DKR is given in Sec. IV. Finally, a summary and
this introduces randomness by itself and is as such not in thgome ideas for further studies are contained in Sec. V.
spirit of classical chaos theory. More impressive is the res-
toration of diffusive energy growth by a periodic, incommen- [l. ATOMIC DYNAMICS
surate modulation of the kick strengf#,6]. However, this
still does not introduce sensitive dependefa®can be seen, ) i
for example, from the time reversibiFI)ity of the dynamics in ae_xcngd statge), a_nd. transition freque.ncy)o. l.n ord_er to
computer experimeit simplify the des.crlptlon. of the atom in the light field we
In this paper we will add some more complexity to the change to the interaction picturiey )=exp(wt/2)|g) and
quantum DKR without sacrificing the strict periodicity of the | e ) =exp(—iwt/2)|e), with » being the frequency of the ex-
driving force and without introducing noise. The atomic re-ternal field. Further, we assume the detuning to be stall

Let us consider a two-level atom with ground stgge,
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=w—wy<wqy. Neglecting spontaneous emission, the dipole (e |0F|"é y=exd —inw(T— 1) +iA(T-7)/2], (33
and rotating-wave approximations yield the familiar Sehro
dinger equatiori8] (@ |UE[g y=exd —in%w(T— ) —iA(T-17)/2], (3b)
. (9?0 p? #AA hoy(x, 1) . |\~ where we have sat=p/fik and the recoil frequency, , is
I —=\om™ 3 93~ 5 (0 Fto )| given by w, =7#k?/2m.
Equations(2) and (3) fully determine the time evolution
~ of an initial atomic state, although it is not possible to write
U= (ﬁ{’e(x’ v , (1) down the general solution for an arbitrary number of periods
hy(x, 1) T analytically. After a rescaling/T, we are left with four

model parameters/T, o, T, QT, andAT. In order to facili-
wherep?/2m is the kinetic energy associated with the atomictate the comparison with the DKR, we change to the set of
center-of-mass momenturp and the term withw,(X,t) parameters
=2 coskX)f(t) describes the coupling between the atom

and a prescribed classical standing waeis the Rabi fre- a=1/T, (43
guency corresponding to a single traveling wake,w/c is _

the wave number, and the functid(t) accounts for turning k=8w,T, (4b)
the external field on and off. The time dependencé(of is

taken to be a periodic sequence of square pulses of duration kg=4aw Q*T?O+ A%, (40
7 and pulse spacing such thatf(t)=1 for mT<t<mT

+7(m=0,1,2,...) and(t) =0 otherwise. We further restrict B=QIA. (40)

ourselves to the case of short interaction timesl/ko, .

whereu is an upper bound for the velocity that the atom Heré« andg are parameters that do not appear in the DKR
acquires in this course of time. This condition implies thatM0del, where the pulse is assumed to bé kick (a—0)
during the interaction time the atom does not move apprecig@"d the detuning in the atomic realization of the DKR is
bly compared to the laser wavelength and the operator of thiken to be much larger than the Rabi frequepey1. It is
kinetic energy in Eq(1) can be discarde(Raman-Nath ap- €aSy t0 check that for, S<1 our model reduces to the
proximation [9]. Under this condition, it is possible to ex- system considered in Réfr] if one replaces by n/2 (in the
plicitly calculate the operatond, andU, which specify the DKR Ilteraturer_1 corresponds to an atomic momentymn
evolution of the atomic state during the interaction time and:nZﬁk).' We“V\."” see below t,r,\at with the definition of the
the free atomic evolution between the light pulses, r(;specgener""l'Zed kicking strength”xy of Eq. (40), the energy

. ) . . diffusion at an early stage of the time evolution is propor-
tively. The Floguet operatod s then simply given byJ tional to x2 as is the case for the DKR. Note finally that in
=Ug-U,. In order to construct);, we proceed as follows. 9

) ) ) the new notation the condition for the Raman-Nath approxi-
At t=0, the state(0) is projected onto the eigenstates of

the Hamiltonian in Eq(1) neglecting the kinetic-energy term mhat|or_1 readsn<<"8/ak, V\r']h'Ch can be fulfilled for any by

(“dressed states)'[8,10]. As time evolves, the amplitudes in choosinga smafl enough.

this basis simply pick up a phase that is proportional to the

interaction time and the corresponding eigenenergy. Note Il RESULTS FROM A TYPICAL EXAMPLE

that both the eigenvectors and the eigenenergies are position e have calculated the time evolution of a given initial

dependent, although the variableappears just as a param- giomic state numerically by using Eq®) and (3) and ap-

eter. Then we project the sta{7) back onto the basis in plying a fast Fourier transform algorithm. In all our calcula-

the interaction picture. The procedure is straightforward andions, the momentum axis was descretized in steps of the

yields for the matrix elements of the operatdy photon momentunik. The behavior of the system was ana-
lyzed for a broad range of parameter values. As an illustra-

~ =y [ Qent) A [ Qegr tion, consider he case where we hawg=11, k=1.5, &
(e |U,[e)=co +i sin , (28 B )
2 Qo 2 =0.005, andB3=0.13. Note thatx, dictates the degree of
classical chaos in the limiting cage 8<1. Momentum dif-
. w; Qefr fusion is obtained only for large enough kicking strengths,
(e |U\lg)=i o sin ( 5 ) (2b)  such that the corresponding phase-space structure is globally
eff

chaotic. As is well known, in the classical version of the
— L = o~ N DKR the last Kolmogorov-Arnold-Moser boundary is de-
(9 |p||g >=,<'é Uife), a'f‘d<9 [Uile)=(e |U\[g ). The Ef' stroyed forky=1. Further, the parametdr has the usual
fective Rabi frequency is given bfei(X)=vw1(X)+ A% meaning of an effective Planck constant and the pulse width
Note that the spatial period of the diagonal elementdpls 4 is set to be small enough to guarantee the validity of the
equal tox/2, whereas for the off:diagonal elements iNls  Raman-Nath approximation. Finally, the parameteis a
This implies that a staté(p—po)[g ) only couples to states measure of the degree of internal atomic excitation and is
8(p—po—2j#k)[g ) and8(p—po— (2j +1)%k)[€ ), where  chosen in this representative example to yield an intermedi-
j is an integelthe same is true €—0). The free evolution ate upper-state population.

operatorUg is diagonal and can be easily written down in Initially, we assume the atom to be in the internal ground
the momentum representation state. Its translational state is taken to be a coherent Gaussian
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FIG. 1. Probability of the two-level atom occupying the excited b
state as a function of the number of kick and free evolution cycles. 600k (b)
The parameters used wexg=11, k=1.5, =0.005, and3=0.13.
wave packet(on the above-mentioned grid in momentum
spacg, which is centered around=0 with a full width at & a00f
half maximum ofAn=7. Figure 1 displays the upper-state N: &
probability as a function of the number of kicks. As can be v _ A ‘ Ny
seen, the probability fluctuates around 20% and creates a { ‘4 . ;x ‘ i_ AL TH SR
. . . k £ IR A g YR A \ L
situation that could conceivably have a chance of destroying 200 W e FOT W 1
localization, at least according to the semiclassical reasoning ! ¢ 'y
in the Introduction. However, it turns out that dynamical
localization persists despite the mixing of the internal and /
external dynamics. Figure 2 illustrates the situation after the % 250 300 750 1000
evolution of the wave function through 1000 kick and free number of kicks

evolution cycles. As can be clearly seen, both the ground and o _

exc|ted momentum dlst”buuons have become exponent|ally FIG. 3. Kinetic energy for the ground State andthe excited state
localized. Apparently, our semiclassical arguments were todS the number of kicksta) 60 kicks and(b) 1000 kicks. The top
simplistic. trace is the total kinetic energy.

The transition from momentum diffusion to localization is . i i )
displayed in Fig. 3. We have plotte@h2/2) for the ground width rapidly increases at an early stage of the time evolu-

and the excited state as well as the total kinetic energy of thEon, _bUt localization ?Vef‘t“a”y Sets n. To conclude, we
atom as a function of time. For all cases the momentunimention that the contribution of the excited state to the total

inetic energy is almost as large as the one from the ground-
state wave function, although the upper-state probability is

0
10 y X y only 20%. Therefore, the upper-state momentum distribution
is, on the average, less localized than its ground-state coun-
10° terpart.

IV. COMPARISON WITH THE &-KICKED ROTOR

—
>
Y

210
E While our model is strictly not a direct analog of the
.§ s DKR, a comparison can still be made. As was already men-
gl0 ¢ tioned, the system reduces to the DKR wheB<1, so one
can compare our model to the DKR by examining the kinetic
102 energies at an equivalent value of kick strength Because
our model tracks the behavior of a two-level atom, with a
2 wave function that is a superposition of ground and excited
10 states, it has no direct classical counterpart. The DKR limit

-1000 -500 0 500 1000 provides us with a means to connect our model to the clas-
n sically chaotic regime.

FIG. 2. Ground- and excited-state momentum probability distri- In Fig. 4 we have plotted the total kinetic energy versus
butions; both are exponentially localized. For convenience thdhe number of kicks for the parameter sgf=7, k=1,
excited-state distribution was displaced down by the amount indi=0.005, and three different values gf The initial condi-
cated by the arrow on the upper right. tions were the same as in Sec. Ill. Trace 1 Bas10 °, so
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4000 v . functions decay rapidly. This is not true for intermediate or
low excitation.

While the details of the traces displayed in Fig. 4 depend
critically on the model parameters chosen, we can state the

3000}
following with respect to a comparison of our two-level sys-
A tem with mixed dynamics with the conventional DKR. Nei-
N ther the diffusive energy growth rate nor the saturation level
&> 2000F : ) .
= depends markedly on the degree of internal atomic excita-
\'%

tion. This implies that the formula for the diffusion rate,
which is well established within the DKR model, is appli-
cable to the model considered here too. We finally would
like to point out that a saturation of the two-level atom’s
momentum spread was not observed when the quantum reso-

nance condition was fulfillefil1]. For k an integer multiple

of 4, the kinetic energy grows quadratically with time just
as with the quantum DKR. However, this result is of mod-
erate relevance for an atomic system, as the quadratic in-
crease is expected to be absent if the restriction to integer
values offik on the momentum axis is lifted, which for an
atom moving in one dimension would be the proper thing to
do[7].

1000}

=]

0 50 100 150
number of kicks

6000

A 4000 It is interesting to note that decoherence between the
J ground and excited state aloriee., without affecting the
"5 coherence of the translational degree of freefaiestroys
localization. As a first naive modification of our model, we
2000 randomly changed the phase between the two internal states

after every kick. Then the internal degrees of freedom may
act as an “environment” coupled to the translational motion.
Our preliminary calculations indeed indicate that if the ran-
dom phase changes are sulfficiently large then the momentum
diffusion mimics the classical evolution. The effects of de-
coherence on this two-level system are a topic of continued
further research.

>

0 500 1000 1500 2000
number of kicks

FIG. 4. Total kinetic energy vs the number of kicks fay=7,
k=1.0, anda=0.005: (a) 150 kicks and(b) 1000 kicks. Traces
1-3 haveB=10"5, 0.04 and 10, respectively. The dashed line is V. CONCLUSION
the classical DKR energy diffusion.

In summary, we have analyzed the behavior of a two-

level atom in a time-dependent classical standing wave,
small that the system is in fact very close to the DKR; itsWhere the internal atomic dynamics have been taken into
excited-state probability is less than 70 This DKR-like ~ account. For negligible population of the upper state, the

case can now be compared with situations where the interm()del reduces to the previously investigated atomic realiza-

play between electronic and translational degrees of freedortr|1on of the DKR[7]. By adding this extra degree of freedom,

I ignificant role. Fag=0.04 (t 2. th semiclassical arguments and an analogy to the modulated
plays a more significant role. F¢i=0. race 4, the en- - prp [4,6] suggest that the dynamical localization observed
ergy growth closely follows the one corresponding to negli-

: L : ) i ) in the quantum DKR could possibly be destroyed and one
gible excitation during the first-70 kick and free evolution .54 thus hope for more irregularity in the corresponding

cycles. This time is needed for the upper-state population t@ynamics. However, our numerical studies have shown that
build up (not shown before it saturates at approximately he |ocalization mechanisms are apparently more robust than
15%, while fluctuations similar to the ones displayed in Fig.anticipated. Irrespective of the atomic initial conditions, the
1 persist. For large values @f(trace 3,6=10), the excited- interaction strength, and the degree of internal excitation,
state probability reaches a value slightly above 50% righbne always observes the characteristic exponential envelope
after the first kick. Consequently, the energy in Fig. 4 devi-for the momentum probability distribution. This is somewhat
ates from the DKR behavior much earlier than observed irstarting when one considers the quite erratic time depen-
the previous case of medium excitation. However, in spite oflence of the electronic excitation and the fact that the force
these deviations, one can still distinguish between a momerexperienced by an atom in the light field depends on its
tum diffusion and a localization regime even for this case ofinternal state. Surprisingly, the additional complexity of an
strong mixing. One further aspect is noteworthy for this lat-atom with internal dynamics fails to destroy dynamical lo-
ter case. If the degree of excitation is large, we have noticedalization.

that the upper-state probability always fluctuates quite errati- The work presented in this paper could be extended down
cally around 50% and that the corresponding autocorrelatioa number of different avenues. It would be interesting to see
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whether the abolition of the Raman-Nath approximation andlence on initial conditions, a characteristic trait of classical
the retention of nonadiabatic terms essentially changes arghaos, will still be absent.

of our results. Also interesting would be studies on the effect
of optical polarization gradients and the inclusion of more
realistic atomic models with complex hyperfine structure and  This work was supported by the Royal Society of New
corresponding Zeeman sublevels. However, we suspect thaealand Marsden Fund and the University of Auckland Re-
regardless of these possible modifications, a sensitive depesearch Committee.
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