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We explore the possibility of very long-lived gravitational-wave transients (and detector artifacts) lasting
hours to weeks. Such very long signals are both interesting in their own right and as a potential source of
systematic error in searches for persistent signals, e.g., from a stochastic gravitational-wave background.
We review possible mechanisms for emission on these time scales and discuss computational challenges
associated with their detection: namely, the substantial volume of data involved in a search for very long
transients can require vast computer memory and processing time. These computational difficulties can be
addressed through a form of data compression known as coarse graining, in which information about
narrow frequency bins is discarded in order to reduce the computational requirements of a search. Using
data compression, we demonstrate an efficient radiometer (cross-correlation) algorithm for the detection of
very long transients. In the process, we identify features of a very long transient search (related to the
rotation of the Earth) that make it more complicated than a search for shorter transient signals.
We implement suitable solutions.
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I. INTRODUCTION

Previous work has explored the astrophysics of (and
associated detection strategies for) long-lived gravitational-
wave transients lasting ≈10–1000 s; see, e.g., Refs. [1–11]
and references therein. Most long-transient models rely on
the emission of gravitational waves from rotational insta-
bilities in a protoneutron star or its accretion disk but other
models are possible as well [1]. Initial LIGO/Virgo have
performed a search for unmodeled long-lived transients
associated with long gamma-ray bursts yielding upper
limits on gravitational-wave fluence [12].
Despite this progress, there is still a largely unexplored

region of parameter space of “very long-lived” transient
signals lasting hours to weeks; (although, see Ref. [13]).
As we discuss below, it may be possible for neutron stars to
emit transient gravitational waves on these time scales.
Moreover, exotic models allow for the possibility of a
seemingly persistent signal to start or stop during an
observing run [14], also potentially leading to very long
transient signals. Thus, there is astrophysical motivation to
carry out a search for very long-lived gravitational-wave
transients. An efficient very long transient detection algo-
rithm will have other useful applications: it can establish
if an apparently persistent source, e.g., observed in a
stochastic background search [15], exhibits variability in
time, and it can be used to understand the behavior of
detector artifacts on time scales of days to weeks.

Our goal here is to outline a computationally feasible
search for very long-lived transients employing radiometry
[16]. We review the principles of radiometry below in
Sec. III, but for now, we note that radiometry relies on the
cross-correlation of two or more detectors in order to detect
gravitational waves as excess coherence. Excess coherence
can be identified through various pattern recognition
techniques. For demonstrative purposes, we here employ
a “seedless clustering” algorithm [10,11], discussed in
greater detail in Sec. III, though, other pattern recognition
techniques may be used as well.
In order to carry out such a search, it is necessary to first

address computational challenges that appear, at first
glance, to make the search daunting. Namely, difficulties
arise due to the fact that only so much uncompressed
spectrographic strain data can be stored at once in random
access memory (RAM). Without compression, it is impos-
sible to hold many hours of data in memory at once on a
typical computer. In theory, data can be read in as needed,
but this creates an input/output bottleneck. Also, in
searches that rely on seedless clustering [10,11], the
computation time required to sum hours of uncompressed
spectrographic data can become prohibitive.
The solution we propose is an extra preprocessing step in

which data are compressed in order to facilitate computa-
tionally feasible analyses. Through a procedure known as
coarse graining (already used in searches for the stochastic
background [17]), the volume of data can be reduced by
orders of magnitude so that days of data can be represented
with a spectrogram comparable to one used to represent*eric.thrane@monash.edu
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minutes of uncompressed data. Coarse graining necessarily
discards information, but through this procedure, we may
study much longer transient signals than otherwise possible.
The remainder of this paper is organized as follows.

In Sec. II, we discuss the motivation for searches for very
long transients. In Sec. III, we review key principles of
radiometry needed for subsequent discussion. (Additional
details are included in the Appendix.) In Sec. IV, we
describe compression procedures for coarse graining, and
in Sec. V, we demonstrate the recovery of very long-lived
signals using compressed data. In Sec. VI, we summarize
our results and suggest some lines of future research.

II. MOTIVATION

The scientific rationale for a search for very-long
transients, spanning hours to weeks, was first explored
in Ref. [13]. The authors of Ref. [13] reviewed a number of
somewhat speculative scenarios associated with neutron
stars including gravitational-wave emission lasting days to
months from nonaxisymmetric Ekman flow following a
glitch [18–20], Alfvén oscillations from giant magnetic
flares (also lasting days to months) [21,22], emission from
free precession (with a damping time possibly lasting from
weeks to years) [23–25], magnetic instabilities in newborn
neutron stars (lasting days) [26], and gravitational waves
from r-modes [27,28].
Generic rotational instabilities in newborn neutron stars,

potentially powered by fallback accretion [8,29], may persist
on a time scale of hours [7]. Somewhat more speculatively,
we note that observations of intermittent pulsars, which
become quiescent on time scales of days (e.g., Ref. [30]),
suggest that neutron star dynamics vary on the time scales
considered here, motivating exploration of this region of
parameter space. Similarly, variability in accretion on these
time scales may affect gravitational-wave emission from
accretion-supported mountains [31]. Finally, it is worthwhile
to be prepared for a surprise: a very long-lived transient
signal from an unexpected source. Recent work proposing
gravitational-wave emission from gravitationally bound
axion clouds [14], potentially starting and stopping on the
time scale of a few years, serves to illustrate this possibility.
The method we propose below is also applicable to quasi-
infinite signals turning on or off during an observing run as
well as repeating sources with long-lasting emission periods.
An algorithm for identification of very long transients also

provides a means of understanding the time dependence of
apparently persistent signals, e.g., in a stochastic background
search. In the event of an ostensibly persistent gravitational-
wave detection, it is prudent to investigate if the temporal
behavior of the signal is consistent with the assumed signal
model. Matched filter searches for rotating neutron stars, for
example, assume that the strain is constant over the duration
of the measurement. An observation of nontrivial time
dependence could be evidence of new physics.

In addition to the astrophysical motivation, the algorithm
provides useful information for detector characterization.
Recent work has shown that geophysical effects such as
global Schumann resonances can induce correlated noise
in worldwide networks of gravitational-wave detectors in a
way that can bias cross-correlation searches [32,33]. Some
geophysical phenomena (such as electromagnetic activity
induced by solar flares) exhibit temporal fluctuations on
very long time scales. Understanding the time dependence
of excess cross-correlation can help to rule out (or lend
credence to) different explanations of an apparent signal in
searches for persistent gravitational waves in both targeted
radiometer searches [34] and searches for stochastic back-
grounds [35].
In order to see how very long signals might escape

detection without a dedicated search, we note simple
scaling behavior. The radiometric signal-to-noise ratio
(SNR, defined below; or see Eq. 3.11 of Ref. [1]) scales like

SNR ∝ ζt1=2obs ; ð1Þ

where t1=2obs is the observation duration and ζ is the fraction
of the observation during which the signal is present. To be
concrete, let us consider an ≈11 hr-long signal with
SNRtot ¼ 40. While this signal is exceptionally loud, it
can be significantly diluted if we search for it assuming a
persistent signal model. For example, if we integrate over
the entirety of a 90 day science run, the signal-to-noise ratio
will be diluted by a factor

ð1Þ ffiffiffiffiffiffiffiffiffiffiffi
11 hr

p

ð11 hr=90 daysÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90 days

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90 days
11 hr

r
¼ 14;

so that SNRtot is reduced from 40 to ≈3, which is not
statistically significant given a few thousand independent
frequency bins. It follows that a very long transient signal,
loud enough to affect a radiometer or stochastic search,
should produce an easily identifiable signal using an
algorithm dedicated to the detection of very long transient
phenomena.
If we attempt to resolve the signal using 1 s segments, the

signal-to-noise ratio is diluted by a factor of

ð1Þ ffiffiffiffiffiffiffiffiffiffiffi
11 hr

p

ð1Þ ffiffiffiffiffiffi
1 s

p ≈ 200;

so that SNR ≈ 0.20 in each segment. This back-of-the-
envelope argument illustrates how even exceptionally loud
very long signals can escape detection without a dedicated
search.

III. RADIOMETRY

The basic idea of radiometry is to cross-correlate data
from two or more detectors. By integrating over as much
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data as possible, it is possible to identify weak signals
buried in noise. Drawing on previous results [1,10,11], we
take as our starting point spectrograms of cross-correlated
data. Details are provided in the Appendix. For the sake of
simplicity, we focus here on a two-detector network, but
note that the algorithm generalizes straightforwardly to
arbitrarily many detectors [1]. The cross-correlated data can
be represented as a complex-valued signal-to-noise ratio
[11] [see Eq. (A4) in the Appendix]:

pðt; fÞ ¼ κ~s�1ðt; fÞ~s2ðt; fÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0
1ðt; fÞP0

2ðt; fÞ
q

: ð2Þ
Here, ~sIðt; fÞ is the discrete Fourier transform of the strain
series from detector I, P0ðt; fÞ is the auto-power spectrum

calculated using neighboring data segments, and κ is a
normalization factor; (see Eq. (A5) in the Appendix).
Each segment has duration δt. The choice of δt, which
we examine in greater detail below, is determined both by
astrophysical considerations and computational limitations.
The argument t is the mid time of the data segment and f
is frequency. Note that pðt; fÞ does not depend on the

direction of the source Ω̂ because the direction of the
source is encoded as a complex phase.
If the data consist of well-behaved noise, both the real

and imaginary parts of p are characterized by distributions
with mean ¼ 0 and variance ≈1. Gravitational-wave
signals induce excess p with a complex phase angle Ψ

t (hr)

f (
H

z)

0 6 12 18 24 30 36 42 48

50

100

150

200

250

300

R
e[

ρ(
t;f

)]

−5

0

5

(a)
t (hr)

f (
H

z)

0 6 12 18 24 30 36 42 48

50

100

150

200

250

300

Im
[ρ

(t
;f)

]

−5

0

5

(b)

t (hr)

f (
H

z)

0 6 12 18 24 30 36 42 48

50

100

150

200

250

300

R
e[

ex
p(

−
iΨ

)ρ
(t

;f)
]

−5

0

5

(c)
t (hr)

f (
H

z)

0 6 12 18 24 30 36 42 48

50

100

150

200

250

300

ρ(
t;f

) 
re

co
ve

re
d

−5

0

5

(d)

FIG. 1 (color online). The daily modulation of p. Each panel shows a ðδt;ΔfÞ ¼ ð158 s; 1 HzÞ spectrogram consisting of two
consecutive days of data. The data consist of Advanced LIGO [36] Monte Carlo noise plus a simulated signal at f ¼ 100 Hz. The top-left
panel (a) shows ReðpÞ while the top-right panel (b) shows ImðpÞ. In the top panels, the injected signal, for illustrative purposes, is very
loud: h0 ¼ 1 × 10−22. (Since the signals are very loud, the color bar is saturated.) At t ¼ 0, the phase angle is in the lower-right quadrant of
the p complex plane where ReðpÞ > 0 and ImðpÞ < 0. It rotates clockwise so that ReðpÞ crosses zero and becomes negative before ImðpÞ
crosses zero and becomes positive. The bottom-left panel (c) shows Re½exp ð−iΨiÞp� for a much weaker signal: h0 ¼ 4 × 10−24.
The phase factor is applied to make the signal entirely real; see Eq. (A1). The bottom-right panel (d) shows the recovered signal (the most
significant cluster identified in the bottom-left panel) recovered with 2 × 106 seedless clustering templates (see Sec. V for details).
The source is located at ðra; decÞ ¼ ð18.5 hr;þ39°Þ and it is recovered 7° degrees away at ð18.9 hr;þ35°Þ. The recovery algorithm does
not assume that the signal is monochromatic.
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determined by the direction of the source Ω̂ and its
frequency fi:

Ψi ≡ −2πfiΩ̂ · Δ~x=c: ð3Þ
Here, Δ~x is the difference in detector position and c is the
speed of light. For the LIGO detectors, jΔ~xj=c ≈ 10 ms.
Thus, a signal can, e.g., induce real negative or positive
imaginary values of p. Note thatΨ is time dependent due to
the rotation of the Earth. This behavior is illustrated in
Figs. 1(a) and 1(b), which show spectrograms of the real
and imaginary parts of p for data consisting of Advanced
LIGO [36], Gaussian, Monte Carlo noise at design sensi-
tivity plus a persistent monochromatic signal with fre-
quency f ¼ 100 Hz and strain amplitude h0 ¼ 1 × 10−22,
located at ðra; decÞ ¼ ð18.5 hr;þ39°Þ.
These spectrograms use ðδt;ΔfÞ ¼ ð158 s; 1 HzÞ reso-

lution and span two days of data. We utilize a coarse-
graining procedure described below. The repeating pattern
of light and dark at 100 Hz repeats with a period of one
sidereal day. This pattern, which varies with declination
and frequency, shows how the phase factor Ψi [Eq. (3)]
varies with the rotation of the Earth. It is interesting to note
that these horizontal stripes are a distinct but analogous
effect to the vertical stripes (also arising from radiometer
phase mismatch) described in Ref. [11].
If we multiply p by (an array of) the phase factor

exp ð−iΨiÞ in order to “point” the radiometer map in the
source direction (and reduce the injected strain amplitude
to h0 ¼ 4 × 10−24) we obtain Fig. 1(c). With the appro-
priate phase factor applied, the cross-power due to signal is
real and positive. However, there is still a time-dependent
modulation with a period of one sidereal day, owing to the
time dependence of the detectors’ antenna response; see
Eq. (A2). Figure 1(d) shows the signal recovered using a
seedless clustering algorithm [11] to look for tracks of
bright pixels. This recovery is described in greater detail
in Sec. V.
In order to carry out a search for a transient signal

associated with some direction Ω̂, we construct a detection
statistic [see Eq. (A9) in the Appendix]:

SNRtotðΩ̂Þ ¼
Re½Pi∈Γ exp ð−iΨiÞpiϵi12�

ðPi∈Γðϵi12ðΩ̂ÞÞ2Þ1=2
: ð4Þ

The ϵi12ðΩ̂Þ factor describes the efficiency of the detector
pair [1] [see Eq. (A2) in the Appendix]. The sum over i
runs over some set of ðt; fÞ pixels Γ, which is determined
by details of the search. A search for persistent narrowband
signals, for example, might sum over time at a fixed
frequency. In searches for transient signals, the set of
ðt; fÞ pixels may be described, e.g., by a Bézier curve
[10,11,37]. In the analysis that follows, we employ cluster-
ing with parametrized quadratic Bézier curves, each with a
different randomly chosen direction. This family of curves

includes straight lines as a subset. For fixed Ω̂, ϵi12ðΩ̂Þ
varies as the Earth rotates. While this effect is usually not
important on time scales of ≲1000 s, it plays a significant
role for very long signals. Finally, note that Eq. (4) assumes
(for the sake of compact notation) that the noise is
approximately stationary and that the signal does not vary
significantly with frequency; see Eq. (A7). These assump-
tions can be straightforwardly relaxed using Eq. (A6).

IV. COMPRESSION

A. Coarse graining

In order to facilitate the search for very long-lived
signals, it is desirable to compress the cross-correlation
data used in long transient searches, e.g., Ref. [12]. Past
analyses, targeting signals with duration ≈10–1000 s,
utilized (50% overlapping) 1 s-long segments. While this
does not pose a significant computational challenge for the
analysis of a 1500 s-long window (3000 segments), it is not
practical for the analysis of 10 hr ¼ 36 000 s signals
(72 000 segments). First, it is currently impractical to load
the data from so many segments into RAM. Second, even if
we could get around the memory problem, it would take an
inordinate amount of computation time to treat so many
segments separately.
One solution is to average data from neighboring

frequency bins in order to compress the data into a format
that preserves the information needed to search for very
long signals while averaging away details about short time
scales. This compression, known as “coarse graining,”
enforces the assumption that the signal varies slowly
enough that the change in frequency as a function of time
is small compared to the bandwidth of each spectrogram
pixel. Previous radiometer analyses [34,38] have already
employed a form of coarse graining as part of a standard
data conditioning procedure, but in these cases, the end data
product is a single spectrum with no time dependence (as
opposed to a spectrogram), and so the coarse graining was
somewhat incidental.
We follow the coarse-graining procedure first outlined in

Ref. [17] (see Eq. 5.4), which we reproduce here in slightly
different notation. First, we define the cross-power
Cðt; fÞ≡ ð2=N Þ~s�1ðt; fÞ~s2ðt; fÞ where N is a Fourier
normalization constant; see Eq. (A5) in the Appendix.
This allows us to rewrite Eq. (2) as [39]

pðt; fÞ ¼
ffiffiffi
2

p
Cðt; fÞ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0
1ðt; fÞP0

2ðt; fÞ
q

: ð5Þ

The coarse-grained cross-power is given by

CCGðt; fCGÞ≡ δf
Δf

Xf¼fCGþΔf=2

f¼fCG−Δf=2
wðfÞCðt; fjΩ̂Þ: ð6Þ

Here, Δf is the width of the new coarse-grained bins, δf is
the original fine-grained bin width, and fCG are the new
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coarse-grained frequency bins. The variable wðfÞ is a
weight factor, which is unity when f ≠ fCG � Δf=2.
When f ¼ fCG � Δf=2, then wðfÞ is some number on
[0, 1], which takes into account the fact that the edges of a
coarse-grained bin may fall in between the edges of two
fine-grained bins. The precise value is given by the fraction
of the fine-grained bin that overlaps with the coarse-grained
bin. Thus, e.g., a Δf ¼ 0.25 Hz coarse-grained bin span-
ning 10.0–10.25 Hz would include a w ¼ 0.5 overlap with a
δf ¼ 1=60 Hz fine-grained bin spanning 9.98–10.017 Hz.
Equation (6) can be understood as an application of

Parseval’s theorem. The analogous coarse-grained auto-
powers, P0

1CGðt; fÞ, P0
2CGðt; fÞ are calculated using Welch’s

method [40]. We thereby obtained the coarse-grained
estimator:

pCGðt; fÞ ¼
ffiffiffi
2

p
CCGðt; fÞ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0
1CGðt; fÞP0

2CGðt; fÞ
q

: ð7Þ

In addition to Eq. (6), we considered an alternative
coarse-graining procedure performed in the time domain,
which we refer to as “hybrid compression.” Instead of
combining many narrow frequency bins associated with
long segments, we combined many short segments asso-
ciated with wide frequency bins. While the two procedures
produced similar results, we find that the frequency-domain
implementation reduced spectral leakage by up to tens of
percent in power compared to the time-domain implemen-
tation, thereby allowing for better signal reconstruction.
That said, there may be applications in which it useful to
carry out hybrid compression: first in the frequency domain
and then in the time domain. We return to this idea at the
end of the next subsection.

B. Limitations

The rotation of the Earth places a limit on the extent of
possible compression [41]. If the segment duration δt is too
long, the Earth will rotate significantly during the duration
of the segment so that it becomes impossible to “point”
the radiometer in different directions by weighting each
spectrogram pixel with the appropriate phase factor; see
Ref. [11]. In practice, this translates to a loss of the signal-
to-noise ratio.
Following Ref. [11], the fraction of the signal-to-noise

ratio not lost due to phase offset R can be written as

R ¼ cosð2πfΔ~x · ΔΩ̂=cÞ; ð8Þ

where f is the gravitational-wave frequency, Δ~x describes
the displacement between the two detectors, ΔΩ̂ describes
the angular error due to the rotation of the Earth, and c is
the speed of light.
The angular error depends on the segment duration

relative to a sidereal day. The local coordinates for directions
corresponding to the poles (dec ¼ �90°) do not change at all

as the Earth rotates. The change is greatest for directions in
the equatorial plane dec ¼ 0°, for which

jΔΩ̂j ¼ 2π
δt=2
24 hr

: ð9Þ

Here, δt is the segment duration.
If we conservatively assume that the source is located at

dec ¼ 0°, we can rewrite Eq. (8) as

R ¼ cos ½2πfjΔ~x=cjðπδt=24 hrÞ cosðψÞ�; ð10Þ

where ψ is the angle between Δ~x and ΔΩ̂. The loss of
the signal-to-noise ratio is (conservatively) maximized
when cosðψÞ ¼ 1. Thus, we obtain the following expres-
sion for δt:

δt ¼ cos−1ðRÞ
2πft0ðπ=24 hrÞ ; ð11Þ

where t0 ≡ jΔ~x=cj is the travel time between the two
detectors (≈10 ms for the Hanford-Livingston pair). If we
demand that R > 90%, we obtain

δt≲ 197 s

�
1000 Hz

f

�
ð12Þ

for the Hanford-Livingston detector pair. Employing a
more conservative requirement of R > 95%, the prefactor
becomes 140 s.

C. Cost

Now, we compare the computational cost of an analysis
using uncompressed data, consisting, e.g., of 50%-
overlapping 1 Hz × 1 s spectrogram pixels, to the cost
of an analysis using compressed data consisting of non-
overlapping 1 Hz × 158 s pixels. After compression, a
10 hr-long stretch of data is described by only 228
(nonoverlapping) 158 s coarse-grained segments [42].
This makes it straightforward to search for ∼day-long
signals. One can analyze signals with durations in excess of
one week e.g., by splitting the analysis band into over-
lapping sub-bands.
Further, having reduced the size of the data set by a factor

of 2ð158 sÞ=1 s ≈ 316, an all-sky search using seedless
clustering will run ≈316 times faster (than an analysis
using uncompressed, 50%-overlapping, 1 Hz × 1 s spectro-
grams). Seedless clustering uses phaseless templates to
approximate narrowband gravitational-wave signals [10].
The sensitivity of the search, as well as its cost, is influenced
by the number of templates [11].
The cost of a radiometer search is usually dominated by

background estimation. The standard procedure relies on
time slides, in which one data stream is repeatedly shifted
in time with respect to the other in order to obtain many
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realizations of detector noise. Actual gravitational-wave
signals do not appear in time-shifted data since the
coherence is destroyed. In order to detect signals with a
3σ false alarm probability of ≈0.3%, it is necessary to
analyze the ≈370 realizations of time-shifted data.
Scaling estimates from Ref. [11], and assuming ≈3 day-

long spectrograms, we estimate the cost of background
estimation for a realistic search to the 3σ level. We assume
the search is carried out with T150 ¼ 2 × 106 templates per
150 Hz of bandwidth (a typical number of templates [11]).
We find that it can be carried out using 3.6 continuously
running 8-core Intel Xeon E5-4650 CPUs or Kepler GK104
GPUs [11]. This translates to 29 continuously running CPU
cores. The computational cost for background estimation in
a realistic search scales as follows:

tc ≈ 10 days

�
T150

2 × 106

��
tobs
1 yr

��
B

1200 Hz

�

×
�
nts
370

��
128

nGPU

��
ð2Þ158

�
Δf
δf

�
: ð13Þ

Here, tc is the computation time, tobs is the duration of the
observing run, B is the width of the analysis band, and nts is
the number of time slides (in this case, corresponding to
three-sigma confidence). The variable nGPU is the number
of GPUs (or, equivalently, 8-core CPUs). The ratio of
ðΔf=δfÞ describes the compression achieved with coarse
graining. For the examples shown here, ðΔf=δfÞ ¼ 158.
The factor of 2 is included if we replace overlapping
windows with nonoverlapping windows.

D. Hybrid compression

At the end of the previous subsection, we noted that there
may be applications for which it is helpful to carry out
hybrid compression: first in the frequency domain and then
in the time domain. For example, if we are interested a
particular direction in the sky, one can combine many
frequency-domain coarse-grained segments into even
longer segments via Eq. (4). Since, by assumption, each
of the frequency-domain coarse-grained segments in the
sum already takes into account the phase offset between the
two detectors, the constraint from Eq. (12) does not apply,
and so there is no limit to the number of segments that can
be combined. In this way, it should be possible to represent
an arbitrarily long span of data with a fixed number of
spectrogram pixels, facilitating a search for a signal of any
duration. It is important to note, however, that this hybrid
technique can only be applied by assuming a specific
source location, and so it does not lend itself to an efficient
all-sky search.

E. Trade-offs

By coarse graining spectrographic data with Eq. (6), we
are trading reduced frequency resolution for reduced

computational burden. As a consequence, the sensitivity
of the search is reduced in comparison to an idealized
lossless search using arbitrarily large computing resources.
To see why, consider a narrowband signal passing through
just one fine-grained spectrogram pixel (width ¼ δf) dur-
ing each segment in time. When the data are coarse grained
to a width Δf, the signal in this single fine-grained bin is
averaged with data in neighboring frequency bins contain-
ing only noise. In this worst-case scenario, the detection
statistic SNRtot is reduced by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δf=δF

p
—

corresponding to a factor of ≈13 for the 1 Hz × 158 s
pixels used for our demonstration below.
In practice, the loss of sensitivity can be less if the signal

is not confined to a single fine-grained bin at any given
time. Also, fine-grained bins are sometimes contaminated
with noise artifacts including non-Gaussian and nonsta-
tionary noise, which are, to some extent, ameliorated
through coarse graining. Such noise artifacts can therefore
serve to make the loss of sensitivity less severe in
comparison to the idealized case.
Once the data are coarse grained, the high-resolution

information is lost; the process is not invertible. However, in
the event of a candidate detection, one can imagine rean-
alyzing the original lossless data set with a targeted search,
looking only in a small band and in a specific direction
identified by the coarse-grained search. By severely restrict-
ing the parameter space of the search, it is possible to carry
out a computationally feasible follow-up study using fine-
grained data with reasonable computational resources.

V. DEMONSTRATION

Our goal here is to show that very long signals, lasting
hours or longer, can be successfully identified by employ-
ing an existing pattern recognition algorithm on com-
pressed data. For our first demonstration, we recover the
signal shown in Fig. 1(c). We create a simulated data set
spanning two days of Monte Carlo data for the Advanced
LIGO Hanford and LIGO Livingston detectors operating
at design sensitivity. The data consists of Gaussian noise
plus a simulated monochromatic signal with frequency
f ¼ 100 Hz and strain amplitude h0 ¼ 4 × 10−24, located
at ðra; decÞ ¼ ð18.5 hr;þ39°Þ. The signal is circularly
polarized.
The data are cross-correlated to produce spectrograms

with a resolution of ðδt;ΔfÞ ¼ ð158 s; 1 HzÞ with non-
overlapping segments. We consider an observing band
spanning 10–300 Hz. This spectrogram (with a phase factor
applied to point the radiometer in the appropriate direction)
is shown in Fig. 1(c). Once the data are compressed, we
carry out a seedless clustering search [10,11].
We make no assumptions about the start time, stop time,

frequency, or sky location of the search—subject to the
constraint that the signal morphology can be approximated
as a cubic Bézier curve of at least 1.8 hr in duration.
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(Following Ref. [11], we take advantage of the fact that p
encodes directional information as a complex phase in
order to point each seedless template in a different random
direction.) We record SNRtot for 2 × 106 randomly gen-
erated templates in order to identify the template that best
fits the signal. The best-fit template (with SNRtot ¼ 56) is
shown in Fig. 1(d). The recovery represents a reasonably
good match to the injected signal. (It would be better
recovered using a larger number of templates.) Running on
an 8-core CPU, this 48 hr stretch of data was analyzed
in ≈550 s.
As a second test, we attempted to recover a signal with a

more complicated time-frequency evolution. The signal

turns on ≈5 hr after the beginning of data taking and ends
near t ≈ 17 hr during which time the signal evolves
according to

ΦðtÞ ¼ Φ0 þ 2π

�
f0ðt − t0Þ þ

1

2
_fðt − t0Þ2

�
;

hþ ¼ h0 cos ðΦðtÞÞ;
h× ¼ h0 sin ðΦðtÞÞ: ð14Þ

We choose f0 ¼ 100 Hz, _f ¼ 20 Hz day−1, and h0 ¼
4 × 10−24. The signal is added to simulated noise and
processed using the same procedure used for the first test
injection.
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FIG. 2 (color online). Recovery of a very long transient signal with seedless clustering. Top-left (a): A ðδt;ΔfÞ ¼ ð158 s; 1 HzÞ
spectrogram of ρðt; fjΩ̂Þ [Eq. (A3)] consisting of one day of data. The data consist of Advanced LIGO Monte Carlo noise plus a
simulated signal. The signal begins at f ¼ 100 Hz and increases with a spin-up given by _f ¼ 20 Hz day−1. The amplitude is
h0 ¼ 4 × 10−24. The signal persists between t ≈ 5–17 hr. (It grows very faint after t ≈ 12 hr due the unfavorable orientation of the Earth
during this period.) Top-right (b): The recovered signal recovered with 2 × 106 cubic Bézier templates; SNRtot ¼ 11. Bottom-left (c):
A ðδt;ΔfÞ ¼ ð158 s; 1 HzÞ spectrogram of ρðt; fjΩ̂Þ consisting of two weeks of data. The data consist of Advanced LIGOMonte Carlo
noise plus a simulated signal. The signal begins at f ¼ 100 Hz and increases with a spin-up given by _f ¼ 10 Hz day−1. The amplitude is
h0 ¼ 4 × 10−24. The signal persists between t ≈ 3–10 days. Bottom-right (d): The recovered signal of the most significant cluster
identified in the bottom-left panel recovered with 2 × 106 cubic Bézier templates; SNRtot ¼ 67.
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In Fig. 2(a), we show a spectrogram of ρðt; fÞ. The signal
can be seen as a faint track beginning at 5 hr and appearing
to end at 12 hr. (The last several hours of the signal are
difficult to see by eye since the alignment of the detectors
makes it weak during this span.) The recovered signal is
shown in Fig. 2(b). Once again, we use 2 × 106 cubic
Bézier templates. As before, the source is located at
ðra; decÞ ¼ ð18.5 hr;þ39°Þ, though, this information is
not provided to the search algorithm. The recovered track
(with SNRtot ¼ 11) is a good match.
In Fig. 2(c), we show the spectrogram for an even longer

week-long signal present in two weeks of data. The signal
parameters are identical to the parameters used in Figs. 2(a)
and 2(b) except we use a smaller value of _f ¼ 10 Hz day−1.
Using 2 × 106 cubic Bézier templates, we recover the
injected signal in Fig. 2(d) with SNRtot ¼ 67.
In Table I, we show the strain values h0 for which

different signals (such as those shown in Fig. 2) can be
detected in 90 days of data with a false alarm probability of
1% and a false dismissal probability of 50%. We look for
signals in spectrograms of duration Δt ¼ 1 day, and in one
case, Δt ¼ 14 days. We simulate noise to determine the
threshold of SNRtot required for 1% false-alarm probability
detection. Then, we recover simulated signals with varied
h0 to determine the value for which at least half of the
signals are recovered with a sufficiently large value of
SNRtot (false dismissal probability ¼ 50%). In all cases, we
assume an optimally oriented source with an optimal sky
location. (For randomly oriented sources with random sky
locations, we expect h0 to increase by a factor of ≈1.5–2;
see, e.g., Ref. [11].) We employ 2 × 105 templates in a
300 Hz bandwidth.
The results shown in Table I can be understood in terms

of a simple scaling law, which can be used to guide our
expectations for the detectability of an arbitrary signal. If
the seedless clustering template approximately matches the

signal we are trying to recover, then the detection statistic
scales approximately as follows:

SNRtot ∝
h20

PðfÞ

�
tdur
Δf

�
1=2

; ð15Þ

where PðfÞ is the strain noise power spectral density
averaged over the emission frequency and tdur is the
duration of emission. While tdur, Δf, and PðfÞ are the
most important factors in determining the detectability of a
signal, other variables play a role too. For example, using a
fixed number of templates, it is harder to detect signals as
the frequency increases (all else equal) because the shrink-
ing diffraction-limited resolution makes it more challeng-
ing to match the signal to a template [11].
Together, the recoveries demonstrated in Figs. 1 and 2,

and also Table I, show that it is possible to recover very
long-lived signals with a range of different signal mor-
phologies in compressed cross-correlated data. The recov-
ery works for relatively weak signals and can be carried out
with reasonable computational resources. It is made fea-
sible by coarse graining, which allows us to analyze days of
data using a single spectrogram.
In order to place the results of Table I in context, we

consider an illustrative emission scenario. We consider a
neutron star in a binary, which emits gravitational waves,
for example, through r-mode instabilities, which decay on a
time scale of ≈1 week. By assuming accretion-torque
balance, it has been hypothesized [31] that the low-mass
X-ray binary Scorpius X-1 emits gravitational waves with a
strain of ≈9 × 10−26 at f ¼ 100 Hz [43]. By tuning the bin
width to match the observed Doppler modulation of
Scorpius X-1, we expect the sensitivity stated in Table I
could be improved by a factor of ð1 Hz=0.05 HzÞ1=4 ≈ 2
near 100 Hz [44]. This is still about a factor of 10 below the
expected strain from Scorpius X-1 assuming accretion-
torque balance.
Thus, assuming the hypothesized accretion-torque bal-

ance scenario, advanced detectors, using the method
presented here, are unlikely to detect very long transient
gravitational waves from a source like Scorpius X-1
(d ¼ 2.3 kpc). Detection would require a source that is
either significantly closer or significantly brighter. That
said, it is important to note that detecting any gravitational
waves from neutron stars such as Scorpius X-1 is a
challenging proposition for a variety of search techniques
[45]. The method proposed here will help to cover the full
parameter space of possible signals from such sources.
Before we move on, we note in passing, an interesting

difference between this very long transient algorithm and
the matched filtering algorithm proposed in Ref. [13]. In
Ref. [13], the authors noted that—at a fixed frequency—the
matched filtering signal-to-noise ratio depends only on the
total energy emitted in gravitational waves Egw and not on
the signal duration tdur. However, since the radiometric

TABLE I. The detectability of different signals in simulated
Advanced LIGO noise. The variables f0 and _f describe the signal
morphology following Eq. (14) while tdur is the signal duration.
Δt is the duration of each spectrogram input to the seedless
clustering algorithm. The variable h0 is the signal strength that
can be recovered with a false alarm probability of 1% and a false
dismissal probability of 50% in 90 days of data. We assume
optimally oriented sources in optimal sky locations. We employ
2 × 105 templates per spectrogram and analyze data in a 300 Hz
bandwidth. We use ðδt;ΔfÞ ¼ ð158 s; 1 HzÞ pixels. The sensi-
tivities quoted here can very likely be improved by using more
templates.

f0 (Hz) _f (Hz day−1) tdur (days) Δt (days) h0

100 20 0.29 1 3.6 × 10−24

100 0 0.29 1 3.3 × 10−24

100 10 7 14 1.7 × 10−24

1000 0 0.29 1 6.2 × 10−24
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signal-to-noise ratio scales like SNR ∝
ffiffiffiffiffiffiffi
tdur

p
h20, and since

Egw ∝ tdurh20, SNR ∝ Egw=
ffiffiffiffiffiffiffi
tdur

p
. Thus, for radiometer

analyses, we obtain a different scaling behavior than the
matched filter behavior noted in Ref. [13]: given a fixed
energy budget, shorter gravitational-wave transients are
easier to detect than longer transients. Given a constant flux
Φgw ∝ dEgw=dt, the signal-to-noise ratio grows with time:
SNR ∝ Φgw

ffiffiffiffiffiffiffi
tdur

p
.

VI. CONCLUSIONS

We have demonstrated the machinery of an efficient
search for very long-lived transient gravitational waves.
Such a search will be useful, both for looking for very long
transient signals from neutron stars, and for understanding
the time dependence of signals identified through persistent
radiometer searches and stochastic background searches.
Our procedure relies on coarse graining to create an
intermediate data product that is computationally manage-
able to work with. In carrying out our demonstration, we
explored the modulations in cross-correlated data due to
the rotation of the Earth. Future work, building on this
demonstration, will explore new physics (and instrumental
effects) on time scales of hours to days.
We note that the method described in Ref. [13], which

builds on existing searches for continuous waves from
persistent emitters, can likely achieve better sensitivity than
the method proposed here in its domain of utility: sources
following the canonical spin evolution typical of an isolated
pulsar. This is because continuous wave searches for
isolated neutron stars (see, e.g., Ref. [46]) assume a heavily
constrained parameter space of pulsar-like signals.
However, there are important differences between radiom-
etry and continuous waves searches, which make our new
method highly complementary.
Like all applications of gravitational-wave radiometry,

the method described here is most useful in cases when the
signal does not match a simple template. For neutron stars in
binary systems, radiometer measurements [34,47] can be
comparable in sensitivity to continuous wave techniques
[48,49], which rely on amore detailed signalmodel. Further,
radiometer searches, including the one described here, are
extremely robust because they do not make assumptions
about thephase evolutionof the signal. Finally, in themethod
described here, we allow for significant variation in the
frequency evolution of the gravitational-wave signal, which
allows us to probe a completely different parameter space
compared to continuous wave searches, which assume very
limited changes in the neutron star spin: ≲6 × 10−9 Hz s−1

versus ≲300 Hz s−1.
While we have focused here on signals lasting hours to

weeks, this method can be extended to target both shorter
and longer signals as well. While significant work has been
carried out to develop tools for probing signals with
durations of 10–1000 s, it may prove useful to apply some

modest coarse graining (Δf=δf ≳ 1) to searches that are
stretched for computational resources. The characterization
of ≈year-long signals may require some additional devel-
opment since a year-long spectrogram of compressed data
still requires significant memory resources. However,
extrapolating from our analysis here of a two-week-long
spectrogram, it seems likely that such a search could be
carried out through a number of options such as the use of
computers with larger amounts of memory ≳24 GB and/or
working with narrower frequency bands.
Another next step is to consider how realistic searches,

using the ideas presented here, can be optimized. For
example, a search for persistent narrowband signals may
benefit from the use of overlapping frequency bins and/or
frequency bins of different sizes. Such optimizations would
be equally useful for any radiometer search.
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APPENDIX: DETAILS OF RADIOMETRY

1. Definitions

Given two simultaneous strain measurements s1 and s2,
the cross-correlation statistic Ŷ (and its associated uncer-
tainty σ) can be written as [1]

Ŷðt; fjΩ̂Þ ¼ 2

N
Re

�
e2πifΩ̂·Δ~x=c

1

ϵ12ðtjΩ̂Þ
~s�1ðt; fÞ~s2ðt; fÞ

�
;

σ2ðt; fjΩ̂Þ ¼ 1

2

���� 1

ϵ12ðtjΩ̂Þ

����
2

P0
1ðt; fÞP0

2ðt; fÞ: ðA1Þ

Here, ~sIðt; fÞ is the discrete Fourier transform of the strain
series from detector I and P0ðt; fÞ is the auto-power
spectrum calculated using neighboring data segments.
Each segment has duration δt. The argument t is the
starting time of the data segment and f is frequency. N
is a Fourier normalization coefficient, Ω̂ is the direction of
the source,Δ~x is the difference in detector position, and c is
the speed of light. Above, we carry out simulations for the
Advanced LIGO network (consisting of detectors in
Hanford, Washington and Livingston, Louisiana) for which
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jΔ~xj=c ≈ 10 ms. The ϵ12ðtjΩ̂Þ factor describes the effi-
ciency of the detector pair [1]:

ϵ12ðtjΩ̂Þ≡ 1

2

X
A

FA
1 ðtjΩ̂ÞFA

2 ðtjΩ̂Þ: ðA2Þ

Here, FA
I ðtjΩ̂Þ is the antenna factor [50] for detector I and

A ¼ þ;× are the different polarization states.
It is useful to define the “pixel signal-to-noise ratio”:

ρðt; fjΩ̂Þ ¼ Ŷðt; fjΩ̂Þ=σðt; fjΩ̂Þ: ðA3Þ

We use ρðt; fjΩ̂Þ for its convenience as a tool for visual
representation of cross-correlated data and also because it
allows for compact derivations. In the context of all-sky
searches, it is also useful to define the “complex signal-to-
noise ratio” [11]

pðt; fÞ ¼ κ~s�1ðt; fÞ~s2ðt; fÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0
1ðt; fÞP0

2ðt; fÞ
q

; ðA4Þ

where, for the sake of compactness, we define a normali-
zation factor

κ ≡ 2
ffiffiffi
2

p
=N : ðA5Þ

Comparing Eqs. (A3) and (A4), we see that pðt; fÞ is the
same as ρðt; fÞ except no phase factor has been applied, and
we do not take the real part. In doing so, we obtain a data
product with information from all directions on the sky.

2. Clustering

Having defined spectrograms of ρ or p [Eqs. (A3) and
(A4)], the next step in a radiometer analysis is to look for
clusters of statistically significant excess coherence. Details
of the clustering procedure depend on the specific search,
but there are certain common features.
First, a rule is defined for how clusters can be formed. In

the case of the targeted narrowband radiometer [16,34,38],
the signal is assumed to persist with a fixed frequency, and
so each cluster corresponds to the set of all pixels at a given
frequency; i.e., one spectrogram row.
Once a cluster is defined, all the pixels in that cluster are

combined in order to produce a detection statistic for that
cluster denoted SNRtot. The detection statistic (for a
targeted search with a known sky location) can be written
as a weighted average [16,34,38]:

SNRtot ¼
P

i∈ΓŶiσ
−2
i

ðPi∈Γσ
−2
i Þ1=2 : ðA6Þ

(We have suppressed the dependence on Ω̂ for the sake of
brevity.) The sum over i runs over some set of ðt; fÞ pixels
Γ, which is determined by details of the search. A search for
persistent narrowband signals, for example, might sum over
time at a fixed frequency. In searches for transient signals,

the set of ðt; fÞ pixels may be described, e.g., by a Bézier
curve [10,11,37].
If we assume for the sake of simplicity that the noise is

approximately stationary, and that the signal does not vary
significantly in frequency, then we can write

Ŷi ¼ ρiσ0=ϵi12;

σi ¼ σ0=ϵi12: ðA7Þ
Recall that ϵi12 [Eq. (A2)] is an efficiency factor arising
from the detector response function, which changes in time
as the Earth rotates. The variable σ0 is some number
determined only by the detector strain sensitivities.
Combining Eqs. (A6) and (A7), we obtain

SNRtot ¼
P

i∈Γρiϵ
i
12

ðPi∈Γðϵi12Þ2Þ1=2
: ðA8Þ

3. All-sky search

To this point in the Appendix, we have assumed that the
sky location Ω̂ is known a priori. This assumption holds for
targeted searches, e.g., searching for gravitational waves
from the low-mass X-ray binary, Scorpius X-1 [31]. When
the sky location is not known, the search becomes more
complicated. To see this, consider an all-sky search which
considers some finite set of directions fΩ̂ig. If we look in
some direction Ω̂i, which is offset from the true source
direction Ω̂t, then the phase factor in Eq. (A1) will not
rotate the signal power perfectly into the real number axis.
As a result, signal power leaks into the imaginary direction,
and can even produce negative power on the real axis.
In order to carry out an efficient all-sky search, we can

use Eqs. (A8) and (A4) to define a detection statistic that
can quickly scan over sky locations:

SNRtotðΩ̂Þ ¼
Re½Pi∈Γ exp ð−iΨiÞpiϵi12�

ðPi∈Γðϵi12Þ2Þ1=2
: ðA9Þ

(This definition of SNRtot is essentially the same one that
was proposed in Ref. [11].) Graphically, Eq. (A9) can be
interpreted as applying an Ω̂-dependent phase array to a
complex-valued spectrogram [as in Figs. 1(a) and 1(b)]
before summing over clusters of pixels.
At first glance, Eq. (A9) may appear tautological. There

is already implicit dependence on Ω̂ in Eq. (A8) hiding in
ρi, ϵi, and therefore in SNRtot. However, the ingredients used
in Eq. (A8) are calculated for a specific sky location Ω̂ in
such a way that the information about all other sky locations
is lost when the imaginary part is discarded in Eq. (A1).
Thus, the formulation described by Eq. (A9) allows us to
search the entire sky with a single data product. Using
parallel computing architecture, we can efficiently search
many directions in parallel with a single manageable array,
dramatically speeding up calculations in the process [11].
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