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Data from the LIGO Livingston interferometer and the ALLEGRO resonant-bar detector, taken during
LIGO’s fourth science run, were examined for cross correlations indicative of a stochastic gravitational-
wave background in the frequency range 850–950 Hz, with most of the sensitivity arising between 905
and 925 Hz. ALLEGRO was operated in three different orientations during the experiment to modulate the
relative sign of gravitational-wave and environmental correlations. No statistically significant correlations
were seen in any of the orientations, and the results were used to set a Bayesian 90% confidence level
upper limit of �gw�f� � 1:02, which corresponds to a gravitational-wave strain at 915 Hz of 1:5�
10�23 Hz�1=2. In the traditional units of h2

100�gw�f�, this is a limit of 0.53, 2 orders of magnitude better
than the previous direct limit at these frequencies. The method was also validated with successful
extraction of simulated signals injected in hardware and software.

DOI: 10.1103/PhysRevD.76.022001 PACS numbers: 04.80.Nn, 04.30.Db, 07.05.Kf, 95.55.Ym

I. INTRODUCTION

One of the signals targeted by the current generation of
ground-based gravitational-wave (GW) detectors is a sto-
chastic gravitational-wave background (SGWB) [1–3].
Such a background is analogous to the cosmic microwave
background, although the dominant contribution is un-
likely to have a blackbody spectrum. A SGWB can be
characterized as cosmological or astrophysical in origin.
Cosmological backgrounds can arise from, for example,
pre-big-bang models [4–6], amplification of quantum vac-
uum fluctuations during inflation [7–9], phase transitions
[10,11], and cosmic strings [12–14]. Astrophysical back-
grounds consist of a superposition of unresolved sources,
which can include rotating neutron stars [15,16], super-
novae [17], and low-mass x-ray binaries [18].

The standard cross-correlation search [19] for a SGWB
necessarily requires two or more GW detectors. Such
searches have been performed using two resonant-bar de-
tectors [20] and also using two or more kilometer-scale
GW interferometers (IFOs) [21–23]. The present work
describes the results of the first cross-correlation analysis
carried out between an IFO [the 4 km IFO at the LIGO
Livingston Observatory (LLO), known as L1] and a bar
(the cryogenic ALLEGRO detector, referred to as A1).
This pair of detectors is separated by only 40 km, the
closest pair among modern ground-based GW detector
sites, which allows it to probe the stochastic GW spectrum
around 900 Hz. In addition, the ALLEGRO bar can be
rotated, changing the response of the correlated data
streams to stochastic GWs and thus providing a means to
distinguish correlations due to a SGWB from those due to
correlated environmental noise [24]. This paper describes
cross-correlation analysis of L1 and A1 data taken between

February 22 and March 23, 2005, during LIGO’s fourth
science run (S4). Average sensitivities of L1 and A1 during
S4 are shown in Fig. 1. ALLEGRO was operated in three
orientations, which modulated the GW response of the
LLO-ALLEGRO pair through 180� of phase.

The LLO-ALLEGRO correlation experiment is comple-
mentary to experiments using data from the two LIGO
sites, in that it is sensitive to a SGWB at frequencies of
around 900 Hz rather than 100 Hz. Targeted sources are
thus those with a relatively narrow-band spectrum peaked
near 900 Hz. Spectra with such shapes can arise from
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FIG. 1. Sensitivity of the LLO IFO (L1) and the ALLEGRO
bar (A1) during S4, along with strain associated with �gw�f� �
1:02 (assuming a Hubble constant of H0 � 72 km=s=Mpc).
[There are two �gw�f� � 1:02 curves, corresponding to the
different strain levels such a background would generate in an
IFO and a bar, as explained in Sec. II and [26].] The quantity
plotted is amplitude spectral density (ASD), the square root of
the one-sided power spectral density defined in (4.2), at a
resolution of 0.25 Hz.
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exotic cosmological models, as described in Sec. II, or
from astrophysical populations [16].

The organization of this paper is as follows. Section II
reviews the properties and characterization of a SGWB.
Section III describes the LLO and ALLEGRO experimen-
tal arrangements, including the data acquisition and strain
calibration for each instrument. Section IV describes the
cross-correlation method and its application to the present
situation. Section V describes the details of the postpro-
cessing methods and statistical interpretation of the cross-
correlation results. Section VI describes the results of the
cross-correlation measurement and the corresponding
upper limit on the SGWB strength in the range 850–
950 Hz. Section VII describes the results of our analysis
pipeline when applied to simulated signals injected both
within the analysis software and in the hardware of the
instruments themselves. Section VIII compares our results
to those of previous experiments and to the sensitivities of
other operating detector pairs. Section IX considers the
prospects for future work.

II. STOCHASTIC GRAVITATIONAL-WAVE
BACKGROUNDS

A gravitational wave (GW) is described by the metric
tensor perturbation hab�~r; t�. A given GW detector, located
at position ~rdet on the Earth, will measure a GW strain
which, in the long-wavelength limit, is some projection of
this tensor:

 h�t� � hab�~rdet; t�dab; (2.1)

where dab is the detector response tensor, which is

 dab�ifo� �
1
2�x̂

ax̂b � ŷaŷb� (2.2)

for an interferometer with arms parallel to the unit vectors
x̂ and ŷ and

 dab
�bar� � ûaûb (2.3)

for a resonant bar with long axis parallel to the unit vector
û.

A stochastic GW background (SGWB) can arise from a
superposition of uncorrelated cosmological or astrophysi-
cal sources. Such a background, which we assume to be
isotropic, unpolarized, stationary, and Gaussian, will gen-
erate a cross correlation between the strains measured by
two detectors. In terms of the continuous Fourier transform
defined by ~a�f� �

R
1
�1 dt a�t� exp��i2�ft�, the expected

cross correlation is

 h~h�1�f�~h2�f
0�i � 1

2��f� f
0�Sgw�f��12�f�; (2.4)

where

 �12�f� � d1abd
cd
2

5

4�

ZZ
d2�n̂P

TTn̂ab
cde

i2�fn̂	� ~r2�~r1�=c

(2.5)

is the overlap reduction function (ORF) [25] between the
two detectors, defined in terms of the projector PTTn̂ab

cd
onto traceless symmetric tensors transverse to the unit
vector n̂. The ORF for several detector pairs of interest is
shown in Fig. 2.
Sgw�f� is the one-sided spectrum of the SGWB. This is

the one-sided power spectral density (PSD) the background
would generate in an interferometer with perpendicular
arms, which can be seen from (2.4) and the fact that the
ORF of such an interferometer with itself is unity. Since the
ORF of a resonant bar with itself is 4=3 (see [26] and
Sec. VII A for more details), the PSD of the strain mea-
sured by a bar detector due to the SGWB would be
�4=3�Sgw�f�.

A related measure of the spectrum is the dimensionless
quantity �gw�f�, the GW energy density per unit logarith-
mic frequency divided by the critical energy density �c
needed to close the universe:

 �gw�f� �
f
�c

d�gw

df
�

10�2

3H2
0

f3Sgw�f�: (2.6)

Note that the definition �gw�f� thus depends on the value
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FIG. 2. The overlap reduction function for LIGO Livingston
Observatory (LLO) with ALLEGRO and with LIGO Hanford
Observatory (LHO). The three LLO-ALLEGRO curves corre-
spond to the three orientations in which ALLEGRO was oper-
ated during LIGO’s S4 run: ‘‘XARM’’ (N108�W) is nearly
parallel to the x-arm of LLO (‘‘aligned’’); ‘‘YARM’’ (N18�W)
is nearly parallel to the y-arm of LLO (‘‘antialigned’’); NULL
(N63�W) is halfway in between these two orientations (a ‘‘null
alignment’’ midway between the two LLO arms). Note that for
nonzero frequencies, the separation vector between the two sites
breaks the symmetry between the XARM and YARM align-
ments, and leads to an offset of the NULL curve, as described in
[26]. The LLO-LHO overlap reduction function is shown for
reference. The frequency band of the present analysis, 850 Hz �
f � 950 Hz, is indicated with dashed vertical lines.

B. ABBOTT et al. PHYSICAL REVIEW D 76, 022001 (2007)

022001-4



of the Hubble constant H0. Most SGWB literature avoids
this artificial uncertainty by working in terms of

 h2
100�gw�f� �

�
H0

100 km=s=Mpc

�
2
�gw�f� (2.7)

rather than �gw�f� itself. We will instead follow the pre-
cedent set by [22] and quote numerical values for �gw�f�
assuming a Hubble constant of 72 km=s=Mpc.

Avariety of spectral shapes have been proposed for �gw,
for both astrophysical and cosmological stochastic back-
grounds [3,27,28]. For example, whereas the slow-roll
inflationary model predicts a constant �gw�f� in the bands
of LIGO or ALLEGRO, certain alternative cosmological
models predict broken-power-law spectra, where the rising
and falling slopes and the peak frequency are determined
by model parameters [3]. String-inspired pre-big-bang
cosmological models belong to this category [5,29]. For
certain ranges of these three parameters, the LLO-
ALLEGRO correlation measurement offers the best con-
straints on theory that can be inferred from any contempo-
rary observation. This can happen, e.g., if the power-law
exponent on the rising spectral slope is greater than 3 and
the peak frequency is sufficiently close to 900 Hz [30].

III. EXPERIMENTAL SETUP

A. The LIGO Livingston interferometer

The experimental setup of the LIGO observatories has
been described at length elsewhere [31]. Here we provide a
brief review, with particular attention paid to details sig-
nificant for the LLO-ALLEGRO cross-correlation
measurement.

The LIGO Livingston Observatory (LLO) is an inter-
ferometric GW detector with perpendicular 4-km arms.
The laser interferometer senses directly any changes in
the differential arm length. It does this by splitting a light
beam at the vertex, sending the separate beams into 4-km
long optical cavities of their respective arms, and then
recombining the beams to detect any change in the optical
phase difference between the arms, which is equivalent to a
difference in light travel time. This provides a measure-
ment of h�t� as defined in (2.1) and (2.2). However, the
measured quantity is not exactly h�t� for two reasons.

First, there are local forces which perturb the test
masses, and so produce changes in arm length. There are
also optical and electronic fluctuations that mimic real
strains. The combination of these effects causes a strain
noise n�t� to always be present in the output, producing a
measurement of

 s�t� � h�t� 
 n�t�: (3.1)

Second, the test masses are not really free. There is a
servo system, which uses changes in the differential arm
length as its error signal q�t�, and then applies extra (‘‘con-
trol’’) forces to the test masses to keep the differential arm

length nearly zero. It is this error signal q�t� which is
recorded, and its relationship to the strain estimate s�t� is
most easily described in the Fourier domain:

 ~s�f� � ~R�f�~q�f�: (3.2)

The response function ~R�f� is estimated by a combination
of modeling and measurement [32] and varies slowly over
the course of the experiment.

Because the error signal q�t� has a smaller dynamic
range than the reconstructed strain s�t�, our analysis starts
from the digitized time series q�k� � q�tk� (sampled 214 �
16 384 times per second, and digitally downsampled to
4096 Hz in the analysis) and reconstructs the LLO strain
only in the frequency domain.

B. The ALLEGRO resonant-bar detector

The ALLEGRO resonant detector, operated by a group
from Louisiana State University [33], is a two-ton alumi-
num cylinder coupled to a niobium secondary resonator.
The secondary resonator is part of an inductive transducer
[34] which is coupled to a DC SQUID. Strain along the
cylindrical axis excites the first longitudinal vibrational
mode of the bar. The transducer is tuned for sensitivity to
this mechanical mode. Raw data acquired from the detector
thus reflect the high-Q resonant mechanical response of the
system. A major technical challenge of this analysis is due
to the extent to which the bar data differ from those of the
interferometer.

1. Data acquisition, heterodyning, and sampling

The ALLEGRO detector has a relatively narrow sensi-
tive band of 100 Hz centered around 900 Hz near the
two normal modes of the mechanical bar-resonator system.
For this reason, the output of the detector can first be
heterodyned with a commercial lock-in amplifier to greatly
reduce the sampling rate, which is set at 250 samples=s.
Both the in-phase and quadrature outputs of the lock-in are
recorded and the detector output can thus be represented as
a complex time series which covers a 250 Hz band centered
on the lock-in reference oscillator frequency. This refer-
ence frequency is chosen to be near the center of the
sensitive band, and during the S4 run it was set to
904 Hz. The overall timing of data heterodyned in this
fashion is provided by both the sampling clock and the
reference oscillator. Both time bases were locked to the
Global Positioning System (GPS) time reference.

The nature of the resonant detector and its data acquis-
ition system gives rise to a number of timing issues:
heterodyning, filter delays of the electronics, and the tim-
ing of the data acquisition system itself [35]. It is of critical
importance that the timing be fully understood so that the
phase of any potential signal may be recovered.
Convincing evidence that all of the issues are accounted
for is demonstrated by the recovery and cross correlation of
test signals simultaneously injected into both detectors.

FIRST CROSS-CORRELATION ANALYSIS OF . . . PHYSICAL REVIEW D 76, 022001 (2007)

022001-5



The signals were recovered at the expected phase as pre-
sented in Sec. VII.

2. Strain calibration

The raw detector output is proportional to the displace-
ment of the secondary resonator, and thus has a spectrum
with sharp line features due to the high-Q resonances of the
bar-resonator system as can be seen in Fig. 3. The desired
GW signal is the effective strain on the bar, and recovering
this means undoing the resonant response of the detector.
This response has a long coherence time—thus long
stretches of data are needed to resolve the narrow lines in
the raw data. The strain data have a much flatter spectrum,
as shown in Fig. 1. Therefore it is practical to generate the

calibrated strain time series, s�t�, and use that as the input
to the cross-correlation analysis.

The calibration procedure, described in detail in [35], is
carried out in the frequency domain and consists of the
following: A 30 min stretch of clean ALLEGRO data is
windowed and Fourier transformed. The mechanical mode
frequencies drift slightly due to small temperature varia-
tions, so these frequencies are determined for each stretch
and those are incorporated into the model of the mechani-
cal response of the system to a strain. The model consists of
two double poles at these normal mode frequencies. In
addition to this response, we must then account for the
phase shifts due to the time delays in the lock-in and
antialiasing filters.

After applying the full response function, the data are
then inverse Fourier transformed back to the time domain.
The next 50% overlapping 30 min segment is then taken.
The windowed segments are stitched together until the
entire continuous stretch of good data is completed. The
first and last 15 minutes are dropped. The result represents
a heterodyned complex time series of strain, whose ampli-
tude spectral density is shown in Fig. 1.

The overall scale of the detector output in terms of strain
is determined by applying a known signal to the bar. A
force applied to one end of the bar has a simple theoretical
relationship to an equivalent gravitational strain [35–37].
A calibrated force can be applied via a capacitive ‘‘force
generator’’ which also provides the mechanism used for
hardware signal injections. A reciprocal measurement—
excitation followed by measurement with the same trans-
ducer—along with known properties of the mechanical
system, allows the determination of the force generator
constant. With that constant determined (with units of
newtons per volt), a calibrated force is applied to the bar
and the overall scale of the response determined.

3. Orientation

A unique feature of this experiment is the ability to
rotate the ALLEGRO detector and modulate the response
of the ALLEGRO-LLO pair to a GW background [24].
Data were taken in three different orientations of
ALLEGRO, known as XARM, YARM, and NULL, de-
tailed in Table I. As shown in Fig. 2 and (2.4), these
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FIG. 3. The graph displays the amplitude spectral density of
raw ALLEGRO detector output during S4, at a frequency
resolution of 0.1 Hz. For this graph these data have not been
transformed to strain via the calibrated response function. The
vertical scale represents digital counts=

������
Hz
p

. The normal me-
chanical modes where the detector is most sensitive are at
880.78 Hz and 917.81 Hz. There is an injected calibration line
at 837 Hz. Also prominent are an extra mechanical resonance at
885.8 Hz and a peak at 904 Hz (DC in the heterodyned data
stream).

TABLE I. Orientations of ALLEGRO during the LIGO S4 Run, including overlap reduction function evaluated at the extremes of
the analyzed frequency range, and at the frequency of peak sensitivity. Note that, while the NULL orientation represents perfect
misalignment (� � 0) at 0 Hz, it is not quite perfect at the frequencies of interest. This is primarily because of an azimuth-independent
offset term in ��f� which contributes at nonzero frequencies [24,26]. Because of this term, it is impossible to orient ALLEGRO so that
��f� � 0 at all frequencies, and to set it to zero around 915 Hz one would have to use an azimuth of N62�W rather than N63�W. This
subtlety was not incorporated into the choice of orientations in S4, but the approximate cancellation is adequate for our purposes.

Dates Orientation Azimuth ��850 Hz� ��915 Hz� ��950 Hz�

2005 Feb 22–2005 Mar 4 YARM N108�W �0:9087 �0:8947 �0:8867
2005 Mar 4–2005 Mar 18 XARM N18�W 0.9596 0.9533 0.9498
2005 Mar 18–2005 Mar 23 NULL N63�W 0.0280 0.0318 0.0340
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orientations correspond to different pair responses due to
different overlap reduction functions. In the XARM ori-
entation—the bar axis parallel to the x-arm of the inter-
ferometer—a GW signal produces positive correlation
between the data in the two detectors. In the YARM
orientation a GW signal produces an anticorrelation. In
the NULL orientation—the bar aligned halfway between
the two arms of the interferometer—the pair has very
nearly zero sensitivity as a GW signal produces almost
zero correlation between the detectors’ data. A real signal
is thus modulated whereas many types of instrumental
correlation would not have the same dependence on
orientation.

IV. CROSS-CORRELATION METHOD

This section describes the method to used to search for a
SGWB by cross-correlating detector outputs. In the case of
L1-A1 correlation measurements, it is complicated by the
different sampling rates for the two instruments and the
fact that the A1 data are heterodyned at 904 Hz prior to
digitization.

A. Continuous-time idealization

Both ground-based interferometric and resonant-mass
detectors produce a time-series output which can be related
to a discrete sampling of the signal

 si�t� � hi�t� 
 ni�t�; (4.1)

where i labels the detector (1 or 2 in this case), hi�t� is the
gravitational-wave strain defined in (2.1), and ni�t� is the
instrumental noise associated with each detector, converted
into an equivalent strain. The detector output is character-
ized by its power spectral density Pi�f�,

 h~s�i �f�~si�f
0�i � 1

2��f� f
0�Pi�f�; (4.2)

which should be dominated by the autocorrelation of the
noise [h~s�i �f�~si�f

0�i � h~n�i �f�~ni�f
0�i]. If the instrument

noise is approximately uncorrelated, the expected cross
correlation of the detector outputs is [cf. (2.4)]

 h~s�1�f�~s2�f0�i � h~h
�
1�f�~h2�f0�i �

1
2��f� f

0�Sgw�f��12�f�

(4.3)

which can be used along with the autocorrelation (4.2) to
determine the statistical properties of the cross-correlation
statistic defined below.

We use the optimally filtered cross-correlation method
described in [19,21] to calculate a cross-correlation statis-
tic which is an approximation to the continuous-time cross-
correlation statistic

 Yc �
Z
dt1dt2s1�t1�Q�t1 � t2�s2�t2�

�
Z
df~s�1�f� ~Q�f�~s2�f�: (4.4)

In the continuous-time idealization, such a cross-
correlation statistic, calculated over a time T, has an ex-
pected mean

 �Yc � hYci �
T
2

Z 1
�1

df��jfj�Sgw�f� ~Q�f� (4.5)

and variance

 �2
Yc � h�Y

c ��Yc�
2i �

T
4

Z 1
�1

dfP1�f�P2�f�j ~Q�f�j
2:

(4.6)

Using (4.5) and (4.6), the optimal choice for the filter ~Q�f�,
given a predicted shape for the spectrum Sgw�f� can be
shown [19] to be

 

~Q�f� /
��jfj�Sgw�f�

P1�f�P2�f�
: (4.7)

If the spectrum of gravitational waves is assumed to be a
power law over the frequency band of interest, a conve-
nient parametrization of the spectrum, in terms of �gw�f�
defined in (2.6), is

 �gw�f� � �R

�
f
fR

�
�
; (4.8)

where fR us a conveniently chosen reference frequency
and �R � �gw�fR�. The cross-correlation measurement is
then a measurement of �R, and if the optimal filter is
normalized according to

 

~Q�f� �N
��f��f=fR��

jfj3P1�f�P2�f�
; (4.9a)

where

 N �
20�2

3H2
0

�Z 1
�1

df

f6

���f��f=fR�
��2

P1�f�P2�f�

�
�1
; (4.9b)

then the expected statistics of Yc in the presence of a
background of actual strength �R are

 �Yc � �RT (4.10)

and

 �2
Yc � T

�
10�2

3H2
0

�
2
�Z 1
�1

df

f6

���f��f=fR���2

P1�f�P2�f�

�
�1

(4.11)

and a measurement of Yc=T provides a point estimate of
the background strength �R with associated estimated
error bar �Yc=T.

B. Discrete-time method

1. Handling of different sampling rates and heterodyning

Stochastic-background measurements using pairs of
LIGO interferometers [21] have implemented (4.4) from
discrete samplings si�k� � s�t0 
 k�t� as follows: First the
continuous Fourier transforms ~s�f� were approximated

FIRST CROSS-CORRELATION ANALYSIS OF . . . PHYSICAL REVIEW D 76, 022001 (2007)

022001-7



using the discrete Fourier transforms of windowed and
zero-padded versions of the discrete time series; then an
optimal filter was constructed using an approximation to
(4.7), and finally the product of the three was summed bin-
by-bin to approximate the integral over frequencies. The
discrete version of ~Q�f� was simplified in two ways: first,
because of the averaging used in calculating the power
spectrum, the frequency resolution on the optimal filter
was generally coarser than that associated with the discrete
Fourier transforms of the data streams, and second, the
value of the optimal filter was arbitrarily set to zero outside
some desired range of frequencies fmin � f � fmax. This
was justified because the optimal filter tended to have little
support for frequencies outside that range.

The present experiment has two additional complica-
tions associated with the discretization of the time-series
data. First, the A1 data are not a simple time sampling of
the gravitational-wave strain, but are base banded with a
heterodyning frequency fh2 � 904 Hz as described in
Sec. III B 1 and III B 2. Second, the A1 data are sampled
at ��t2��1 � 250 Hz, while the L1 data are sampled at
16384 Hz, and subsequently downsampled to ��t1��1 �
4096 Hz. This would make a time domain cross correlation
extremely problematic, as it would necessitate a large
variety of time offsets t1 � t2. In the frequency domain,
it means that the downsampled L1 data, once calibrated,
represent frequencies ranging from�2048 Hz to 2048 Hz,
while the calibrated A1 data represent frequencies ranging
from �904� 125� Hz � 779 Hz to �904
 125� Hz �
1029 Hz. These different frequency ranges do not pose a
problem, as long as the range of frequencies chosen for the
integral satisfies fmin > 779 Hz and fmax < 1029 Hz.
Another requirement is that, for the chosen frequency
resolution, the A1 data heterodyne reference frequency
must align with a frequency bin in the L1 data. This is
satisfied for integer-second data spans and integer-hertz
reference frequencies. With these conditions, the Fourier
transforms of the A1 and L1 data are both defined over a
common set of frequencies, as detailed in [38]. Looking at
the A1 spectrum in Fig. 1, a reasonable range of frequen-
cies should be a subset of the range 850 Hz & f &

950 Hz.

2. Discrete-time cross correlation

Explicitly, the time series inputs to the analysis pipeline,
from each T � 60 sec of analyzed data, are:

(i) For L1, a real time series fq1�j�jj � 0; . . .N1 � 1g,
sampled at ��t1��1 � 4096 Hz, consisting of N1 �
T=�t1 � 245 760 points. This is obtained by down-
sampling the raw data stream by a factor of 4. The
data are downsampled to 4096 Hz rather than
2048 Hz to ensure that the roll-off of the associated
antialiasing filter is outside the frequency range
being analyzed. The raw L1 data are related to
gravitational-wave strain by the calibration response

function ~R1�f� constructed as described in Sec. III A.
(ii) For A1, a complex time series fsh2�k�jk � 0; . . .N2 �

1g, sampled at ��t2��1 � 250 Hz, consisting of
N2 � T=�t2 � 150 00 points. This is calibrated to
represent strain data as described in Sec. III B 2, but
still heterodyned.

To produce an approximation of the Fourier transform of
the data from detector i, the data are multiplied by an
appropriate windowing function, zero padded to twice their
original length, discrete-Fourier-transformed, and multi-
plied by �ti. In addition, the L1 data are multiplied by a
calibration response function, while the A1 data are inter-
preted as representing frequencies appropriate in light of
the heterodyne. For L1,
 

~s1�f‘�  ~s1�‘� :� ~R1�f‘�
XN1�1

j�0

w1�j�q1�j�

� exp
�
�i2�‘j

2N1

�
�t1;

‘ � �N1; . . . ; N1 � 1; (4.12)

where f‘ �
‘

2T is the frequency associated with the ‘th
frequency bin. In the case of A1, the identification is offset
by ‘h2 � fh 	 �2T� � 107 880:
 

~s2�f‘�  ~s2�‘� :�
XN2�1

k�0

w2�k�q2�k�

� exp
�
�i2��‘� ‘h2�k

2N2

�
�t2;

‘ � ‘h2 � N2; . . . ; ‘h2 
 N2 � 1: (4.13)

As is shown in [38], if we construct a cross-correlation
statistic

 Y :�
X‘max

‘�‘min

1

2T
�~s1�f‘��

� ~Q�f‘�~s2�f‘�; (4.14)

the expected mean value in the presence of a stochastic
background with spectrum Sgw�f� is

 � :� hYi � w1w2
T
2

X‘max

‘�‘min

1

2T
� ~Q�f‘����f‘�Sgw�f‘�;

(4.15)

where w1w2 is an average of the product of the two
windows, calculated using the points which exist at both
sampling rates; specifically, if r1 and r2 are the smallest
integers such that �t1=�t2 � r1=r2 � 125=2048,

 w1w2 �
r1r2

N

XN=�r1r2��1

n�0

w1�nr2�w2�nr1�: (4.16)

Note that, while the average value given by (4.15) is
manifestly real, any particular measurement of Y will be
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complex, because of the bandpass associated with the
heterodyning of the A1 data. As shown in [38], the real
and imaginary parts of the cross-correlation statistic each
have expected variance

 �2 :�
1

2
hY�Yi

�
T
8
w2

1w
2
2

X‘max

‘�‘min

1

2T
j ~Q�f‘�j2P1�jf‘j�P2�jf‘j�; (4.17)

where once againw2
1w

2
2 is an average over the time samples

the two windows have ‘‘in common’’:

 w2
1w

2
2 �

r1r2

N

XN=�r1r2��1

n�0

�w1�nr2��
2�w2�nr1��

2: (4.18)

3. Construction of the optimal filter

To perform the cross correlation in (4.14), we need to
construct an optimal filter by a discrete approximation to
(4.9). We approximate the power spectra P1�f� using
Welch’s method [39]; as a consequence of the averaging
of periodograms constructed from shorter stretches of data,
the power spectra are estimated with a frequency resolution
�f which is coarser than the 1=2T associated with the
construction in (4.14). As detailed in [21], we handle this
by first multiplying together �~s1�f‘��� and ~s2�f‘� at the
finer frequency resolution, then summing together sets of
2T �f bins and multiplying them by the coarser-grained
optimal filter. For our search, �f � 0:25 Hz and T �
60 sec , so 2T�f � 30.

4. Power spectrum estimation

Because the noise power spectrum of the LLO can vary
with time, we continuously update the optimal filter used in
the cross-correlation measurement. However, using an op-
timal filter constructed from power spectra calculated from
the same data to be analyzed leads to a bias in the cross-
correlation statistic Y, as detailed in [40]. To avoid this, we
analyze each T � 60 sec segment of data using an optimal
filter constructed from the average of the power spectra
from the segments before and after the segment to be
analyzed. This method is known as ‘‘sliding power spec-
trum estimation’’ because, as we analyze successive seg-
ments of data, the segments used to calculated the PSDs for
the optimal filter slide through the data to remain adjacent.
The �f � 0:25 Hz resolution is obtained by calculating
the power spectra using Welch’s method with 29 over-
lapped 4-second subsegments in each 60-second segment
of data, for a total of 58 subsegments.

V. POSTPROCESSING TECHNIQUES

A. Stationarity cut

The sliding power spectrum estimation method de-
scribed in Sec. IV B 4 can lead to inaccurate results if the
noise level of one or both instruments varies widely over
successive intervals. Most problematically, if the data are
noisy only within a single analysis segment, consideration
of the power spectrum constructed from the segments
before and after, which are not noisy, will cause the seg-
ment to be overweighted when combining cross-
correlation data from different segments. To avoid this,
we calculate for each segment both the usual estimated
standard deviation �I using the ‘‘sliding’’ PSD estimator
and the ‘‘naive’’ estimated standard deviation �0I using the
data from the segment itself. If the ratio of these two is too
far from unity, the segment is omitted from the cross-
correlation analysis. The threshold used for this analysis
was 20%. The amount of data excluded based on this cut
was between 1% and 2% in each of the three orientations,
and subsequent investigations show the final results would
not change significantly for any reasonable choice of
threshold.

B. Bias correction of estimated error bars

Although use of the sliding power spectrum estimator
removes any bias from the optimally filtered cross-
correlation measurement, the methods of [40] show that
there is still a slight underestimation of the estimated
standard deviation associated with the finite number of
periodograms averaged together in calculating the power
spectrum. To correct for this, we have to scale up the error
bars by a factor of 1
 1=�Navg � 9=11�, where Navg is the
number subsegments whose periodograms are averaged
together in estimating the power spectrum for the optimal
filter. For the data analyzed with the sliding power spec-
trum estimator, 29 overlapping four-second subsegments
are averaged from each of two 60-second segments, for a
total Navg � 58. This gives a correction factor of 1

1=�58� 9=11� � 1:021. The naive estimated sigmas, de-
rived from power spectra calculated using 29 averages in a
single 60-second segment, are scaled up by a factor of 1

1=�29� 9=11� � 1:042.

C. Combination of analysis segment results

As shown in [19], the optimal way to combine a series of
independent cross-correlation measurements fYIg with as-
sociated one-sigma error bars is
 

Yopt �

P
I
��2
I YIP

I
��2
I

(5.1a)

�Yopt �

�X
I

��2
I

�
�1=2

: (5.1b)
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To minimize spectral leakage, we use Hann windows in
our analysis segments, which would reduce the effective
observing time by approximately one-half, so we overlap
the segments by 50% to make full use of as much data as
possible. This introduces correlations between overlapping
data segments, which modifies the optimal combination
slightly, as detailed in [41].

D. Statistical interpretation

The end result of the analysis and postprocessing of a set
of data is an optimally combined complex cross-
correlation statistic Yopt with a theoretical mean of �RT
and an associated standard deviation of �Yopt on both the
real and imaginary parts. We can construct from this our
overall point estimate on the unknown actual value of �R
and the corresponding one-sigma error bar:
 

�̂R � Yopt=T (5.2a)

�� � �Yopt=T: (5.2b)

For a given value of �R, and assuming �� to be given, the
likelihood function for the complex point estimate to have
a particular value �̂R � x
 iy is

 P�x; yj�R; ��� �
d2P
dxdy

�
1

2��2
�

exp
�
�
jx
 iy��Rj

2

2�2
�

�

�
1

2��2
�

e��x��R�
2=2�2

�e�y
2=2�2

� : (5.3)

Given a prior probability density function on �R, Bayes’s
theorem allows us to construct a posterior

 P��Rjx; y; ��� �
P�x; yj�R; ���P��R�

P�x; yj���

/ e��x��R�
2=2�2

�P��R�; (5.4)

where x � Re �̂R. In this work we choose a uniform prior
over the interval �0;�max�, where �max is chosen to be 116
(the previous best upper limit at frequencies around 900 Hz
[20]), except in the case of the hardware injections in
Sec. VII C, where the a priori upper limit is taken to be
well above the level of the injection.

Given a posterior probability density function (PDF), the
90% confidence level Bayesian upper limit �UL is defined
by

 

Z �UL

0
d�RP��Rjx; y; ��� � 0:90: (5.5)

Alternatively, any range containing 90% of the area under
the posterior PDF can be thought of as a Bayesian 90%
confidence level range. To allow consistent handling of
results with and without simulated signals, we choose the
narrowest range which represents 90% of the area under

the posterior PDF. (This is the range whose PDF values are
larger than all those outside the range.) For a low enough
signal-to-noise ratio Re�̂R=��, this range is from 0 to
�UL.

E. Treatment of calibration uncertainty

In reality, the conversion of raw data from the LIGO and
ALLEGRO GW detectors into GW strain is not perfect.
We model this uncertainty in the calibration process as a
time- and frequency-independent phase and magnitude
correction, so that �̂R � x
 iy and �� are actually re-
lated to �Re

�
i�, where � and � are unknown amplitude
and phase corrections; the likelihood function then be-
comes

 P�x; yj�R; ��;�; �� �
1

2��2
�

� exp
�
�
jx
 iy��Re

�
i�j2

2�2
�

�
:

(5.6)

Given a prior PDF P��; �� for the calibration corrections,
we can marginalize over these nuisance parameters and
obtain a marginalized likelihood function
 

P�x; yj�R; ��� �
Z 1
�1

d�
Z �

��
d�

� P�x; yj�R; ��;�; ��P��; ��: (5.7)

We take this prior PDF to be Gaussian in � and �, with a
standard deviation added in quadrature from the quoted
amplitude and phase uncertainty for the two instruments.
For L1, this is 5% in amplitude and 2� in phase [32] and for
A1 it is 10% in amplitude and 3� in phase [35].

VI. ANALYSIS OF COINCIDENT DATA

A. Determination of analysis parameters

To avoid biasing our results, we set aside approximately
9% of the data, spread throughout the run, as a playground
on which to tune our analysis parameters. Based on play-
ground investigations, we settled on the following parame-
ters for our analysis:

(i) Overlapping 60-second Hann-windowed analysis
segments

(ii) Frequency range 850 Hz � f � 950 Hz, 0.25 Hz
resolution for optimal filter

(iii) L1 data downsampled to 4096 Hz before analysis
(iv) Removal of the following frequencies from the opti-

mal filter: 900 Hz (2.25 Hz wide), 904 Hz (0.25 Hz
wide).

The frequencies to remove were chosen on the basis of
studies of the coherence of stretches of L1 and A1 data (see
Fig. 4); 900 Hz is the only harmonic of the 60 Hz power
line within our analysis band, and detectable coherence is
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seen for frequencies within 1 Hz of the line. 904 Hz is
notched out because, as the heterodyne frequency, it cor-
responds to DC in the heterodyned A1 data. After complet-
ing the cross-correlation analysis, we computed the
coherence from the full run of data, as shown in Fig. 5.
The results are similar to those from the playground, ex-
cept for a lower background level, and a feature at the
heterodyning frequency.

The relevant range of frequencies can be determined by
looking at the support of the integrand of (4.11), known as
the sensitivity integrand. The overall sensitivity integrand,
constructed as a weighted average over all the nonplay-
ground data used in the analysis, is plotted in Fig. 6. The
area under this curve for a range of frequencies is propor-

tional to that frequency range’s contribution to ��2. We
see that the integrand does indeed become negligible by a
frequency of 850 Hz on the lower end and 950 Hz on the
upper end. We further see that most of the sensitivity
comes from a 20-Hz wide band centered around 915 Hz.

B. Cross correlation and upper limit results

After data quality cuts, exclusion of the ‘‘playground,’’
and application of the stationarity cut described in
Sec. VA, 44 806 one-minute segments of data were ana-
lyzed, for an effective observing time of 384.1 hours (con-
sidering the effects of Hann windowing), of which
181.2 hours was in the XARM orientation, 114.7 in the
YARM orientation, and 88.2 in the NULL orientation. The
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FIG. 5. LLO-ALLEGRO (L1-A1) coherence, calculated from
all S4 data without regard to playground status. Again, the
900 Hz line is seen to be confined to a 2 Hz wide range.
Additionally, a feature at the heterodyning frequency of
904 Hz (which was masked a priori in our main cross-
correlation analysis) becomes visible.
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FIG. 4. LLO-ALLEGRO (L1-A1) coherence, calculated from
48.66 hours of playground data spanning nearly 30 days. The
only significant feature is the power line harmonic at 900 Hz.
The closeup view in the second plot shows that the coherence is
insignificant beyond 1 Hz away from the line. Based on this, we
mask out the nine 0.25-Hz frequency bins around 900 Hz from
our analysis.
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results are shown in Table II. No statistically significant
correlation is seen in any orientation, and optimal combi-
nation of all data leads to a point estimate of 0:31
 0:30i
for �R, with a one-sigma error bar of 0.48 each on the real
and imaginary parts.

The results in Table II include the ORF describing the
geometry in the optimal filter. This means an orientation-
independent non-GW cross correlation present in the data
would change sign between XARM and YARM, and would

look much larger in the NULL result. One way to remove
the effects of the observing geometry and compare
orientation-independent cross correlations is to remove
the ��f� from (4.9). Since the ORF for each orientation
is nearly constant across the observing band, and notably
across the region of peak sensitivity, it is sufficient to
multiply the overall results in each case by ��915 Hz�.
This is shown in Table III, where we again see no signifi-
cant cross-correlation, and sensitivities whose relative
sizes are well explained by the differing observing times.

We use the methods of Secs. V D and V E to construct a
posterior PDF from the overall cross-correlation measure-
ment of 0:31
 0:30i and estimated error bar of 0.48,
taking into consideration the nominal calibration uncer-
tainty of 11% in magnitude and 3.6� in phase to obtain the
posterior PDF shown in Fig. 7. The narrowest 90%-likely

TABLE II. Results of optimally filtered cross correlation of
nonplayground data. Results are shown for data in each of three
orientations (XARM, YARM, and NULL). Additionally, the
XARM and YARM results are combined with the optimal
weighting (proportional to one over the square of the error
bar) to give a ‘‘non-NULL’’ result, and results from all three
orientations are optimally combined to give an overall result. In
each case, Teff is the effective observing time including the
effects of overlapping Hann windows. Note that, since the
non-NULL data are much more sensitive than the NULL data,
they dominate the final result. Note also that, because the
optimal filter includes the ORF, the relative orientation of LLO
and ALLEGRO is already included in these results. This is
reflected, for example, in the large error bars on the NULL result.

Teff �R

Type (hrs) Point estimate Error bar

XARM 181.2 0:61
 0:25i 0.56
YARM 114.7 �0:47
 0:47i 0.90
non-NULL 295.8 0:31
 0:31i 0.48
NULL 88.2 10:96� 43:89i 28.62
All 384.1 0:31
 0:30i 0.48

TABLE III. The cross-correlation results of Table II, scaled by
��915 Hz� from Table I, the value of the ORF at the frequency of
peak sensitivity. This gives a sense of the ‘‘raw’’ cross correla-
tion, independent of the orientation-dependent geometrical fac-
tor. The different observing times explain the remaining
variation in the one-sigma error bar for the measurement, which
should be inversely proportional to the square root of the
observing time.

Teff ��R

Type (hrs) Point estimate Error bar

XARM 181.2 0:58
 0:24i 0.53
YARM 114.7 0:42� 0:42i 0.80
NULL 88.2 0:35� 1:40i 0.91
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the nine frequency bins masked out around 900 Hz and the one at
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FIG. 7. Posterior probability density function associated with
the overall combined point estimate of 0:31
 0:30i and esti-
mated error bar of 0.48, considering the uncertainty in the phase
and amplitude of the calibration. The shaded region represents
90% of the area under the curve, leading to an upper limit on �R
of 1.02, which corresponds to a gravitational-wave strain of
1:5� 10�23 Hz�1=2 at the peak frequency of 915 Hz.
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confidence interval on �R is [0, 1.02]. We thus set an upper
limit of 1.02 on �R � �gw�fR�, which translates to an
upper limit on Sgw�915 Hz� of �1:5� 10�23 Hz�1=2�2.

VII. VALIDATION VIA SIGNAL INJECTION

To check the effectiveness of our algorithm at detecting
stochastic GW signals, we performed our search on data
with simulated waveforms ‘‘injected’’ into them. This was
done both by introducing the simulated signals into the
analysis pipeline (software injections), and by physically
driving both instruments in coincidence (hardware injec-
tions). Hardware injections provide an end-to-end test of
our detection pipeline and also a test on the calibration
accuracies of our instruments, but are necessarily short in
duration because they corrupt the GW data taken during
the injection. Software injections can be carried out for
longer times and therefore at lower signal strengths, and
can be repeated to perform statistical studies. Software
injections, however, cannot check for calibration errors.

A. Signal simulation algorithm

To simulate a correlated SGWB signal in an interfer-
ometer and a bar, the formulas in, e.g., [19] need to be
generalized slightly. This is because the ORF of a detector
with itself is in general [26]

 � � 2�dabdab �
1
3�d

a
a�

2�; (7.1)

which is unity for an IFO with perpendicular arms (2.2) but
4=3 for a bar (2.3). Writing this quantity for detector 1 or 2
as �11 or �22, respectively, makes the required cross cor-
relations in a simulated SGWB signal
 

h~h�1�f�~h1�f0�i �
1
2��f� f

0�Sgw�f��11 (7.2a)

h~h�1�f�~h2�f0�i �
1
2��f� f

0�Sgw�f��12�f� (7.2b)

h~h�2�f�~h2�f0�i �
1
2��f� f

0�Sgw�f��22: (7.2c)

The above expressions do not determine a unique algo-
rithm for converting a set of random data streams into
individual detector strains. One possible prescription is
 

~h1�f� �
1
2

��������������
Sgw�f�

q �������
�11
p

�x1�f� 
 iy1�f�� (7.3a)

~h2�f� � ~h1�f�
�12�f�
�11



1

2

����������������������������������������������
Sgw�f�

�
�22 �

�2
12�f�
�11

�s

� �x2�f� 
 iy2�f��; (7.3b)

where x1�f�, y1�f�, x2�f�, and y2�f� are statistically inde-
pendent real Gaussian random variables, each of zero mean
and unit variance. In the above pair, �12�f� is used only in
the construction of ~h2�f� and not of ~h1�f�. A different pair,
where �12 is explicitly included in the calculation of both
strains more symmetrically, can be defined as follows: Let
zk�f� :� �xk�f� 
 iyk�f��=

���
2
p

be a pair (k � 1, 2) of com-

plex random functions and let s :�
������������������������������������
1� �2

12=��11�22�
q

.

Then, the second pair can be expressed as
 

~h1�f� �

��������������
Sgw�f�

2

s �������
�11
p

�a�f�z1�f� 
 b�f�z2�f�� (7.4a)

~h2�f� �

��������������
Sgw�f�

2

s �������
�22
p

�b�f�z1�f� 
 a�f�z2�f��; (7.4b)

where a �
��������������������
�1
 s�=2

p
and b � �12=

��������������������������������
2�1
 s��11�22

p
are

determined completely by the three ORFs. Either pair of
simulated strains obeys (7.2). The signals for software
injections were generated using (7.4); those for hardware
injections were generated by an older code which used
(7.3). Further details of simulated signal generation are in
[42].

B. Results of software simulation

We performed software injections into the full S4 coin-
cident playground, 4316 overlapping one-minute analysis
segments with an effective observing time of 37.0 hours
considering the effects of Hann windows (16.7 hours of this
is in the XARM orientation, 11.2 hours in the YARM
orientation, and 9.0 hours in the NULL orientation). We
injected constant-�gw�f� spectra of strengths correspond-
ing to �R � 1:9, 3.9, 9.6, and 19, as well as a test with the
SGWB amplitude set to 0 to reproduce the analysis of the
playground itself. Note that even the strongest of these
injections does not produce correlations detectable in an
individual one-minute analysis segment. The results are
summarized in Table IV. In each case, the actual injected
value of �R is consistent with the real part of the point
estimate to within the one-sigma estimated error bar; the
imaginary part of the point estimate remains zero to within
the error bar. The results for injections at �R � 1:9 and
stronger would correspond to statistical ‘‘detections’’ at the
90% or better confidence level.

C. Results of hardware injection

During S4, a set of simulated signals was injected in the
hardware of ALLEGRO and LLO. These injections served
to test the full detection pipeline as well as the calibrations
of both instruments. As described in detail in [42], the
preparation of simulated waveforms for hardware injec-

TABLE IV. Results of software injections. All figures are for
constant-�gw�f� and listed by �R level. The 90% confidence
level ranges are calculated without marginalizing over any
calibration uncertainty.

�R injected Point estimate Error bar 90% confidence interval

0 0:32� 1:00i 1.54 [0.00, 2.74]
1.9 2:22� 0:86i 1.55 [0.09, 4.35]
3.9 4:14� 0:79i 1.55 [1.61, 6.66]
9.6 9:89� 0:65i 1.56 [7.32, 12.45]
19 19:56� 0:49i 1.58 [16.96, 22.15]
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tions requires application of the transfer function of the
hardware component that is actuated, such as one of the
two end test masses in LLO, to the theoretical strain for
that instrument. Subsequent refinements to instrumental
calibration mean that the precise injected signal strength
is determined after the fact. Six hardware injections per-
formed during S4, each 1020 seconds long, had an effec-
tive constant �gw�f� of 8100. The series of injections we
call ‘‘A’’ and ‘‘B’’ were performed during the XARM and
NULL observation periods, respectively. Independent of
the physical orientation of ALLEGRO, the injection and
analysis was performed for three different assumed orien-
tations, producing ‘‘plus’’ (aligned, as in the XARM ori-
entation), ‘‘minus’’ (antialigned, as in YARM), and ‘‘null’’
(misaligned, as in NULL) injections in each series. The
results (after correcting for known phase offsets in the
injection systems) for each of the six injections are shown
in Table V.

The results show some variation of magnitude and phase
of the point estimates, especially for the null injections.
However, all the injection results are consistent with the
injected signal strength to within statistical and systematic
uncertainties. This is illustrated informally in Fig. 8, which
shows the point estimates on the complex plane, each
surrounded by an error circle of radius 2.15 times the
corresponding estimated error bar. (This radius was chosen
because 90% of the volume under a two-dimensional
Gaussian falls within a circle of radius 2:15�.) Those
circles all overlap with a region centered at the actual
injection strength illustrating the magnitude and phase
uncertainty in the calibration. The systematic error can

be more quantitatively evaluated using the method of
Sec. V E to produce a posterior PDF associated with each
injection measurement. This is illustrated for the optimally
combined point estimate of 7448
 65i and associated
estimated error bar 47 in Fig. 9, and ranges corresponding
to the most likely 90% confidence range under the poste-
rior PDFs (with and without marginalization) are included
in Table V. For each of the six injections, as well as for the
combined result, the actual injected value of 8100 falls into
the range after marginalization over the calibration
uncertainty.

VIII. COMPARISON TO OTHER EXPERIMENTS

The previous most sensitive direct upper limit at the
frequencies probed by this experiment was set by cross
correlating the outputs of the Explorer and Nautilus
resonant-bar detectors [20]. They found an upper limit on
h2

100�gw�907:20 Hz� of 60. Using the value of
72 km=s=Mpc for the Hubble constant, that translates to
a limit of 116 on �gw�907:20 Hz�, upon which our limit of
1.02 is a hundredfold improvement.

Data from LLO, taken during S4, were also correlated
with data from the LIGO Hanford Observatory (LHO) to
set an upper limit on �gw�f� at frequencies between 50 Hz
and 150 Hz [23]. Correlations between LLO and LHO are
not suited to measurements at high frequencies because of
the effects of the ORF, illustrated in Fig. 2. For comparison,
rough measurements using S4 LLO-LHO data and a band
from 850 Hz to 950 Hz yield upper limits of around 20,
while those confined to 905 Hz � f � 925 Hz (the band

TABLE V. Results of hardware injections. Simulated waveforms with an effective signal strength of �gw�f� � 8100 were injected
coincidentally in the ALLEGRO and the LIGO Livingston (LLO) detectors. The A and B sets of injections took place during the
XARM and NULL observing times, respectively. Independent of the actual orientation, the simulated signals were generated and
analyzed assuming different orientations: YARM, NULL, and XARM orientations were assumed for the injections labeled minus, null,
and plus, respectively. The first pair of columns shows the error bars and point estimates scaled by ��915 Hz� to give a raw cross
correlation as in Table III. (Note that, since the null alignment represents not-quite-perfect misalignment, as noted in Table I
[��915 Hz� � 0:03 rather than zero], the injection still leads to a statistically significant cross correlation even in the null orientation.)
Note that the error bars, thus scaled, are comparable for all six injections, while the level of correlation or anticorrelation depends on
the orientation associated with the injection being analyzed. The subsequent columns relate to the standard cross-correlation statistic,
with the ORF included in the optimal filter, so the relative insensitivity in the null alignment is reflected in large error bars, while the
point estimates are all positive and in the vicinity of the injected value of 8100. All point estimates given include corrections for known
phase offsets associated with the injection system. The row labeled ‘‘all’’ gives the optimally weighted combination of all six results.
The point estimates and one-sigma estimated error bars were combined to give 90% confidence ranges with and without margin-
alization over calibration uncertainty, mimicking the statistical analysis described in Secs. V D and V E.

��R ��R �R �R Point Estimate Unmarginalized range Marginalized range
Injection Error bar Point estimate Error bar Value Magnitude Phase Minimum Maximum Minimum Maximum

A-minus 83 �6623� 126i 93 7403
 141i 7404 1.1� 7250 7555 6212 8820
A-null 99 205
 19i 3106 6429
 607i 6457 5.4� 1565 11 294 1435 11 562
A-plus 83 6983
 64i 87 7325
 67i 7325 0.5� 7182 7468 6146 8726
B-minus 95 �6845
 49i 106 7650� 55i 7651 �0:4� 7478 7825 6417 9115
B-null 111 366� 50i 3486 11492� 1576i 11 600 �7:8� 5950 17 035 5857 17 365
B-plus 92 7128
 77i 96 7477
 80i 7477 0.6� 7317 7634 6272 8907
All N/A 47 7448
 65i 7448 0.5� 7371 7526 6256 8867
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contributing most of the L1-A1 sensitivity) give upper
limits of around 80.

Correlations between the 4 km and 2 km IFOs at LHO,
known as H1 and H2, respectively, are not suppressed by
the ORF, which is identically unity for colocated, coal-
igned IFOs. Since H1 and L1 have comparable sensitiv-

ities, the most significant factor in comparing H1-H2 to
L1-A1 sensitivity is the relative sensitivities of A1 and H2.
Since H2 was about a factor of 50 (in power) more sensi-
tive than A1 during S4, averaged across the band from
905 Hz to 925 Hz, we would expect an H1-H2 correlation
measurement during S4 to be a factor of 7 or better more
sensitive than L1-A1 as a measure of �gw�f� at these
frequencies. However, the fact that H1 and H2 share the
same physical environment at LHO necessitates a careful
consideration of correlated noise which is ongoing [43].

Work is also currently under way to search for a SGWB
at frequencies around 900 Hz by correlating data from the
Virgo IFO with the resonant-bar detectors Auriga,
Explorer, and Nautilus [44].

Finally, an indirect limit can be set on SGWB strength
due to the energy density in the associated gravitational
waves themselves, which is given by

 �gw � �crit

Z 1
0

�gw�f�

f
df: (8.1)

The most stringent limit is on a cosmological SGWB, set
by the success of big-bang nucleosynthesis, is �gw=�crit �

1:1� 10�5 [3]. In comparison, a background of the
strength constrained by our measurement, �R � 1:02,
would contribute about 2� 10�2 to �gw=�crit, if it were
confined to the most sensitive region between 905 Hz and
925 Hz. (Spread over the full range of integration
850 Hz � f � 950 Hz, it would contribute 1� 10�1.)
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combined hardware injection measurement, including margin-
alization over calibration uncertainties. Note that, while the
combined one-sigma statistical error bar is only 47, the shaded
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because systematic errors dominate in the presence of the large
point estimate. The solid vertical line indicates the actual injec-
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FIG. 8. Visualization of hardware injection results. Each of the
six point estimates of �R is plotted on the complex plane, with
an associated error circle of 2.15 times the estimated one-sigma
error bar. (This contains 90% of the volume under the corre-
sponding likelihood surface.) The five-pointed star indicates the
actual injected level of �R � 8100. The dashed teardrop-shaped
region indicates the calibration uncertainty, corresponding to a
2.15-sigma ellipse in log-amplitude/phase space. On the left we
see that the two null injections are consistent in amplitude and
phase with the actual injection, considering the statistical uncer-
tainty associated with the real and imaginary parts of their point
estimates. The plot on the right (in which the edge of the dashed
calibration uncertainty teardrop can just be seen) shows that the
plus and minus injections are all statistically consistent with each
other, and consistent with the injection when systematic uncer-
tainties associated with calibration are taken into account.
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Note, however, that this nucleosynthesis bound is not
relevant for a SGWB of astrophysical origin.

IX. FUTURE PROSPECTS

LIGO’s S5 science run began in November 5, 2005, with
the aim of collecting 1 yr of coincident data at LIGO design
sensitivity. ALLEGRO has also been in operation over that
time period, so the measurement documented in this paper
could be repeated with S5 data. Such a measurement would
be more sensitive due to L1’s roughly fivefold reduction in
strain noise power at 900 Hz between S4 and S5, and
because of the larger volume of data (roughly 20 times as
much). Those two improvements could combine to lead to
an improvement of about an order of magnitude in �R
sensitivity. However, no immediate plans exist to carry out
an analysis with S5 data, because this incremental quanti-
tative improvement in sensitivity would still leave us far
from the level needed to detect a cosmological background
consistent with the nucleosynthesis bound, or an astrophys-
ical background arising from a realistic model.

Additionally, the greater sensitivity of the H1-H2 pair
means that a background detectable with L1-A1 would first
be seen in H1-H2. In the event that a ‘‘surprise’’ correlation
is seen in H1-H2 which cannot be attributed to noise,
correlation measurements such as LLO-ALLEGRO and
Virgo-AURIGA could be useful for confirming or ruling
out a gravitational origin.

X. CONCLUSIONS

We have reported the results of the first truly heteroge-
neous cross-correlation measurement to search for a sto-
chastic gravitational-wave background. While the upper
limit of 1:5� 10�23 Hz�1=2 on the strain of the SGWB
corresponds to a hundredfold improvement over the pre-
vious direct upper limit on �gw�f� in this frequency band
[20], the amplitude of conceivable spectral shapes is al-
ready constrained more strongly by results at other fre-

quencies [22,23]. The lasting legacy of this work is thus
more likely the overcoming of technical challenges of
cross-correlating data streams from instruments with sig-
nificantly different characteristics. Most obviously, we
performed a coherent analysis of data from resonant-
mass and interferometric data, but additionally the data
were sampled at different rates, ALLEGRO data were
heterodyned and therefore complex in the time domain,
and entirely different methods were used for the calibra-
tions of both instruments. Lessons learned from this analy-
sis will be valuable not only for possible collaborations
between future generations of detectors of different types,
but also between interferometers operated by different
collaborations.
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