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The detection of unmodeled gravitational-wave transients by ground-based interferometric gravitational-
wave detectors is an important goal for the advanced detector era. These searches are commonly cast as
pattern recognition problems, where the goal is to identify statistically significant clusters indicating the
presence of gravitational-wave transients in spectrograms of detector strain power when the precise signal
morphology is unknown. In previous work, we have introduced a clustering algorithm referred to as
seedless clustering, and shown that it is a powerful tool for detecting weak and long-lived (∼10–1000 s)
gravitational-wave transients. However, as the algorithm is currently conceived, in order to carry out a
search on approximately a year of data, significant computational resources may be required for estimating
background events. Currently, the use of the algorithm is limited by the computational resources required
for performing background studies to assign significance to events identified by the algorithm. In this
paper, we present an analytic method for estimating the background generated by the seedless clustering
algorithm and compare the performance to both Monte Carlo Gaussian noise and time-shifted
gravitational-wave data from a week of LIGO’s 5th Science Run. We demonstrate qualitative agreement
between the model and measured distributions and argue that the approximation will be useful to
supplement conventional background estimation techniques for advanced detector searches for long-
duration gravitational-wave transients.
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I. INTRODUCTION

Second-generation gravitational-wave detectors such as
Advanced LIGO [1] and Advanced Virgo [2] will be
coming online in the coming months and years. Some
searches for gravitational-wave transients seek to detect
gravitational-wave transients lasting ∼10–1000 s. Compact
binary coalescences of black holes (and/or neutron stars)
are one example of long-lived gravitational-wave sources
[3–5]. Uncertain models exist for more exotic sources of
long-lived transients, including emission from rotational
instabilities in protoneutron stars [6–9] and black-hole
accretion disk instabilities [10–12]. When a matched filter
search is not possible, searches for unmodeled long-lived
transients [13–18] can be employed.
Searches for compact binary coalescences typically rely

on performing time-slides of single detector triggers,
generated by performing a matched filter (in the compact
binary coalescence case) on single-detector time series
data. Time-slides are the shift of either time-series data or
triggers from one detector against those of another, and are
designed to eliminate potential gravitational-wave content
contaminating the background estimation. Burst searches

use clustering algorithms, as opposed to matched filtering
techniques, on single detector time-frequency maps [19] or
multidetector coherent maps [14,20,21]. Calculating the
coherent statistic takes significant computational resources
because the triggers are inherently multidetector and so the
time-slides must be done on the time-series data itself,
rather than the single-detector triggers. Because detector
noise is generally non-Gaussian, it is difficult to know if an
event in one detector is signal or noise. For this reason,
multiple detectors are required to perform gravitational-
wave searches. To estimate background, these searches
time-shift the data of each detector with respect to the other
(s), by some unphysical delay which is larger than the light
travel time between the detectors. The coherent statistics
are then computed between the time-shifted data in the
same way as the original search algorithm, and in this way,
false alarm rates can be estimated. Current searches use
thousands of time-slides or more [4,22,23]. The main
limitation on the number of time-slides that can be
performed is limited computational resources, although
the short-duration coherent burst pipelines have now been
tested in the ten-thousand time-slides regime. Currently,
they are moving toward the hundred-thousand time-
slide regime, while the compact binary matched filtering
pipelines have successfully generated 5σ background*coughlin@physics.harvard.edu
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distributions. 5σ means that the event has a SNR exce-
eding a significance threshold that corresponds to a 1 in
1,744,278 occurrence, after accounting for trials factors.
For a single event, therefore, 1,744,278 time-slides must
be performed to determine whether an event has a SNR
exceeding a 5σ threshold. The difficulty in reaching these
levels is due to computationally intensive calculations like
the matched filter used in compact binary coalescence [24],
calculation of the coherent SNR [25] used in burst searches,
and potentially seedless clustering [15–18] in a long-
duration transient search.
Was et al. demonstrated the limitation of using time-

slides to perform background estimation in the single-
detector trigger case [26,27]. Although coherent analyses
do not use single-detector time-slides, background estima-
tion for coherent searches rely on estimating the properties
of the noise with finite measurements and therefore have
error bars on their background estimation as well. They
showed that the precision on the background estimation
using time-slides of trigger streams is in fact limited and
that the variance associated with their use saturates at some
point. The computational limitations and the potential
problems with time-slides motivate a search for potential
alternative forms of background estimation in gravitational-
wave searches. Gravitational-wave searches for isotropic
stochastic gravitational wave backgrounds [28,29] and
directional searches toward Sco X-1, the galactic center,
and SN1987A [30] have assumed that the detection statistic
is normally distributed with a known mean and variance
that can be calculated from first principles when performing
the searches. These searches sum up data from long
stretches of time, and combined with the use of long time
segments (60 s) and Gaussianity cuts, these statistics are
Gaussian by the central limit theorem. This has the
significant computational cost-saving benefit of not requir-
ing time-slides to perform the search, although limited
time-shift analyses are used as sanity checks and to ensure
that particularly non-Gaussian frequency bins can be
removed from the analysis.
Some searches for long-duration gravitational-wave

transients use the same cross-correlation technique as
stochastic searches [14], although other methods exist
[20,21]. They utilize cross-power spectrograms, computed
from the cross-correlation of two gravitational-wave detec-
tors, and use pattern recognition algorithms to search for
clusters of excess strain cross-power [14]. One algorithm
used to search for long-duration gravitational waves is
seedless clustering, which integrate along many different
paths in spectrograms. This algorithm is sensitive to signals
that can be well-approximated by parametrized curves, and
the advantage of seedless clustering is most pronounced for
long and weak signals [15–18]. We have previously shown
how seedless clustering algorithms can be used to signifi-
cantly enhance the sensitivity of searches for signals of this
type [15]. Although seedless clustering algorithms are

embarrassingly parallel [31], and therefore computations
can be performed on graphical processor units, seedless
clustering searches are still limited by computation of the
noise background.
Cannon et al. [32] recently proposed a method to

estimate the false alarm probability of compact binary
coalescences without time-slides. They are able to approxi-
mate compact binary events as a Poisson process in order
to convert the calculated false alarm probability into
a false alarm rate. This in particular allows for a statistical
detection of a population of events, which could be
collectively more significant than the single most signifi-
cant event alone. The method proposed in our paper is
similar in that we measure events based on the data
and then use a statistical approximation to the distribution
of the measured tracks to make approximations to the
noise background. There are also a number of notable
differences. Because long-duration transient gravitational
waves are typically searched for using a coherent combi-
nation of detector data, the trigger distributions no longer
obey Poisson statistics. Instead, we will exploit the fact that
seedless clustering sums many approximately statistically
independent pixels to use Gaussian statistics to estimate the
background. In this paper, we demonstrate a semianalytical
approximation to the seedless clustering output from
cross-correlation spectrograms. One potential criticism of
the analysis that follows is the fact that we compare the
approximation with data from time-slide analyses out to
≈ 3σ, not to the 5σ distributions we present at the end of
the paper. It would be necessary to perform 5σ worth of
time-slides to verify the approximation. This calculation
is currently very difficult to do computationally, and of
course, if we could perform 5σ worth of time-slides, we
would not need an approximation in the first place.
Moreover, as we perform the analysis using a relatively
clean week-long stretch of data, different sets of data could
result in different results. Therefore, we consider the
analysis that follows as a first test for the feasibility of
an approximate method. As argued above, we expect the
background distributions to be better behaved in long-
duration analyses than in short-duration searches, and
therefore perhaps less susceptible to significant deviations
from empirical distributions. In the future, we can use
distributions generated by future analyses that perform
more time-slides and over longer periods to compare
against the approximation to test its utility. Therefore,
although time-slides are likely required to create confi-
dence in a detection due to the problem just described, we
now summarize several reasons why it is useful to consider
alternative significance-estimation strategies.

A. Algorithm verification

The semianalytic method provides a verification for the
pipeline in multiple ways. In the case where data-quality
work is being performed correctly, in general, the data
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should be generally well approximated by Gaussian noise,
outside of some data transients which pass the data quality
cuts. Therefore, background estimation should approxi-
mately follow the distribution if it is assumed that the data
is Gaussian. Also, this provides a sanity check that the
algorithm performs as expected on the data. By performing
a limited number of time-slides or performing a simulated
analysis on Gaussian noise, it should be clear that the model
for the algorithm is correct, which can provide confidence
that the algorithm is performing as expected (or not).

B. Sensitivity to waveform models

There are a number of papers contained in the literature
about the sensitivity of gravitational-wave detectors to long-
duration gravitational waves [6,15–18]. In general, the sensi-
tivity studies have been performed by running the analysis on
1,000 ft-maps to reach a False alarm probability (FAP) of
0.1%, and the sensitivity to various waveform models are
computed relative to this number. For a year of data, assu-
ming ft-maps of 250 s with 50% overlap, and a desirable
FAP of ≈ 3σ or FAP ¼ 0.27%, there will be more than
108 maps analyzed. Before any analysis, either a search for
gravitational-waves or a waveform sensitivity study, is per-
formed, it is desirable to be able to estimate the background
quickly. This estimate informs expectations of potential res-
ults as well as how to setup the analysis. Using the method
described in this paper, we can analytically compute what
we expect a threshold based on this number of maps, without
needing to perform an analysis with many time-slides.

C. Event follow-up and electromagnetic alerts

There are preparations for joint electromagnetic and
gravitational-wave observations in the advanced detector
era [33]. Low-latency gravitational-wave searches are
aiming for run-times ≤ 1 min. For significance estimates
on this time-scale, rapid background estimation techniques
are required. The method described in this paper is able to
give an approximate FAR for any event on this time-scale.
In the case where there is eventually interest in joint
electromagnetic and gravitational-wave observations for
generic long-duration transients, this method may be useful
for making that happen.
The remainder of the paper is organized as follows. In

Sec. II, we describe the formalism of an all-sky transient
search and seedless clustering. In Sec. III, we present the
results of a Monte Carlo and time-shifted study comparing
the semianalytical model to seedless clustering. In Sec. IV,
we explore the errors, both systematic and statistical, with
our method. In Sec. V, we discuss our conclusions and
suggest directions for future research.

II. FORMALISM

We use the cross-correlation of two GW strain chan-
nels from spatially separated detectors to perform

searches for long-duration GW transients. We construct
ft-maps of cross-power signal-to-noise ratio. We divide
detector strain time series into segments and compute
Fourier transforms of the segments to create the pixels,
which we denote as ~sIðt; fÞ, where we take strain data
from detector I for the segment with a mid-time of t.
Following [15–18], the segments are 50%-overlapping
and Hann-windowed with duration of 1 s and a frequency
resolution of 1 Hz.
The expression for the cross-power signal-to-noise ratio

is as follows [14]:

ρðt;fjΩ̂Þ¼2
ffiffiffi
2

p

N
Re

�
e2πifΔ~x·Ω̂=c

~s�I ðt;fÞ~sJðt;fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0
Iðt;fÞP0

Jðt;fÞ
p

�
; ð1Þ

where Δ~x is a vector describing the relative displacement
of the two detectors, Ω̂ is the direction of the GW source,
and c is the speed of light. The time delay between the
two detectors, which is a direction-dependent phase factor,
is in the e2πifΔ~x·Ω̂=c term. P0

Iðt; fÞ and P0
Jðt; fÞ are the

auto-power spectral densities for detectors I and J in the
segments neighboring t. N is a FFT normalization factor,
L × Fs, where L is the length of data in seconds and Fs is
the sampling frequency. Additional details can be found
in [14–18].
We write the total signal-to-noise ratio for a cluster of

pixels as a sum over ρðt; fjΩ̂Þ:

SNRtotðΓÞ≡ 1

N1=2

X
ft;fg∈Γ

ρðt; fjΩ̂Þ; ð2Þ

where N is the number of pixels in Γ, which is chosen from
a bank of parametrized frequency-time tracks, and each
track is referred to as a template.
To modify the above algorithm to perform an

all-sky search [16–18], we use complex signal-to-noise
ratio:

pðt; fÞ ¼ 2
ffiffiffi
2

p

N

�
~s�I ðt; fÞ~sJðt; fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0
Iðt; fÞP0

Jðt; fÞ
p

�
: ð3Þ

This statistic preserves the complex phase information,
which encodes the direction of the source. As a proxy
for the sky location, which is unknown, we add an
additional variable Δτ which corresponds to the time
delay between the detectors [16]. Therefore, we rewrite
Eq. (2) as

SNRtotðΓÞ≡ 1

N1=2

X
ft;fg∈Γ

Re½e2πifΔτpðt; fÞ�; ð4Þ

and this sum is carried out for many randomly selected
clusters Γ. We finally define Max½SNRtot� as the maxi-
mum of SNRtot taken over all Γ.
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A. Parametrizations

In any seedless clustering algorithm, Γ is chosen such
that it is sensitive to the morphology of the gravitational
waves being searched for. There are two types we will
consider in this paper, although the method is generic
enough to work for any parametrization.

1. Bézier curves

For generic narrow-band long transient gravitational
waves [15,16], Γ is chosen randomly from the set of
quadratic Bézier curves [34] subject to the constraint that
the curve persists for a duration tmin. Three time-frequency
control points determine the template: P0 ðtstart; fstartÞ,
P1 ðtmid; fmidÞ, and P2 ðtend; fendÞ, and the curve is para-
metrized by ξ ¼ ½0; 1�:

�
tðξÞ
fðξÞ

�
¼ ð1 − ξÞ2P0 þ 2ð1 − ξÞξP1 þ ξ2P2: ð5Þ

These arrays allow the sum in Eq. (2) to be computed for
a large number of templates in parallel. For practical
applications, the number of templates T is typically
chosen to be T ¼ Oð104 − 108Þ. To perform a computa-
tionally feasible all-sky analysis, T ¼ 2 × 104 templates
are feasible, and we use this number in the analysis that
follows.

2. Post-Newtonian templates for compact
binary coalescences

Another parametrization for Γ currently in the literature
creates templates based on a post-Newtonian model for
chirp-like signals created by circular compact binary
coalescences [17]. For searches for compact binary coa-
lescences with seedless clustering, we can use a more
specialized template bank consisting of parametrized
chirps:

fðtÞ ¼ 1

2π

c3

4GMtotal

X7
k¼0

pkτ
−ð3þkÞ=8; ð6Þ

where

τ ¼ ηc3ðtc − tÞ
5GMtotal

; ð7Þ

where the expansion coefficients pk can be found in [35],
G is the gravitational constant and Mtotal is the total mass
of the binary. These templates are parametrized by the
coalescence time and the chirp mass. It was shown in
[17] that while the waveform depends on the individual
component masses, the main features of the signal can be
well approximated by only the chirp mass, and we can
approximate that the individual component masses are
equal. This has similarities to the matched-filtering

template banks used in compact binary searches [3,4].
The key difference is that to first-order, chirp mass is
the only term that contributes to the time-frequency
evolution, and therefore the template bank is only one-
dimensional. Combined with the fact that this method is
only sensitive to the pixelated frequency evolution of the
gravitational wave (instead of the phase), the templates
used in this analysis are significantly coarser than that in
traditional searches.

B. Semianalytical approximation

We now describe a semianalytical approximation to the
background of our seedless clustering algorithms. Seedless
clustering, which computes the sum of pixels in a track,
divided by the square root of the number of pixels in the
track, lends itself to modeling due to its simplicity. By the
central limit theorem, the sum of a sufficiently large
number of independent random variables, each with a
well-defined expected value and well-defined variance,
will be approximately normally distributed. Therefore,
we expect that the sum of many pixels will approach a
normal distribution, given by

PðzÞdz ¼ 1

σ
ffiffiffiffiffiffi
2π

p e−ðz−μÞ2=2σ2dz: ð8Þ

Because seedless clustering measures the maximum
SNRtot of many tracks, here we seek the extreme value
distribution for SNRtot. This is motivated by the desire for
a distribution with which to compare those measured from
an analysis using the algorithm. We can analytically
compute a probability distribution for this maximum value
as follows. Given a random sample of SNRtot drawn from
many maps, ðX1;…; XNÞ, from a continuous distribution
with a probability density function fðxÞ and cumulative
density function FðxÞ, the cumulative density function of
the maximum of SNRtot is then given by

CDFMax½SNRtot�ðzÞ ¼ PðmaxðXiÞ < zÞ
¼ PðX1 < z;…; XN < zÞ ¼ PðX1 < zÞ…PðXN < zÞ;

ð9Þ

where the third equality assumes that the random samples
are independent. In some cases where the random samples
are not independent but the correlated distributions are
conservative, as in some of our analyses below, an upper-
bound can instead be derived

CDFMax½SNRtot�ðzÞ ¼ PðX1 < z;…; XN < zÞ
≤ PðX1 < zÞ…PðXN < zÞ: ð10Þ

We will discuss the effect of this assumption in Sec. IV.
In the case where the probability density functions are
identical, the equation becomes
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CDFMax½SNRtot�ðzÞ ¼ ½PðX < zÞ�N ¼ ½FXðzÞ�N: ð11Þ

We show below that we can use this equation, where the
CDFs are given by Gaussian CDFs, to approximate the
seedless clustering distributions. Even though in our case
FXðzÞ is derived from a Gaussian distribution, Eq. (11) is
true for any general distribution represented by FXðzÞ.
Hence in cases where the analytic expression for FXðzÞ is
difficult to derive or approximate, one can use the observed
distribution.

III. BACKGROUND STUDY

We can test the approximations by performing the
analysis on Monte Carlo Gaussian noise and initial
LIGO noise from the Hanford, WA (H1) and Livingston,
LA (L1) detectors. We create complex signal-to-noise
ratio spectrograms pðt; fÞ using Eq. (3) and analyze
each with the various seedless clustering algorithms.
Following [15,16], we create 250 s maps in a band between
100–250 Hz with spectrogram resolution of 1 s × 1 Hz
using 50%-overlapping Hann windows. The results for
each are as follows.

A. Bézier parametrization

We begin by analyzing the performance of the analytic
model on the Bézier parametrization.
We run the seedless clustering algorithm over hundreds of

thesemaps and save SNRtot for each of the tracks in themap.
The left of Fig. 1 shows a histogram of the resulting SNRtot
distribution for both the Monte Carlo and initial LIGO data.

We fit Eq. (8) to the resulting distributions. We find best fits
of μ ¼ 0.0007 and σ ¼ 0.99. The fact that the distribution
has approximately amean of zero and a standard deviation of
one is expected based on the fact that ρ has a mean of 0 and
we use the

ffiffiffiffi
N

p
normalization in the SNRtot calculation.

We find that the agreement is reasonable out to the tails
of the distribution. The right of Fig. 1 shows the standard
deviation of the distribution as a function of track length.
The standard deviation differs on the order of a few percent
across the track lengths considered. For the sake of sim-
plicity, we assume that the distribution is approximately
independent of track length.
We now simulate an all-sky search by performing 100

time-slides in a week of data. The data are processed with a
glitch identification cut [36] as if it were a real analysis. In
order to apply the algorithm from [36], we assume that the
source is optimally oriented with an optimal sky position.
To compare this to the analytic approximation in Eq. (11),
we use the Gaussian fit shown in Fig. 1 to approximate the
SNRtot distribution. The steps required to turn the SNRtot
distribution into a p-value vs SNR distribution are as
follows. To generate a SNRtot value for a single simulated
map, we generate N random numbers consistent with the
Gaussian distribution of mean and variance as estimated
above. We then take the maximum value of these values to
compute the Max½SNRtot�. To generate a p-value vs SNR
distribution, Max½SNRtot� is generated for M instances of
spectrograms, where 1=M is the smallest p-value required.
Max½SNRtot� is placed in ascending order. The p-value is
calculated as an array between 1=M and 1 with spacing
given by 1=M. For a Gaussian distribution where the mean
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FIG. 1 (color online). The plot on the left is the background distribution for the seedless clustering algorithm cluster SNR defined in
Eq. (4). Monte Carlo denotes Gaussian colored noise. Time-shift denotes real time-shifted data with vetoes to limit the effects of
instrumental artifacts. The theoretical line corresponds to the Gaussian approximation to the distribution given by Eq. (8). The plot on
the right is the standard deviation of SNRtot as a function of track length. The standard deviation differs on the order of a few percent
across the track lengths considered. In our analysis, we approximate the standard deviation of SNRtot across track length as constant.
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and standard deviation are the same across all trials, this
process can also be performed analytically by simply
computing Eq. (11) for the measured distribution.
We perform two search simulations using the Bézier

parametrization. The first uses Bézier templates computed
for a specific search direction. The second loops over time-
delays for each template. By searching over 40 different
time-delays, corresponding to 40 different sky rings, a
computationally efficient all-sky search can be performed.
This was demonstrated in [17] to be sufficient to recover
signals in arbitrary directions. The top left of Fig. 2
demonstrates the analysis for the first simulation using
20,000 tracks, showing both empirical time-slides as well
as the theoretical approximationmethod explained as before
(both the 10th, 50th, and 90th percentiles).We find excellent
agreement between the analytic model and empirical time-
slides for the directed search. The distributions for the
all-sky search, on the top right of Fig. 2, however, are not

generally within 1σ. We explore systematic errors related to
this in the next section. Finally, we show the Max½SNRtot�
required for a 5-sigma gravitational-wave detection using
the Bézier parametrization in Fig. 3.

B. Compact binary coalescence parametrization

We now analyze the performance of the analytical
model on the chirp templates. We create maps assuming
Gaussian noise consistent with the design sensitivity of
Advanced LIGO. Following [17], we create 660 s maps in a
band between 10–150 Hz with a spectrogram resolution
of 1 s × 1 Hz.
We perform a similar analysis to the above. We find

best fits for the Gaussian distribution of μ ¼ −0.004 and
σ ¼ 1.06. The major difference between the Bézier and
chirp-like template analysis is the degree of correlations
between the drawn tracks. In the Bézier case, the tracks are
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FIG. 2 (color online). Background distributions computed for the seedless clustering algorithm using both Bézier and chirp-like
templates. The distributions are generated from time-shifted initial LIGO data. The top row corresponds to the Bézier templates and the
bottom row chirp-like templates. The left column corresponds to a directed search (in a specific sky direction) and the right to an all-sky
search performed looping over 40 time-delays for each template. The theoretical line corresponds to using Gaussian distributions with
standard deviations presented in Fig. 3. The dotted lines correspond to 1σ error bars on the analytic approximation. These are derived
from simulating the p-value vs. SNR distribution using many random seeds, in essence creating thousands of p-value vs SNR
distributions consistent with the measured distributions, and computing the median and 1σ error bar for each p-value. The analytical
background distributions for the directed searches are consistent with the measured background (within 1σ). The distributions for the all-
sky searches, however, are not generally within 1σ. This is due to the assumption in the analytic-model that the loop over time-delays
creates more independent trials, which is not the case and biases the result (please see the text for more details).
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drawn randomly and the degree of correlation is simply
determined by the overlap between the tracks. In the chirp-
like template case, the degree of correlation is much higher,
despite the significantly fewer templates used in the
analysis. This correlation arises from the step in time
and overlap in parameter space between chirp-like tem-
plates of similar chirp mass. This correlation is important
because it changes the standard deviation of the SNRtot
of the tracks in individual maps and therefore the final
distribution of Max½SNRtot�. Figure 3 demonstrates the
cumulative density function of the standard deviation of
the SNRtot for the two parametrizations. In the Bézier case,
the standard deviation of SNRtot is approximately a step
function, which allows for the use of a single standard
deviation to cover all cases. The distribution is significantly
broader for chirp-like templates due to track correlations.
It is for this reason that we modify the Bézier p-value
algorithm by drawing from the measured distribution of
standard deviations of the maps when drawing from the
Gaussian distribution. The bottom of Fig. 2 demonstrates
the algorithm using both empirical Monte Carlo noise as
well as the theoretical approximation method explained as
before (both the 10th, 50th, and 90th percentiles) for both
a directed and all-sky search. Similar to the Bézier case,
we find excellent agreement between the analytic model
and empirical time-slides for the directed search, while
the distributions for the all-sky searches, however, are not
generally within 1σ. We explore systematic errors related to
this in the next section. We show the Max½SNRtot� required
for a 5-sigma gravitational-wave detection using the chirp-
like parametrization in Fig. 3.

IV. UNCERTAINTIES: STATISTICAL
AND SYSTEMATIC

We now explore the systematic and statistical errors in
our measurement. The measurement of the statistical errors
in this analysis is straightforward. Each simulation is
computationally cheap, as it involves generation and
manipulation of matrices of random numbers, and therefore
can be performed over and over again to generate distri-
butions. This was done in order to generate the 1σ
distributions in Fig. 2, for example.
Of more interest, perhaps, is consideration of the

systematic errors in the method. There are a number of
reasons we might expect small disagreements between the
theoretical model and the empirical results. A major source
of systematic error is in the rotation of pixels in the all-sky
searches, where time-delays are looped over. This involves
a rotation in the complex plane of the individual pixels that
make up the tracks. This creates difficulty for the analytic
analysis. Because the analysis amounts to a rotation, the 40
time-delays do not correspond to 40 independent trials
(which would simply multiply the number of tracks by 40).
In the analysis above, we simply multiplied the number of
tracks by 40, corresponding to the 40 time-delays in the
analysis. In the left of Fig. 4, we explore this effect by
simulating tracks without any rotation (the directional case)
and with 40 rotations (the all-sky case), and compare this to
the distribution of 40 random tracks. We show that using 40
random tracks is conservative relative to using the 40 time-
delays case. This indicates that multiplying the number
of trials by 40, as is done in the analysis, is conservative.
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FIG. 3 (color online). The plot on the left is the cumulative density function of the standard deviation of the SNRtot for the two
parametrizations. Distribution is significantly broader for chirp-like templates due to track correlations. The plot on the right is the
background distribution using the analytic approximation for the cases considered here. It shows the Max½SNRtot� required for a 3σ, 4σ,
and 5σ gravitational-wave detection using seedless clustering in dotted horizontal lines. The four different lines corresponds to the four-
different seedless analysis types considered in this paper (a directed and all-sky Bézier template search and a directed and all-sky
compact binary search), which each have significantly different distributions of Max½SNRtot�.
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In this case, using Eq. (10), which places an upper-bound
on the distribution is more accurate than Eq. (9), which
assumes that the trials are independent.
One possibility to do even better is to actuallymeasure the

covariances between the rotated pixels. This situation is
similar to [30]. In this work, the authors place limits on
gravitational-wave strain from different portions of the sky.
Thiswas difficult because the distribution ofmaximumSNR
for a sky map contains nonzero covariances that exist
between different pixels (or patches) on the sky. They
simulate the covariance between pixels numerically, by
simulatingmany realizations that have expected covariances
described by the Fisher matrix. In this case, we could
numerically compute a covariance matrix, which we can
diagonalize to create a basis of noncovariant variables. Then,
one would generate random realizations of these noncovar-
iant variables and use the covariance matrix to convert them
into a set of randomly generated covariant variables.
One difficulty is that the distribution of the noncovariant
variables might not be the same as the covariant variables.
With this method, we could determine the set of covariant
variables which describe the distribution of SNRtot.
Another potential systematic error arises from the use

of Eq. (9), in particular the assumption that the trials are
independent. One way in which this manifests is that real
detectors have noise transients and nonstationary noise,
which violate some of the approximations used here.
Severe non-Gaussianity which eludes both the pixel thresh-
olds and the Gaussianity cuts applied in the analysis would
show up not only potentially as a loud background trigger,
but would increase the correlation between tracks (as any

track that passes through those pixels would have an
increased SNRtot). Generating purely random numbers to
approximate SNRtot is an approximation. This is because
the tracks are analyzed on the same map, and therefore
overlapping tracks will have correlated SNRtot values. This
has the effect in the analysis of changing the effective σ
from map to map. One potential conservative solution
would be to measure the σ in each map and then generate
Max½SNRtot� distributions using that value. Another
implicit assumption is that the pixels in the tracks are
uncorrelated. This assumes that the noise is Gaussian and
stationary and ignores the correlation between pixels in the
maps. However, the cross-power statistic uses PSD’s from
adjacent pixels (in the time direction) to estimate σ [from
Eq. (2)]. This is to avoid a bias in pixel SNR for an isolated
loud pixel. This means there is a correlation between
adjacent pixels. In the right of Fig. 4, we explore this
effect by computing the overlaps between the templates
used in the compact binary search. Due to the need for
maximal coverage of the parameter space, there is signifi-
cant overlap between templates. The use of Eq. (9) biases
the analysis in this case. Computations such as this could
be used to modify Eq. (9) to account for the lack of
independence between templates by determining the num-
ber of effective trials from the data.

V. CONCLUSIONS AND FUTURE WORK

In previous work, we showed how a seedless clustering
algorithm could significantly improve the sensitivity of
searches for long-lived, unmodeled gravitational-wave

−4 −2 0 2 4 6 8

10
−4

10
−3

10
−2

10
−1

10
0

SNR
tot

P
−

va
lu

e
Directional
40 sky directions
40 random tracks

1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5

Mass [solar mass]

M
as

s 
[s

ol
ar

 m
as

s]

lo
g1

0(
O

ve
rla

p)

−2

−1.5

−1

−0.5

0

FIG. 4 (color online). The plot on the left is the p-value vs SNRtot distribution for three different cases (for a single map): a directional
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transients [15–18]. Here, we show how the simplicity of the
search statistic allows for the development of a semi-
analytic approximation to the background generated by the
algorithm and compared the performance using a week
of LIGO S5 time-shifted data. We described algorithmic
subtleties not addressed by this model and quantify the
errors between the model and the measured distribution.
We argued that it will be useful for pipeline characteriza-
tion, as well as potentially for low-latency FAP reporting
for gravitational-wave searches.
In the future, we will move beyond the simple models

presented here to more complicated models. Some exam-
ples could be using non-Gaussian distributions, such as
the student-t distribution, to better approximate the tails
of the distribution, which is where we expect the strongest
disagreement [37]. Other ideas include using the Edgeworth
expansion to put bounds on the deviation from Gaussianity.
As the tracks in individual maps are correlated (due to the

fact that some will overlap and use the same pixels), we
could also consider generating correlated random values
when generating our distributions for SNRtot.
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