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The purpose of this mock data and science challenge is to prepare the data analysis and science
interpretation for the second generation of gravitational-wave experiments Advanced LIGO-Virgo in the
search for a stochastic gravitational-wave background signal of astrophysical origin. Herewe present a series
of signal and data challenges, with increasing complexity, whose aim is to test the ability of current data
analysis pipelines at detecting an astrophysically produced gravitational-wave background, test parameter
estimationmethods and interpret the results.We introduce the production of thesemock data sets that includes
a realistic observing scenario data set wherewe account for different sensitivities of the advanced detectors as
they are continuously upgraded toward their design sensitivity. After analyzing these with the standard
isotropic cross-correlation pipeline we find that we are able to recover the injected gravitational-wave
background energy density to within 2σ for all of the data sets and present the results from the parameter
estimation. The results from thismock data and science challenge show that advanced LIGO andVirgowill be
ready and able to make a detection of an astrophysical gravitational-wave background within a few years of
operations of the advanced detectors, given a high enough rate of compact binary coalescing events.
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I. INTRODUCTION

According to various cosmological and astrophysical
scenarios, we are bathed in a stochastic gravitational wave
background (SGWB). Proposed theoretical cosmological
models include the amplification of vacuum fluctuations
during inflation [1–3], pre-big bang models [4–6], cosmic
(super)strings [7–10], and phase transitions [11–13]. In
addition to the cosmological background [14,15], an astro-
physical contribution [16] is expected to result from the
superposition of a large number of unresolved sources, such
as core collapse supernovae to neutron stars or black holes
[17–20], rotating neutron stars [21,22], including magnetars
[23–26], phase transitions [27], or initial instabilities in young
neutron stars [28–30], or compact binary mergers [31–35].
Many of these models are within reach of the next

generation of gravitational-wave (GW) detectors such as
Advanced LIGO Hanford (H) and Livingston (L) [36],
which are expected to start collecting data in 2015, and
Advanced Virgo (V) [37], which will begin collecting data

in 2016. These detectors are expected to have a final
sensitivity 10 times better than that of the initial detectors
[38,39], which will be achieved over a period of several
years of continued upgrades. The detection of a cosmo-
logical background would provide very important con-
straints on the first instant of the Universe, up to the limits
of the Planck era and the big bang, while the detection of an
astrophysical background would provide crucial informa-
tion on the physical properties of the respective astrophysi-
cal populations, the evolution of these objects with redshift,
the star formation history or the metallicity [16,40–44].
In order to prepare and test our ability at detecting the

SGWB and interpreting valuable information from the data,
we are conducting a series of mock data and science
challenges (MDSC), with increasing degrees of complex-
ity. In this first paper, we focus on a SGWB created by all
the unresolvable compact binary coalescences (CBC) such
as binary neutron stars (BNS), neutron star-black holes
(NSBH) or binary black holes (BBH), up to a redshift
z ¼ 10, which may dominate within our search frequency
range. Such a background may have a realistic chance of
being detected after a few years of operation of the*Duncan.Meacher@ligo.org
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advanced detectors [34]. The observation of the SGWBwill
complement individual detections of a few to a few tens of
CBC events per year [45] at close distances up to a few
hundred Mpc.
For this study we produced multiple year-long data sets

in the form of time series for the three advanced LIGO/
Virgo detectors, containing both instrumental noise and the
GW signal from a large number (104–107 per year) of
compact binary sources out to redshift z ¼ 10. This is done
using a data generation package that was initially devel-
oped for the Einstein Telescope MDSC [46,47]. The data
sets are then analysed using a cross-correlation (CC)
analysis pipeline in order to measure the total GW energy
density, ΩgwðfÞ, of all the GW signals that make up the
stochastic background [48]. We then use the results from
these analyses to perform parameter estimation to try to
determine some of the parameters of the injected popula-
tions, such as the average mass of all the sources, or the rate
at which these binaries coalesce.
This paper is organized into the following sections. In

Sec. II, we introduce the mock data sets and the methods by
which we generate them. In Sec. III, we briefly describe the
analysis methods used to detect the stochastic signal. In
Sec. IV, we discuss how we use the results from the analysis
to estimate various astrophysical parameters. In Sec. V, we
present the results from various analysis runs of the
different mock data sets. Finally in Sec. VI, we present
our conclusions.

II. MOCK DATA

In this section, we introduce the mock data sets that we
will be analyzing as part of this investigation, as well as the
data generation program we use to produce them. Initially
we explain the various steps that are used to produce the
mock data before detailing each of the data sets that will be
considered as part of this MDSC. Finally we show how one
can consider an astrophysical SGWB as the superposition
of many unresolvable single sources. The main data sets are
split into two subsets, the first being produced with
Gaussian noise, and the second produced using “glitchy”
data taken from the initial LIGO S5 and initial Virgo VSR1
science runs recolored to have the sensitivity of the
advanced detectors [49]. The GW signals injected into
each set are the same for both the Gaussian and recolored
noise, allowing us to make a direct comparison of how the
analysis pipeline will behave in an ideal and in a more
realistic case.

A. Mock data generation

The mock data generation package used here was
originally developed for the Einstein Telescope MDSC
[46] where one would expect to be able to make detections
of individual sources out to z ≈ 3.8 for BNS and even
further for higher mass systems such as NSBH or BBH.

Being able to realistically represent the population of
sources at high redshift is essential when considering an
astrophysical SGWB signal for the advanced detectors.
This is because we expect very few CBC events to be
directly detectable but the large number of unresolvable
sources, when considering the whole universe, will all
contribute to the SGWB. This is clearly seen in Fig. 1
where we show the redhsift probability distribution, which
is explained in the next section, of BNS (blue) and BBH
(red) which take into account different delay times between
the formation and merger of the inspiralling systems. We
also plot the maximum horizon distance of the advanced
detectors to directly detect individual BNS (blue dashed)
and BBH (red dashed) signals [50]. We now describe how
we generate and add the large number of GW signals to the
detector data streams using both Gaussian and recol-
ored noise.

1. Simulation of GW CBC signals

The Monte Carlo procedure we use to generate a
population of compact binaries up to redshift of z ¼ 10
is described in detail in [46,51]. Here we summarize the
main steps of the simulations.
The coalescence of a compact binary occurs after two

massive stars in a binary system have collapsed to form a
neutron star or a black hole1 and have inspiralled through
the emission of gravitational waves.

FIG. 1 (color online). Source redshift probability distribution
for BNS (blue) and BBH (red) where different delay times
between the formation and merger of the binary system are
considered. We also plot the horizon distance to BNS (dashed
blue) and BBH (dashed red) for the advanced detectors with their
design sensitivity which are defined as 445 Mpcðz ∼ 0.1Þ and
2187 Mpcðz ∼ 0.4Þ, respectively [45].

1We neglect the possible production of compact binaries
through interactions in dense star systems.
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The coalescence rate in Mpc−3 yr−1 is given by [52–55]

_ρcðz; tdÞ ¼ λ

Z
_ρ�ðzfÞ
1þ zf

PðtdÞdtd: ð1Þ

In this expression, _ρ� is the star formation rate (SFR),
measured in M⊙ Mpc−3 yr−1 and the factor 1=ð1þ zfÞ
accounts for time dilation due to the cosmic expansion. The
redshift z describes when our compact binary merges, zf is
the redshift at which its progenitor massive binary formed,
and PðtdÞ is the probability distribution of the delay
between z and zf, which is the sum of the time from
initial binary formation to evolution into a compact binary,
plus the merger time by emission of gravitational waves.
The parameter λ (in M−1⊙ ) is the mass fraction that goes into
the formation of the progenitors of compact binaries. The
local coalescence rate at z ¼ 0, _ρcð0; tdÞ, is one of the
parameters of our simulations and is denoted by ρ0.
The merger rate in the redshift interval ½z; zþ dz� is

obtained by multiplying _ρcðz; tdÞ with the element of
comoving volume

dR
dz

ðz; tdÞ ¼ _ρcðz; tdÞ
dV
dz

ðzÞ; ð2Þ

where

dV
dz

ðzÞ ¼ 4π
c
H0

rðzÞ2
EðΩ; zÞ ; ð3Þ

where c is the speed of light in a vacuum, H0 is the Hubble
constant and

rðzÞ ¼ c
H0

Z
z

0

dz0

EðΩ; z0Þ ; ð4Þ

where

EðΩ; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ Ωmð1þ zÞ3

q
: ð5Þ

Here, we select the SFR given in [56] and use a standard
ΛCDM cosmology with Ωm ¼ 0.3, ΩΛ ¼ 0.7 and Hubble
parameter H0 ¼ 70 km s−1 Mpc−1. Following [34,41] we
assume a distribution of the delay of the form PðtdÞ ∝ 1=td
with a minimal delay of 20 Myr for BNS and 100 Myr for
BBH, as suggested by population synthesis [57–59].
We then proceed as follows for each source:
(i) The arrival time tc of each GW signal is selected

from a Poisson distribution. Here, the difference in
arrival time, τ ¼ tkc − tk−1c , where k is the current
event, is drawn from the exponential distribution
PðτÞ ¼ expð−τ=τ̄Þ where τ̄ is the average time
between successive events. The average waiting
time between signals is calculated by taking the

inverse of the coalescence rate, Eq. (2), integrated
over all redshifts

τ̄ ¼
�Z

10

0

dR
dz

ðz; tdÞdz
�
−1
: ð6Þ

(ii) The redshift at the point of coalescence, z, is selected
from a probability distribution pðz; tdÞ constructed
by normalizing the coalescence rate in the interval
½0; 10� (see Fig. 1)

pðz; tdÞ ¼ τ̄
dR
dz

ðz; tdÞ: ð7Þ

(iii) The SGWB analysis is not sensitive to the width of
the distribution of the masses, only to the average
chirp mass,M, of the system. This is a combination
of the two component masses, m1 and m2, given by

M ¼ ðm1m2Þ3=5
ðMÞ1=5 ; ð8Þ

whereM ¼ m1 þm2 is the total mass of the system.
Because of this, we choose a single value for the
component masses for each of the systems being
considered: 1.4 M⊙ for neutron stars and 10 M⊙ for
black holes.

(iv) The sky position, Ω̂, is selected from an isotropic
distribution across the whole sky. The cosine of the
inclination angle of the orbital plane to our line of
sight, ι, the GW polarization angle, ψ , and the phase
angle at the time of coalescence, ϕ0, are all chosen
from uniform distributions.

(v) We next calculate the theoretical signal-to-noise
ratio (SNR), ρ, of the inspiral signal to determine
if it is individually detectable by the standard LIGO-
Virgo CBC search pipeline [49,50,60,61]. The SNR
produced by the inspiral phase of the waveform for
CBCs is given by

ρ2¼ 4

Z
flsco

fmin

jFþðΩ̂;ψÞ ~hþðfÞþF×ðΩ̂;ψÞ ~h×ðfÞj2
SnðfÞ

df;

ð9Þ

where Fþ and F× are the antenna response functions
to the two GW polarizations originating from sky
position Ω̂ and with polarization angle ψ , and ~hþ
and ~h× are the signal amplitudes in the frequency
domain for the two polarisations. In the Newtonian
regime, before the last stable circular orbit, ~hþ and
~h× are given by

~hþðfÞ ¼ hz
ð1þ cos2ιÞ

2
f−7=6; ð10Þ
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~h×ðfÞ ¼ hz cos ιf−7=6; ð11Þ

where

hz ¼
ffiffiffiffiffi
5

24

r
ðGMð1þ zÞÞ5=6
π2=3c3=2dLðzÞ

: ð12Þ

In the above equations G is the gravitational
constant, dL is the luminosity distance to the source
at redshift z, fmin is the starting frequency, which we
select to be 10 Hz, Sn is the detector’s noise power
spectral density (PSD) (see Fig. 2), and flsco is
the frequency of the last stable circular orbit,
flsco ≃ c3

63=2πGM
. For BNS signals it is enough to

consider the waveform up until this point as the SNR
contribution of the inspiral phase is dominant.
However, for BBH signals we must also consider
the contribution from the merger and ringdown of
the waveform. The modifications to the calculations
of ~hþ and ~h× are given in [62]. The total SNR for the
GW detector network is then given by

ρ2 ¼
X
A

ρ2A; ð13Þ

where A is the sum over all detectors in the network.
Any signals that pass a network threshold SNR ρT
are then ignored by the SGWB search, where we set
the network SNR threshold to 12.

(vi) Finally, for any surviving subthreshold events, we
produce the waveforms that are then added to the
detector data steams. Here, we have chosen to
use the TaylorT4 time-domain waveform up to

3.5 post-Newtonian order in phase, and the most
dominant post-Newtonian lowest order for ampli-
tude, for the BNS signals. For the case of BBH
signals, we choose the EOBNRv2 waveform pro-
duced from numerical relativity, which includes the
merger and ringdown of the two coalescing black
holes. This is up to 4th post-Newtonian order for
phase and the lowest order for amplitude [63].

Once the time series data has been produced containing
all the subthreshold injections, we add either Gaussian
noise or recolored noise data to produce the final mock
data sets.

2. Simulation of Gaussian noise

Because each of the detectors being considered in this
MDSC are well separated in space, we assume that there
will be no correlated noise between any of them; so the
noise is simulated independently for each of the detectors
[65,66]. We do this by generating a mean zero, unit
variance Gaussian time series which is then Fourier trans-
formed into the frequency domain. This is then colored
using the PSD of the detector sensitivity of either aLIGO or
AdVirgo (see Fig. 2) and is then finally Fourier transformed
back into the time domain. To prevent any potential
discontinuities of the data between adjacent segments of
data, we taper the noise curve away to zero at frequencies
below 10 Hz and above 512 Hz. This is then added to the
time series containing the injected GW signals.

3. Recolored noise

To more accurately imitate the noise likely to be present
in the advanced detectors, we also recolor initial S5 LIGO
and Virgo VSR1 data to have the sensitivity of aLIGO and
AdVirgo. This has the benefit of preserving nonstationary

FIG. 2 (color online). Left—Evolution of the Advanced LIGO sensitivities over the early (blue), middle (red), late (green) and design
(black) phases [64]. Right—Evolution of the Advanced Virgo sensitivities over the early (blue), middle (red), late (green) and design
(black) phases [64].
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noise artifacts while exploring the sensitivity of the pipe-
lines to the signals. The noise spectra are estimated from the
year of data and then averaged. The data is then recolored
with a transfer function corresponding to the advanced
detector power spectra divided by this averaged spectrum.
The same GW signals are then added to these recolored
time series.

B. Mock data sets

To ensure that we have a detectable signal and to reduce
computational costs, we have selected astrophysical models
corresponding to the most optimistic rates given in [45]
instead of using longer observational times to obtain the
same SNR.
In total, we generate 5 data sets, of duration one year, all

of which are produced with both Gaussian noise and
recolored noise. For these data sets, we use the nominal
design sensitivities of Advanced LIGO and Virgo, but in
order to account for the improvement of the sensitivity, we
also produce a sixth, observing scenario data set consisting
of 3, 6, and 9 months and 1 and 3 years corresponding to
the early, middle, late and design phases of the advanced
detectors (see Fig. 2). This observing scenario, consisting
of 5.5 years of data, should cover the full advanced detector
observing period from mid-2015 until the end of 2022.
Details of all the data sets are found in Table I and details on
the rates and expected number of events are found in
Table II.
One part of the investigation is to see how having

statistically different sources affects our analysis. When
the rate and the duration of the GW events are large, the
sources overlap each other creating a GW signal continuous
in time (there is always a source present) which is Gaussian
in nature due to the central limit theorem. However, for
smaller rates or shorter waveforms, the time interval
between successive events increases resulting in a noncon-
tinuous and non-Gaussian signal [41,67]. Analytical cal-
culations made in [68] and for the Einstein Telescope
MDSCs [46,47] suggest that when making a measurement
of an astrophysical gravitational-wave background one just
needs to consider the total number of coalescing events,
with their relevant signal amplitudes, that occur within the

observational period. The nature of the signals themselves
will have no effect on the estimation of the SGWB. This is
explained in greater detail later in Sec. II C. However these
results have not been independently verified with the use of
simulated data. We now describe each of these data sets
being considered in this investigation.

1. Main data sets

Data set 0 is our control test for both the Gaussian and
recolored data sets. The data streams for each of the
detectors contain no coincident signals so there will be
no correlated signals between any of the detectors. Thus,
the results from the analysis of data set 0 should give us an
accurate measurement of the expected error bars for each of
the following data sets.
In data set 1, we have generated a large number of BNS

signals with a merger rate of 10 coalescences per Mpc3 per
Myr that are injected into both the Gaussian and the
recolored noise. Any individual events that surpasses a
network SNR threshold value, as described in Sec. II A 1,
are removed as it is possible for these signals to bias the

TABLE I. Table describing the data sets that are produced as part of the MDSC. The first column is the reference number of the data
set. The second column indicates if the data set is produced with just Gaussian noise or with recolored noise as well. The third column
shows what sources are injected into the data set. The fourth column gives the rate of events used, see Table II. The fifth column gives the
length of the data set.

Data Set Noise Sources Rate (Mpc−3 Myr−1) Tobs

0 Gaussian & Recolored � � � � � � 1 year
1 Gaussian & Recolored BNS (subthreshold) 10 1 year
2 Gaussian & Recolored BNS (all) 10 1 year
3 Gaussian & Recolored BBH (subthreshold) 0.3 1 year
4 Gaussian & Recolored BNSþ BBH (subthreshold) 10þ 0.3 1 year
Observing Scenario Gaussian BNS (subthreshold) 2 5.5 years

TABLE II. A list of compact binary coalescence rate densities
as given in [45]. The first column labels whether a merger rate is
optimistic (Rhigh), realistic (Rrealistic) or pessimistic (Rlow). The
second column gives the rates of coalescing events. The third
column gives the average time between successive events. The
final column gives the total number of events out to z ¼ 10 that
are expected to occur per year.

Rate (Mpc−3 Myr−1) τ̄ (s) Nevents (yr−1Þ)
BNS
Rhigh 10 1.35 2.3 × 107

Rrealistic 1 13.5 2.3 × 106

Rmedium-low 0.1 135 2.3 × 105

Rlow 0.01 1350 2.3 × 104

BBH
Rhigh 0.3 64.7 4.9 × 105

Rrealistic 0.005 3880 8133
Rmedium-low 0.001 19400 1627
Rlow 0.0001 194000 163
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results of the analysis. But given the expected number and
length of the waveform when compared to the overall
length of the observing time this effect is negligible, as
demonstrated later in this paper. The top plot of Fig. 3
shows a 1000s segment of the time series produced from
BNS contributing to data set 1. It is clearly seen that the
GW signal is continuous at all times, so with this data set
we investigate the affect that a continuous SGWB signal
will have on our analysis.
Data set 2 contains the exact same sources with both

Gaussian and recolored noise that are included in set 1
except that here we have not removed the loudest indi-
vidually detectable events from the time series. This is to
test by how much our results can be affected if we include
the loud events in the analysis by comparing the results
against that of the first data set.
In data set 3, we generate a number of BBH signals using

a merger rate of 0.3 coalescences per Mpc3 per Myr that are
injected into both Gaussian and recolored data. With
this data set we investigate the possible effects that a
noncontinuous (popcorn) SGWB will have on our analysis.
The middle plot of Fig. 3 shows a 1000s segment of the
time series produced from BBH contributing to data set 3.
We see that, due to the shorter waveform lengths and lower
coalescence rate, the GW signals are noncontinuous or
more “popcorn” like.
In data set 4 we have generated a number of both BNS

and BBH signals, using the same rates stated above, which
are injected into both Gaussian and recolored data. This set
is to test the behavior of the analysis and parameter estimate
when analyzing data from a SGWB having a contribution
from more than one source. The bottom plot of Fig. 3
shows a 1000s segment of the time series produced from
BNS and BBH signals contributing to data set 4. It is
clearly seen that the GW signal is continuous at all times
whilst still having louder popcorn-like bursts from the BBH
signals.

2. Observing scenario

The observing scenario data set is designed to realisti-
cally simulate the data that we would expect to obtain from
the network of advanced detectors over the initial several
years of operations. For this set, we generate a large number
of BNS signals using a merger rate of 2 coalescence per
Mpc3 per Myr that are injected into Gaussian data. This is a
lower rate than is used in set 1 as we are using a longer
observational period. This Gaussian data differs from the
previous data sets as we change the PSDs for each of the
detectors at different stages to represent the improvements
in sensitivities that are expected to be obtained in each
observing run. Examples of this are shown in the left-hand
plot for aLIGO, and right-hand plot for AdVirgo of Fig. 2.
In reality we should take the final sensitivity of one phase as
the initial sensitivity of the next, which would then
gradually decrease to the next final sensitivity. However,

FIG. 3 (color online). Top—A 1000s segment of the time series
for BNS signals using the higher LIGO rate of 10 Mpc−3 Myr−1.
This signal appears continuous. Middle—A 1000s segment of the
time series for BBH signals of mass 10þ 10 M⊙, using the
higher LIGO rate of 0.3 Mpc−3 Myr−1. This signal appears
noncontinuous (popcorn). Bottom—A 1000s segment of the
time series for mixed BNS and BBH signals with higher LIGO
rates and BH mass of 10 M⊙. This signal appears as a popcorn
background from BBH on top of a continuous background
from BNS.
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here we consider the ideal case of taking the final sensitivity
for the full duration of each phase. These observing runs are
set out as follows [64]:

(i) O1, 2015: This will consist of a 3-month observa-
tional run with both LIGO detectors (HL) with Early
aLIGO sensitivity.

(ii) O2, 2016-17: This will consist of a 6-month ob-
servational run with all three detectors (HLV), where
the HL detectors will have Mid aLIGO sensitivity
and V will have Early AdVirgo sensitivity.

(iii) O3, 2017-18: This will consist of a 9-month ob-
servational run with all three detectors (HLV), where
the HL detectors will have Late aLIGO sensitivity
and V will have Mid AdVirgo sensitivity.

(iv) O4, 2019: This will consist of a year long observa-
tional run with all three detectors (HLV), where the
HL detectors will have the final design aLIGO
sensitivity and V will have Late AdVirgo sensitivity.

(v) O4 (continued), 2020-22: This will consist of a
3 year long observational run with all three detectors
(HLV), where the HL detectors will have the final
design aLIGO sensitivity and V will have the final
design AdVirgo sensitivity.

C. Astrophysical stochastic background from CBC

The spectrum of the SGWB is usually characterized by
the dimensionless parameter

ΩgwðfÞ ¼
1

ρc

dρgw
d ln f

; ð14Þ

where ρgw is the gravitational-wave energy density, f the

frequency in the observer’s frame and, ρc ¼ 3c2H2
0

8πG , is the
critical energy density needed to close the Universe today.
The GW spectrum from the population of extragalactic
compact binaries is given by the expression

ΩgwðfÞ ¼
1

ρcc
fFðfÞ; ð15Þ

where FðfÞ is the total flux. The total flux is the sum of the
individual contributions

FðfÞ ¼ T−1
obs

πc3

2G
f2

XN
k¼1

ð ~h2þ;k þ ~h2×;kÞ; ð16Þ

where N is the total number of coalescences in the data and
k is the index of the individual coalescence. The normali-
zation factor T−1

obs assures that the flux has the correct
dimension, Tobs ¼ 1 yr being the length of the data sample.
In the Newtonian regime, before the last stable circular

orbit, the Fourier transforms ~hþ and ~h× are given by
Eqs. (10)–(12). This gives for the energy density parameter
[68]

ΩgwðfÞ ¼
5π2=3G5=3c5=3

18c3H2
0

f2=3
XN
k¼1

ðMkð1þ zkÞÞ5=3
dLðzkÞ2

×

�ð1þ cos2ιkÞ2
4

þ cos2ιk

�
: ð17Þ

This equation is valid for BNS signals where we have
considered only the inspiral phase, but for BBH signals,
there is an extra contribution coming from the merger and
ringdown phases. Figure fig:background shows ΩgwðfÞ for
the population of BNS (blue), and BBH (red) in the mock
data sets described in the previous section. The plot in black
corresponds to the sum of the signal from BNS and BBH.
For BNS and BBH signals, ΩgwðfÞ increases as f2=3 from
the inspiral phase (then as f5=3 from the merger phase for
BBH) before it reaches a maximum and decreases dra-
matically. The peaks occur at frequencies corresponding
roughly to the flsco and the end of the ring-down phase at
z ∼ 1.5 where the coalescence rate is maximal. The
amplitude of the background scales with both the rate of
coalescing events and the average chirp mass of all the
signals. It is larger for the BNS background (data set 1) than
for the BBH contribution (data set 3) because, even though
the chirp mass is smaller, the rate we have considered is
larger.

III. SGWB SEARCH

In this section, we briefly describe the cross-correlation
(CC) method by which we analyze the data (please see
references such as [40,48,69] for a complete treatment).
The optimal strategy to search for a Gaussian (or continu-
ous) SGWB is to cross-correlate measurements of multiple
detectors, ~s1ðfÞ and ~s2ðfÞ. When the background is
assumed to be isotropic, unpolarized and stationary, the
cross-correlation product is given by [69]

Y ≃
Z

∞

−∞
~s1�ðjfjÞ ~s2ðjfjÞ ~QðfÞdf; ð18Þ

and the expectation value of Y is

hYi ¼ 3H2
0

20π2
Tobs

Z
∞

−∞

1

jfj3 ΩgwðjfjÞγðjfjÞ ~QðfÞdf; ð19Þ

where

~QðfÞ ∝ γðfÞΩgwðjfjÞ
jfj3P1ðjfjÞP2ðjfjÞ

; ð20Þ

is the optimal filter that maximizes the SNR, ΩgwðfÞ is the
energy density in GW as defined in Eq. (14), ~s1 and ~s2 are
the detector output streams from both detectors in the
frequency domain, P1ðfÞ and P2ðfÞ are the detector power
spectral densities of the two detectors and γðfÞ is the
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normalized overlap reduction function [70], characterizing
the loss of sensitivity due to the separation and the relative
orientation of the detectors. The cross-correlation can take
on negative (or positive) values due to fluctuations pro-
duced by noise. We are reporting the raw results, hence the
occurrence of negative results. However, the presence of a
sufficiently strong stochastic gravitational-wave back-
ground will produce a positive value for the energy density.
The expected variance, which is dominated by the noise,

is given by

σ2Y ≈
Tobs

4

Z
∞

−∞
P1ðjfjÞP2ðjfjÞj ~QðfÞj2df; ð21Þ

and the expected (power) SNR of the CC statistic in the
frequency range fmin–fmax, for an integration time Tobs is
given by [71]

SNR¼ Y
σY

¼ 3H2
0

10π2
ffiffiffiffiffiffiffiffi
Tobs

p �Z
fmax

fmin

γ2ðjfjÞΩ2
gwðjfjÞ

f6P1ðjfjÞP2ðjfjÞ
df

�
1=2

;

ð22Þ

where we usually assume a filter of the form

ΩgwðfÞ ¼ Ωαðf=frefÞα; ð23Þ

where Ωα is defined as ΩgwðfÞ at the reference fre-
quency fref.
For this MDSC, we set fmin ¼ 10 Hz, fmax ¼ 250 Hz,

use a reference frequency of fref ¼ 100 Hz and set α ¼
2=3 as this is the theoretical value produced from the
inspiral phase of CBCs. In the right-hand plot of Fig. 4

we show the fractional SNR build-up as a function of
frequency for different detector pairs. We see that for all
three pairs we reach to nearly 100% of the total SNR by
120 Hz, which is contained well within the limits we have
set above for the analysis.

IV. PARAMETER ESTIMATION

Parameter estimation of signal models requires, at first,
GW detection with high significance. In this analysis, we
use a method for parameter estimation of a SGWB back-
ground. We seek to address the question of how well we
can fit the model parameters. As a concrete example, we
show the recovery of parameters from the MDSC injection
sets using both a power law, α, and CBC model. We show
how to estimate parameters such as a SGWB amplitude and
the CBC coalescence rate. To do so, we use a method
presented in [44], that introduced a maximum likelihood
technique to simultaneously estimate multiple parameters
of SGWB models using CC data from pairs of GW
detectors. This technique was used on recent results from
LIGO to produce the first simultaneous limits on multiple
parameters for power law and CBC models of the SGWB,
and to estimate the sensitivity of second-generation GW
detectors to these models.
The likelihood function is defined as

LðŶi; σ̂j~θÞ ∝ exp

�
−
1

2

X
i

ðŶi −ΩMðfi; ~θÞÞ2
σ2i

�
; ð24Þ

whereΩMðfi; ~θÞ is the template spectrum that we are trying
to fit by varying the parameters θ, the sum runs over

FIG. 4 (color online). Left—Energy density ΩgwðfÞ for the population of BNS (blue), BBH (red), and the combination of the two
populations (black) as used in data sets 1, 3 and 4, respectively. The plots are calculated using the higher LIGO rates of 10 Mpc−3 Myr−1

(BNS) and 0.3 Mpc−3 Myr−1 (BBH). We also plot the reference frequency for which we report all the results in this investigation, shown
by the black dashed line. Right—Fraction of the total theoretical SNR for the three detector pairs, HL (blu), HV (red), and LV (green).
This is calculated using the frequency band [10–250] Hz, as given by Eq. (22), and assuming f2=3, which is used for the analysis. We
also plot the reference frequency for which we report all the results in this investigation, shown by the black dashed line.
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frequency bins fi, which we set to be 0.25 Hz, and Ŷi and
σ2i are the estimator and variance in the frequency bin i. The
two methods, one a stochastic template-based analysis and
the other a CC analysis, are very similar. Traditional SGWB
cross-correlation searches have adopted a particular power-
law model, assuming a specific spectral index value and
searching over the spectral amplitude. The template-based
maximum-likelihood estimator instead generically incor-
porates any model for the purposes of both detection and
parameter estimation. Therefore, it may be particularly
useful for compact binary backgrounds.

A. SGWB models

The amplitude and the frequency dependence of the
SGWB spectrum depend on the physics of the model that
generated it. For example, in the CBC model, the spectrum
is determined by the coalescence rate of binary systems
throughout the universe and by the distribution of their
chirp masses. Past SGWB searches, performed using data
from the initial LIGO and Virgo detectors [40,48,72],
assumed a power-law model [see Eq. (23)] and set limits
only on the amplitude Ωref for fixed values of the spectral
index α and of the reference frequency fref. This is
reasonable as most SGWB models predict a power-law
dependence in the LIGO-Virgo frequency band.
As discussed above, compact binary coalescences are

among the most promising sources of gravitational waves
for ground-based gravitational-wave detectors. While
detections of individual compact binaries are possible,
another possibility is the detection of contributions from
all CBCs in the universe to a SGWB. The model we use is
the average version of Eq. (17) where the discrete sum over
the sources is replaced by an integral over the redshift,
masses, sky position, inclination angle and ψ . It was shown
in [44] that it was sufficient to use only the average chirp
mass M to determine the spectrum. The model then
consists of M and the rate of coalescence events.

V. RESULTS

We now present the results from our analyses of the
various mock data sets. We first discuss the results from the
analysis of the Gaussian noise data (data set 0), which we
consider to be an ideal case. We compare these against the
results from the recolored noise which can be considered as
a more realistic case. We then detail the results from the
simulation of the observing scenario. Finally we show the
results from the parameter estimation.
The results of the Gaussian and recolored data sets,

where we use the same set of injections for both, are
reported in Table III. The first column lists the three
detector pairs as well as the combined results which is
the weighted sum of the three pairs where the combined
point estimate is calculated using

Ycombined ¼
P

ABYABσ
−2
ABP

ABσ
−2
AB

; ð25Þ

where AB run over the three possible detector pairs and the
combined error is given by

σ−2combined ¼
X
AB

σ−2AB: ð26Þ

The second, third and fourth columns give the estimated
GW energy density, the error on this estimate and the SNR
of the measurement for the data sets using Gaussian noise.
The fifth, six and seventh columns give the corresponding
results for the data sets using recolored noise. We use a 3σ
measurement as the threshold at which to state that there is
possible evidence for a SGWB signal, which is equivalent
to a SNR ¼ 3, as defined in Eq. (22). This equates to a false
alarm probability of 0.27% and is true for both Gaussian
and non-Gaussian noise because the point estimate, derived
from a large sum, behaves as a Gaussian statistic [40].

A. Gaussian

The results from the analysis of all the Gaussian data sets
are presented in the left-hand section of Table III. The first
results we highlight are from data set 0, which is our control
set as it consists of just independent Gaussian noise. The
measurement of Ωα for the three detector pairs and the
combined result give very low estimates and are the results
of statistical fluctuations in the Gaussian data. The main
result from this data set is the measurement of the error
which we note is consistent with the error measurements of
each of the other Gaussian noise data sets.
Data sets 1 and 2, where we only consider a population

of BNS with a high merger rate, were designed to test how
much bias is added to the measurements of Ωα when we
neglect to remove the loud detectable signals from the data
streams2 compared to when we only use subthreshold
signals. By keeping the detectable events, we also increase
Ωα, as indicated in Table III. We find that in both cases we
are able to measure the background estimate to within 1σ of
the true value, as well as obtaining similar SNRs, both
greater than 10.
With data set 3, where we consider a population of only

BBH with a lower merger rate than before, we find that we
are still able to find possible evidence for a SGWB with an
SNR ¼ 3.52. This also gives the largest error in the
measurement of Ωα with a measured value 1.3σ away

2In this MDSC we can choose to simply not include any
individually detectable signals within the data streams. In reality,
removing a detected signal from the data streams is very difficult
as there may be some inaccuracy in measuring its true parameter
used to produce the waveform which would leave some residual
signal. Instead, we simply do not analyze the data that is known to
contain the signal in the frequency band that we are searching.
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from the true value. These results show that the estimation
of Ωα is still possible given a noncontinuous GW signal
(see middle plot of Fig. 3).
Data set 4, which is the combination of data set 1 and

data set 3, gives a measured Ωα spectrum equal to the sum
of the results from data sets 1 and 3. A plot of the results for
the three detector pairs, as well as the combined results, is
shown in the left-hand plot of Fig. 5, where the measured
values Ωα are plotted in blue along with their respective
error bars. Here the red dashed line shows the true value of
Ωα. We see here that we are able to recover the value of Ωα

to within 1.6%with the HL detector pair and 0.5%when we
consider the combined results. This is likely due to the very
high SNR of 13.9.

B. Recolored

The recolored data consists of the recolored initial LIGO
and Virgo detector noise combined with the same data sets
signal as for the Gaussian case. This analysis more closely
simulates the likely output from the advanced detectors,
which will suffer from various environmental noise sources
contaminating the data. The results from the analysis of all
the recolored data sets are presented in the right-hand
section of Table III (next to the Gaussian results for easy
comparison). As in the case of the Gaussian data set, set 0
contains only noise and serves as a baseline for the analysis.
It has a combined point estimate well within 1σ of 0. The
results for data sets 1 and 2 are also consistent with the
Gaussian sets. The SNR for these sets are about 20% lower

TABLE III. Results from all mock data sets. The first column indicates the detector pair used in the analysis. The second column gives
the estimated value of Ωα from the Gaussian data sets. The third column gives the error on the measurement from the Gaussian data sets.
The fourth column gives the SNR of the detection from the Gaussian data sets. The fifth column gives the estimated value ofΩα from the
recolored data sets. The sixth column gives the error on the measurement from the recolored data sets. These are all nearly identical
across the data sets because the contributions of signal to the overall noise background are minimal (of order 0.1% when compared to the
instrumental noise). This was verified by performing the same analysis on a small subset of the data but containing only signal. The final
column gives the SNR of the detection from the recolored data sets. Here negative SNR values arise when the point estimate is negative.
The table is divided by horizontal rows for the various data set with the injected value of Ωα, as calculated by Eq. (17), also given.

Point Estimate Error SNR Point Estimate Error SNR

Detector Pair Gaussian Recolored Noise

Set 0 (Noise only): Ωα ¼ 0
HL −8.093 × 10−10 1.473 × 10−9 −0.55 −1.119 × 10−9 1.683 × 10−9 −0.66
HV −1.04 × 10−8 1.139 × 10−8 −0.91 −1.12 × 10−8 1.407 × 10−8 −0.8
LV −1.47 × 10−9 1.042 × 10−8 −0.14 −1.765 × 10−9 1.38 × 10−8 −0.13
Combined −9.769 × 10−10 1.447 × 10−9 −0.68 −1.268 × 10−9 1.659 × 10−9 −0.76

Set 1 (BNS): Ωα ¼ 1.364 × 10−8

HL 1.512 × 10−8 1.474 × 10−9 10.26 1.455 × 10−8 1.683 × 10−9 8.65
HV 7.706 × 10−9 1.139 × 10−8 0.68 −9.858 × 10−9 1.235 × 10−8 −0.8
LV 5.491 × 10−9 1.042 × 10−8 0.53 7.451 × 10−9 1.235 × 10−8 0.6
Combined 1.481 × 10−8 1.448 × 10−9 10.23 1.399 × 10−8 1.653 × 10−9 8.46

Set 2 (BNS): Ωα ¼ 1.411 × 10−8

HL 1.573 × 10−8 1.474 × 10−9 10.68 1.601 × 10−8 1.69 × 10−9 9.47
HV 7.713 × 10−9 1.139 × 10−8 0.68 −6.738 × 10−9 1.24 × 10−8 −0.54
LV 5.854 × 10−9 1.042 × 10−8 0.56 1.131 × 10−9 1.24 × 10−8 0.09
Combined 1.541 × 10−8 1.447 × 10−9 10.65 1.533 × 10−8 1.659 × 10−9 9.24

Set 3 (BBH): Ωα ¼ 6.975 × 10−9

HL 5.175 × 10−9 1.474 × 10−9 3.51 4.725 × 10−9 1.683 × 10−9 2.81
HV 4.257 × 10−9 1.139 × 10−8 0.37 −6.117 × 10−9 1.407 × 10−8 −0.43
LV 1.763 × 10−9 1.042 × 10−8 0.17 3.968 × 10−9 1.379 × 10−8 −0.29
Combined 5.094 × 10−9 1.447 × 10−9 3.52 4.448 × 10−9 1.659 × 10−9 2.68

Set 4 (BNSþ BBH): Ωα ¼ 2.022 × 10−8

HL 2.056 × 10−8 1.474 × 10−9 13.94 1.991 × 10−8 1.684 × 10−9 11.83
HV 9.674 × 10−9 1.139 × 10−8 0.85 6.452 × 10−9 1.352 × 10−8 0.48
LV 7.211 × 10−9 1.042 × 10−8 0.69 1.777 × 10−8 1.328 × 10−8 1.34
Combined 2.012 × 10−8 1.448 × 10−9 13.9 1.968 × 10−8 1.658 × 10−9 11.87

Observing scenario: Ωα ¼ 2.756 × 10−9

HL 3.581 × 10−9 6.869 × 10−10 5.21 � � � � � � � � �
HV 9.413 × 10−10 6.207 × 10−9 0.15 � � � � � � � � �
LV 4.235 × 10−10 5.723 × 10−9 0.07 � � � � � � � � �
Combined 3.505 × 10−9 6.779 × 10−10 5.17 � � � � � � � � �
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than that of the Gaussian set, which is due to the non-
Gaussian noise transients. They are also within 1σ of the
true values. Data set 3 and 4 show similar effects to data set
2, with a lower SNR than in the Gaussian case and with a
recovered value ofΩα within 1.6σ of the true values for data
set 3 and within 1σ for data set 4.

C. Observing scenario

We report the results from the observing scenario where
we consider evolution of the detector sensitivities during
different observational runs, the results of which are shown
in Fig. 6. In the left-hand plot we show the measured value
of Ωα as a function of observation time with error bars

FIG. 5 (color online). Left—Results for the year-long data set 4 with Gaussian noise where we show the measured value of Ωα with
error bars included for each of the detector pairs as well as the combined result of the weighted sum of the three detector pairs. The
horizontal red dashed line shows the true injected value of Ωα ¼ 2.022 × 10−8 for this data set. Right—Results for the year-long set 4
with recolored noise where we show the measured value of Ωα with error bars included for each of the detector pairs as well as the
combined result of the weighted sum of the three detector pairs. The horizontal red dashed line shows the true injected value of
Ωα ¼ 2.022 × 10−8 for this data set.

FIG. 6 (color online). Left—Combined results for the estimated value of Ωα as a function of time for the 5.5 long year observing
scenario. The black dashed lines show the endpoint of each observing run, the red dashed line is the true injected value of
Ωα ¼ 2.756 × 10−9, the horizontal black solid line is Ωα ¼ 0 and the blue points are the measured Ωα values with their error bars.
Right—Combined results for the measured SNR as a function of time for the 5.5 year long observing scenario. The black dashed lines
show the endpoint of each observing run, the red dashed line represents SNR ¼ 3, which we use as a threshold for the possible evidence
of a SGWB, the blue dashed line shows the theoretical SNR as a function of time given by Eq. (22) and the blue points are the combined
SNRs corresponding 1σ error bars.
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included. The black dashed lines represent the start/end of
each phase as detailed in Sec. II B and the red dashed line
represents the true injected Ωα value while the solid black
horizontal line representsΩα ¼ 0. In the right-hand plot we
show the combined SNR as a function of time for the same
points in the left-hand plot, as well as the theoretical SNR
given by Eq. (22) using the blue dashed line. Here again the
vertical black dashed lines show the start/end of each phase
and the red dashed line indicates SNR ¼ 3 which we use as
the threshold value for finding possible evidence for
a SGWB.
The first result to note is that over the course of the whole

5.5 years of the observing run the size of the error bars
reduces significantly. By the end of the first 1.5 years of
observations they have already reduced by over an order of
magnitude. The second result to note is that already after
the first 1.5 years of observation, we will observe disagree-
ment with the null result at 95% confidence (2σÞ. The third
result, which is in agreement with the theoretical model, is
that we may be able to find possible evidence for a SGWB
with an SNR ≥ 3 after a period of about 3.5 years. At the

end of the 5.5 year observing run, for this coalescence rate,
we report that we have a total SNR of 5.15. We note that, in
the right-hand plot of Fig. 6, the measured SNR (0.95) for
the end of the second phase is well above what is predicted
by the theoretical model (SNR ¼ 0.35), although it is still
within the 1σ range. This is explained by the larger than
average measurement of Ωα at the end of the second phase,
as shown in the left-hand plot of Fig. 6, which, whilst being
significantly larger than other measurements, is still within
1σ of the true value.

D. Parameter estimation

In order to construct parameter posterior distributions,
we use models for ΩMðfi; ~θÞ for various sets of waveform
parameters. We use a power law and compact binary model

for ΩMðfi; ~θÞ. Equation (24) is evaluated repeatedly for
each set of parameters and is maximized for those param-
eters that best fit the data. Parameter posterior distributions
are constructed for parameter sets of equal likelihood.
Example posteriors are shown in Fig. 7 for the power law
and CBC models. Table IV shows results for all of the

FIG. 7 (color online). Left—The posteriors for amplitude, Ωα, and its spectral index, α, for data set 1 with the 99% confidence level
(blue), 95% confidence level (red) and 68% confidence level (black) shown. We show the true parameter values with an “X”. Right—
The posteriors for average chirp mass, M, and coalescence rate for data set 1 with the 99% confidence level (blue), 95% confidence
level (red) and 68% confidence level (black) shown. We denote the correct CBC parameters by an “X”.

TABLE IV. Parameter estimation results for the various data sets. We provide the 99% confidence limits for both the power law and
CBCmodels, as well as the injected parameters. The first column indicates the data set. The second column is the estimated amplitude of
Ωα. The third column is the estimated power law of the signal. The fourth and fifth columns gives the injected values of the amplitude
and power law. The sixth column give the estimated average chirp mass. The seventh column gives the estimated rate of events. The
eighth and ninth columns gives the injected values of the average chirp mass and rate of events.

Data Set Ωα α True Ωα True α M Rate True M True Rate

Set 1 [4.0 × 10−10, 4.0 × 10−8] ½−0.3; 1.6� 1.5 × 10−8 0.65 ≤23 ≥1.0 1.22 10
Set 2 [4.0 × 10−9, 4.0 × 10−8] ½−0.3; 1.6� 1.5 × 10−8 0.65 ≤22 ≥0.9 1.22 10
Set 3 [1.0 × 10−12, 3.4 × 10−8] ½−4; 2� 7.6 × 10−9 0.73 ≤100 ≥0.04 8.7 0.3
Set 4 [8.7 × 10−9, 4.8 × 10−8] [0, 1.4] 2.1 × 10−8 0.68 ≤19 ≥1.6 1.37 10.2
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injection sets. We provide parameter estimates for the
power-law model where, for CBC systems, the power-
law index is α ¼ 2=3. We also provide parameter estimates
and the true values for the CBC model. The constraints on
the CBC background are relatively weak and highly
dependent on the mass of the system (see the right-hand
plot of Fig. 7). Therefore, the limits we place on chirp mass
and coalescence rate are in terms of bounds on the
parameters. The bounds we place are consistent with the
injected parameter values. We tested the case where we
consider multiple CBCmodels, as was used to produce data
set 4, and found that the posteriors are broadened by a
significant amount.

VI. CONCLUSION

In this SGWB MDSC for the advanced detectors, LIGO
and Virgo, we have presented our methods for the produc-
tions and analysis of multiple mock data sets, as well as the
results and their scientific interpretation.We consistently find
that the best results are obtainedwith the aLIGOdetector pair
(HL), compared to the aLIGO-AdVirgo pairs (HV, LV),
though we still see some slight improvement when we
consider the combined results from all detector pairs. This
is in agreement with what we expect given the difference in
sensitivities and orientations of the pairs. In the case of our
three detector network, the two aLIGO detectors are the best
aligned and have the smallest separation.
We have made comparisons between the use of Gaussian

detector noise, which can be considered an idealistic case,
and recolored noise data which is expected to be more
realistic. We injected the same sources into both sets of
noise to ensure that we are measuring the same signal. In
both cases, we have been able to recover the injected value
Ωα to within 2σ using each data set.
From the analysis of the observing scenario data set we

have shown that for the optimistic values of the CBC event
rate the first deviation fromthenull result (at95%confidence)
may be observed as early as 1.5 years into the observation
time. This assumes that we are able to achieve the designed
sensitivities at the end of each observing phase, as outlined in
Sec. II B, and that the coalescence rate of CBC signals is
significantly large as to make it detectablewithin a few years
of operations at design sensitivity.
The results from data sets 1 and 3 have also shown that

the theoretical prediction given in [68] holds true when
applied to mock data. That is, the statistical properties of
the CBC GW signals, whether it be a continuous signal or
more popcorn like, do not matter when we make a
measurement of Ωα; all that is important is the total number
of events that coalesce within the observational period and
the GW energy spectrum emitted by each event.

Finally,we have shown thatwe are able to apply parameter
estimation methods to the data in order to place confidence
levels on different parameters. The detection of a stochastic
signalwill not be able to provide enough informationby itself
to place tight constraints on these parameters, but when
considered in combinationwith detections of single events, it
can become a very useful tool to explore the ensemble of
sources from the whole universe [44].
The results from the estimation of the average chirp mass

and coalescence rate also show that there is equal probability
of having a high rate of events and low average mass as
having a low rate of events and high average mass. In both
cases the amplitude of the signal and the spectral index will
be the same for the frequency rangewe search over, but in the
first case the GW signals will be continuous while in the
second case theGWsignals will be highly non-Gaussian and
popcorn-like. The isotropic CC search we implement here is
insensitive to two types of signals as it just considers the
average strength of the signal over the observational period.
In order to be able to differentiate these two signal types a
non-Gaussian analysis must be developed that is able to
search over both time and frequency [73].
Future MDSCs may wish to explore several areas that

have not been covered here, such as, the inclusion of
intermediate mass black holes (IMBH), whichmay coalesce
in the middle of the frequency search band, and therefore,
given a high enough rate, may affect the analysis. Or, we
could add a loud SGWB signal of cosmological origin that
has a spectral index that differs from that of the astrophysical
contribution. Another important question would be to
investigate the behavior of the CC analysis when correlated
noise between different pairs of detectors is included in the
mock data [65,66]. The continuation of MDSCs will be an
important part of the verification process for LIGO and
Virgo when a SGWB is eventually observed.
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