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Compact binary coalescences are a promising source of gravitational waves for second-generation
interferometric gravitational-wave detectors such as advanced LIGO and advanced Virgo. While most
binaries are expected to possess circular orbits, some may be eccentric, for example, if they are formed
through dynamical capture. Eccentric orbits can create difficulty for matched filtering searches due to the
challenges of creating effective template banks to detect these signals. In previous work, we showed how
seedless clustering can be used to detect low-mass (Mtotal ≤ 10M⊙) compact binary coalescences for both
spinning and eccentric systems, assuming a circular post-Newtonian expansion. Here, we describe a
parametrization that is designed to maximize sensitivity to low-eccentricity (0 ≤ ϵ ≤ 0.6) systems, derived
from the analytic equations. We show that this parametrization provides a robust and computationally
efficient method for detecting eccentric low-mass compact binaries. Based on these results, we conclude
that advanced detectors will have a chance of detecting eccentric binaries if optimistic models prove true.
However, a null observation is unlikely to firmly rule out models of eccentric binary populations.
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I. INTRODUCTION

Compact binary coalescences (CBCs) of black holes
and/or neutron stars are a likely source of gravitational
waves (GWs) [1–3]. The GWs generated by CBCs, such as
binary neutron stars (BNSs), neutron-star black holes
(NSBHs), and binary black holes (BBHs), sweep upward
in frequency and strain amplitude through the sensitive
band of GW detectors such as LIGO [4], Virgo [5], GEO
[6], and KAGRA [7]. The detection of GWs from CBCs
will provide information about the populations of compact
objects in the universe [8], elucidate the properties of
strong field gravity, and provide a means to test general
relativity [9].
Searches for CBCs almost entirely use matched filtering,

which requires precise knowledge of astrophysical wave-
forms. Excess power searches are also used, especially for
high-mass systems associated with shorter signals; see,
e.g., Ref. [10]. Because CBCs are, for the most part, well-
modeled systems, matched filtering provides an essentially
optimal strategy for detecting compact binaries. Due to
computational limitations, most CBC searches use template
banks composed of nonspinning, noneccentric waveforms,
which are less computationally challenging to implement
than searches with complications such as spin and eccen-
tricity. Up until now, there have been no dedicated matched

filtering searches for low mass binaries with low to
moderate eccentricities. Huerta and Brown have shown
that searches using waveforms that assume no eccentricity
are significantly suboptimal above ϵ > 0.05 [11]. They
conclude that, in order to detect and study the rate of
eccentric stellar-mass compact binaries in aLIGO, a search
specifically targeting these systems will need to be con-
structed. Matched filtering searches would require eccentric
template banks to avoid being significantly suboptimal.
One method for overcoming these difficulties is building
larger (and smarter) template banks to perform searches.
This is, of course, computationally expensive, and in some
cases intractable.
There has been a number of recent developments that

potentially enable searches for eccentric binaries. Huerta
et al. [12] recently developed a purely analytic, frequency-
domain model for gravitational waves emitted by compact
binaries on orbits with small eccentricity. This model
reduces to the quasicircular post-Newtonian approximant
TaylorF2 at zero eccentricity and to the postcircular
approximation of Yunes et al. [13] at small eccentricity.
A computationally tractable, matched filtering search using
these templates is possible. Matched filtering searches rely
on knowing the phase of the gravitational-wave signal
being searched for. This is powerful for limiting the noise
background of detector data but also is subject to modeling
errors, especially in highly eccentric cases where pertur-
bative waveform generation methods are not yet suffi-
ciently accurate to be used as templates. Another proposed
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method for detecting highly eccentric binaries is the search
for the “repeated bursts” created by the many passes of the
eccentric binary [14,15]. Tai et al. [15] applied a single-
detector power stacking algorithm, developed in Ref. [16]
to search for gravitational-wave bursts associated with soft
gamma ray repeater events, to the case of eccentric binary
mergers. They use a time-frequency signature informed by
an eccentric model developed in Ref. [17] to sum up power
in Q-transform pixels, which is a multiresolution basis of
windowed complex exponentials. Excess power methods,
like those from Ref. [15] and those presented below, do not
have the same issues as matched filtering, as phase
information is not used in these analyses. In the work that
follows, we will differ from Ref. [15] in the use of a
coherent multidetector statistic with a generic eccentric
frequency-time track with the assumption of low-to-
moderate eccentricity CBCs.
There is significant astrophysical motivation for design-

ing searches for eccentric CBCs. Main sequence evolution
binaries will be circularized by the time they enter the
sensitive frequency band for ground-based detectors
[18,19]. On the other hand, models exist which could
result in highly eccentric CBCs in the sensitive band.
O’Leary et al. present a model where the scattering of
stellar mass black holes in galactic cores containing a
supermassive black hole can lead to CBCs with high
eccentricities [20]. They expect that 90% of such systems
would have eccentricity ϵ > 0.9 when twice their orbital
frequency, likely the dominant frequency of gravitational-
wave emission, enters the sensitive band.
Assuming a highly idealized pipeline, and ignoring

complications such as template bank trial factors, they
found the expected rate of coalescence detectable by
aLIGO to be 1–102 per year. This rate estimate is
dominated by intermediate-mass black hole binaries, which
coalesce with a greater cross section and which produce a
louder signal than stellar mass binaries. In our analysis, we
focus on low-mass binaries, where the method presented
below is likely to give the greatest improvement over other
methods. In this work, we argue that the detection rate in
realistic pipelines is probably closer to 0.001–0.5 per year.
Samsing et al. [21] show how eccentric binaries can be

generated from interactions between compact binaries and
single objects, inducing chaotic resonances in the binary
system. Although the number of BBHs in the Galactic
center is not well constrained, there may be more than 103

black holes in central 0.1 pc of our Galaxy [22]. Binary-
binary interactions in globular clusters can also result in
nonzero eccentricity. If the orbital planes of the inner and
outer binary are highly inclined with respect to one another,
Kozai resonances increase the eccentricity of the inner
binary [23–25]. Antonini and Perets [24] estimate that
0.5% of binaries formed in this way will have eccentricities
ϵ > 0.5 when they enter the sensitive band. Eccentric
binary black hole mergers have also been studied

[26,27]. Numerical relativity simulations have shown that
highly eccentric BNS systems can exhibit interesting
features, including f-modes and disks resulting from the
merger [28]. Simulations of NSBH mergers show varying
amounts of mass transfer and accretion disk size [29,30].
Therefore, there is significant motivation to design searches
for eccentric CBCs as GW sources. Another potential
mechanism for forming eccentric neutron star binaries is
tidal capture [31].
In situations where the GW is either difficult to accu-

rately model or the parameter space too large to easily
create template banks to accurately span the parameter
space, a potential alternative is to search for excess power in
spectrograms (also called frequency-time ft-maps) of GW
detector data [32–34]. In these searches, the goal is to
design pattern recognition algorithms that can identify the
presence of GW signals across the parameter space of
interest (in our case, low-mass, low-to-moderate eccentric-
ity CBCs). A strategy that has been shown to be effective
in searches for long-lived transients is known as “seedless
clustering,” which integrates the signal power along
spectrogram tracks using predefined “templates” chosen
to capture the salient features of a wide class of signal
models [35–37]. Examples of both nearby and near-
detection threshold eccentric BNS signals recovered with
a seedless chirping template are shown in Fig. 1.
In previous work [37], the authors have shown how

seedless clustering can be applied to searches for low-mass
CBC signals (Mtotal ≤ 10M⊙). A shortcoming of the pre-
vious analysiswas the use of a circular post-Newtonian (PN)
expansion when performing the search for the CBC signals,
which is suboptimal for binaries with even low-to-moderate
eccentricities. In this paper, we show how to apply seedless
clustering formalism to efficiently search for eccentric CBC
signals. In Sec. II, we review the basics of seedless
clustering and show how the formalism of Refs. [35–37]
can be tuned to more sensitively detect eccentric CBC
signals. In Sec. IV, we determine the sensitivity of seedless
clustering algorithms to eccentric CBC signals. In Sec. V,
we describe the computational resources required for
realistic searches and compare the algorithms’ performance
on CPUs and graphical processor units (GPUs). In Sec. VI,
we discuss the implications of the results to the detectability
of O’Leary et al. [20], Samsing et al. [21] and Antonini and
Perets [24] models. We conclude with a discussion of topics
for further study in Sec. VII.

II. SEEDLESS CLUSTERING FOR CHIRPS

Spectrograms proportional to GW strain power are the
starting point for most searches for unmodeled GW
transients. Pixels are computed by dividing detector strain
time series in segments and computing the Fourier trans-
form of the segments. We denote the Fourier transform of
strain data from detector I for the segment with a midtime
of t by ~sIðt; fÞ. The time and frequency resolution is
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typically optimized based on the signal morphology.
Following Ref. [37], we use 50%-overlapping, Hann-
windowed segments with duration of 1 s and a frequency
resolution of 1 Hz.
Searches for long-duration GW transients construct spec-

trograms of ft-maps of a cross-power signal-to-noise ratio
using the cross-correlation of two GW strain channels [34]:

ρðt; fjΩ̂Þ ¼ 2
ffiffiffi
2

p

N
Re

�
e2πifΔ~x·Ω̂=c

~s�I ðt; fÞ~sJðt; fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0
Iðt; fÞP0

Jðt; fÞ
p

�
: ð1Þ

Here, Ω̂ is the direction of the GW source, Δ~x is a vector
describing the relative displacement of the two detectors, c is
the speed of light, and e2πifΔ~x·Ω̂=c is a direction-dependent

phase factor,which takes into account the timedelay between
the two detectors. P0

Iðt; fÞ and P0
Jðt; fÞ are the autopower

spectral densities for detectors I and J in the segments
neighboring t. N is a fast fourier transform (FFT) normali-
zation factor, L × Fs, where L is the number of samples and
Fs is the sampling frequency. For additional details, see
Refs. [34–37].
Pattern recognition algorithms are used to find signals

present in the ft-maps. The specific form of the potential
GW in the ft-map depends on the signal. Low-mass,
low-to-moderate eccentricity CBCs appear as chirps of
increasing frequency. For highly eccentric signals, the
signal also includes distinct and repeated “prebursts” that
last from minutes to days as the binary evolves from the
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FIG. 1 (color online). The plot on the top left shows ρðt; fÞ for a simulated eccentric (ϵ ¼ 0.4) BNS signal injected on top of
Monte Carlo detector noise. The simulated noise is created for the advanced LIGO Hanford and Livingston Observatories operating at
design sensitivity. The component masses are 1.4M⊙, and the distance is 100 Mpc. The chirping signal appears as a faintly visible track
of lighter-than-average pixels. The horizontal lines are frequency notches to remove instrumental artifacts. On the top right is the
recovery obtained with seedless clustering. The signal is recovered with a FAP < 0.1%. The plot on the bottom left shows ρðt; fÞ for the
same system but an order of magnitude nearer at 10 Mpc. The harmonics are visible at this distance. The bottom right shows the recovery
obtained with seedless clustering.
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initial very eccentric phase toward the less eccentric
phase [14].
As described above, seedless clustering identifies clus-

ters of pixels, denoted Γ, likely to be associated with a GW
signal by integrating along tracks of predefined templates.
The total signal-to-noise ratio for a cluster of pixels can be
written as a sum of over ρðt; fjΩ̂Þ,

SNRtot ≡ 1

N1=2

X
ft;fg∈Γ

ρðt; fjΩ̂Þ; ð2Þ

where N is the number of pixels in Γ.
While seed-based algorithms connect statistically sig-

nificant seed pixels to form clusters [35,38], seedless
clustering uses banks of parametrized frequency-time
tracks. Because of their parametrization, calculations for
many templates can be carried in parallel, which facilitates
rapid calculations on multicore devices such as GPUs.
Because these banks do not use the phase and GW
waveform amplitude, searches utilizing them are less
sensitive than traditional matched filtering searches. On
the other hand, for this same reason, they can be more
robust when searching for GWs that do not fit the signal
model exactly.
There is a number of seedless clustering parametrizations

at this point in the literature [36,37,39]. One of the most
robust is a template bank of randomly generated Bézier
curves [39], which have been shown to be sensitive to a
number of long-lived narrow-band GW signals [36]. In the
case of circular CBC signals, the most appropriate choice is
a PN expansion of the form

fðtÞ ¼ 1

2π

c3

4GMtotal

X7
k¼0

pkτ
−ð3þkÞ=8; ð3Þ

where

τ ¼ ηc3ðtc − tÞ
5GM

: ð4Þ

Here, G is the gravitational constant,Mtotal is the total mass
of the binary, η is the symmetric mass ratio, and tc is the
coalescence time. The definition should be provided. The
expansion coefficients pk can be found in Ref. [40]. In
Ref. [37], these were shown to fit the frequency evolution
of the circular CBCs very well. On the other hand, the fits
for eccentric CBCs were less precise. This motivates the
derivation presented below.
To derive an expression for eccentric CBC signals, we

use the lowest-order, quadrupole formula for eccentric
binaries [18,19]. The derivation can be found in the
Appendix and the frequency evolution can be found in
Eq. (A9). One characteristic of seedless clustering is the use
of a single track across the ft-map. This is suboptimal for
eccentric signals as some power is present in harmonics of

the orbital frequency of the binary, as can be seen in Fig. 1.
Yunes et al. [13] show that for small eccentricities the
power is dominated by components oscillating at once,
twice, and three times the orbital frequency. In the limit
ϵ ≪ 1, the dominant term is the second harmonic. It is
consistent with the assumptions above then that we search
for a single, dominant harmonic with our algorithm.
In Ref. [37], circularized CBC waveforms are para-

metrized by two numbers: the coalescence time and the
chirp mass. (In Ref. [37], we showed how approximating
the individual component masses as equal led to excellent
track fits, allowing for a significant reduction in the number
of templates required to span the space.) The inclusion of
eccentricity expands the chirp parameter space by an
additional dimension. In the analysis below, we conserva-
tively use a minimum component mass of 1M⊙.
By searching over 40 different time delays, correspond-

ing to 40 different sky rings, a computationally efficient all-
sky search can be performed. This was demonstrated in
Ref. [37] to be sufficient to recover CBC signals in arbitrary
directions. The assumption of low-to-moderate eccen-
tricities here leads to a small increase in the number of
templates required to span the space of interest. At
eccentricities of 0.5 or above, contributions from the
neglected terms in the derivation become significant at
the 10% level. Also, the assumption that most of the power
is in a single harmonic begins to break down. Therefore, we
search from 0 ≤ ϵ ≤ 0.5. This leads to an increase in
templates by a factor of 6 (using steps of 0.1 in eccentric-
ity). The sensitivity does not improve appreciably with a
higher-resolution scan over eccentricity bins.
To justify expanding the parameter space, which not only

requires more templates but also increases the noise
background distribution (requiring higher signal-to-noise
ratio to make detections), the fit of the templates must
improve. We show below that there is a portion of the
parameter space where the eccentric templates have more
overlap with the signals and consequently capture more
signal-to-noise ratio (SNR), and thereby extend the sensi-
tive distance of the search. A simple metric for determining
the efficacy of the fits is the overlap between the true track h
and the template track s,

Oðs; hÞ ¼
1

N1=2
s

PNs
i¼1 ρs

1

N1=2
h

PNh
i¼1 ρh

; ð5Þ

where Ns and Nh are the number of pixels in the s and h
tracks, respectively. The overlap corresponds to the sum
over the true track h by the template track s, as in Eq. (2).
Oðs; hÞ ¼ 1 corresponds to perfect overlap whereas
Oðs; hÞ ¼ 0 corresponds to zero overlap. It is important
to note that this definition of overlap is only analogous to
the standard definition for matched filter searches—see,
e.g., Refs. [41,42]—as this definition is designed for
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spectrographic excess power searches. The fitting factor,
FF, gives the loss in SNR due to nonoptimal templates. FF
is computed by maximizing the overlap function over the
template bank,

FFðhÞ ¼ maxs ðOðs; hÞÞ: ð6Þ
Like our expression for Oðs; hÞ, FFðs; hÞ is analogous (but
not directly comparable to) definitions from matched
filtering; see, e.g., Refs. [41,42]. FF ¼ 1 means that the
fit in templates is perfect, while FF ¼ 0means that there is
no overlap.

III. SENSITIVITY STUDY

The design of the sensitivity study is as follows. We use
Monte Carlo Gaussian noise consistent with the design
sensitivity of advanced LIGO. We perform an untriggered
search over a week of data. Following Ref. [37], we create
660 s nonoverlapping spectrograms. To estimate back-
ground, we perform 100 time slides of a week of data. For
each trial, we search for a chirp signal using circular
templates and using eccentric templates.
We begin our study by determining our background.

Using many noise realizations, we estimate the distribution
of SNRtot for the two search variations corresponding to
circular and eccentric templates. Using these noise distri-
butions, we determine the value of SNRtot (for each search
variation). This corresponds to a false alarm probability
(FAP) of 1% for the untriggered searches.
We then determine the distance at which the signals

can be detected with SNRtot sufficient for a FAP < 1%. To
do so, we inject GW signals into many noise realizations,

with optimal sky location and an optimal source orienta-
tion, and recover them with the two search variations. We
define the “sensitive distance” as the distance at which 50%
of the signals are recovered with FAP < 1% for each
pipeline. Following Ref. [37], we use 15 CBC waveforms
with component masses ranging from 1.4–5M⊙ and
eccentricities ranging from 0–0.6. “Eccentricity” here is
taken to mean the eccentricity of the binary when twice its
orbital frequency enters the sensitive band. Noneccentric
waveforms are generated using a SpinTaylorT4 approxi-
mation. Eccentric waveforms are generated using
CBWaves, which employs all the contributions that have
been worked out for generic eccentric orbits up to 2PN
order [43]. The parameters for each waveform are give
in Table I.

IV. RESULTS

We summarize the results of our sensitivity study in
Table I. First, we evaluate the improvement in sensitivity
gained by using eccentric templates. Then, for the sake of
completeness, we consider the (small) loss in sensitivity for
circular signals due to the expanded search space.

A. Recovery of eccentric signals

We begin with an analysis of the fitting factors. The
fitting factors for the eccentric templates range from 0.55–
1, while the fitting factors for the circular templates range
from 0.25–1. In general, the fitting factors for the circular
and eccentric templates are similar for the noneccentric
cases considered here. This is to be expected as the
eccentric templates should converge to the circular ones

TABLE I. Sensitive distances for different waveforms (assuming optimal sky location and source orientation) given the design
sensitivity of advanced LIGO [44]. Each row represents a different waveform: BNS ¼ “binary neutron star;” NSBH ¼
“neutron star black hole binary;” and BBH ¼ “binary black hole;”. A waveform beginning with an “E” is eccentric. The columns
marked m1 and m2 give the component masses in units of M⊙. The next columns list the eccentricity ϵ and the waveform duration in
seconds. The next two columns list the fitting factors (FF) for both chirplike templates and eccentric templates. The final two columns
list the (FAP ¼ 1%, FalseDismissalProbability ¼ 50%) detection distance (in Mpc) for circular templates and eccentric templates.

Waveform m1 m2 ϵ tdur (s) FFCircular FFEccentric DCircular DEccentric

BNS 1 1.4 1.4 0 170 0.95 0.95 160 160
NSBH 1 3.0 1.4 0 96 0.9 0.9 270 270
BBH 1 3.0 3.0 0 54 0.95 0.95 420 390
BBH 2 5.0 5.0 0 42 0.75 0.75 620 560
EBNS 1 1.4 1.4 0.2 120 0.85 0.85 150 160
EBNS 2 1.4 1.4 0.4 224 0.65 0.85 150 160
ENSBH 1 3.0 1.4 0.2 69 0.95 0.95 240 240
ENSBH 2 3.0 1.4 0.4 127 0.6 0.9 220 240
ENSBH 3 3.0 1.4 0.6 237 0.65 0.75 220 240
EBBH 1 3.0 3.0 0.2 40 0.3 0.75 240 360
EBBH 2 3.0 3.0 0.4 70 0.25 0.7 180 290
EBBH 3 3.0 3.0 0.6 128 0.3 0.6 200 350
EBBH 4 5.0 5.0 0.2 14 0.45 0.85 350 420
EBBH 5 5.0 5.0 0.4 26 0.3 0.65 290 390
EBBH 6 5.0 5.0 0.6 51 0.4 0.55 240 390
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in the limit of small eccentricities. The performance at low
eccentricities for the low-mass systems shows a slightly
better fitting factor for the circular templates. As eccen-
tricity and mass increase, the fitting factors for eccentric
systems become significantly higher than that for the
circular templates. For some of the systems considered
here, the fitting factors for the eccentric templates can be
more than a factor of 2 higher than for the circular
templates. This means that the signal-to-noise ratio recov-
ered for these tracks will be more than a factor of 2 higher
for the eccentric bank. Figure 2 shows an example of the
improvement of eccentric waveform fits from using the
eccentric templates. The main reason that the fitting factors
become relatively poor as mass increases is the breakdown
of the assumption that the signals being searched for are
narrow band. For systems with nonzero eccentricity, there
is a broad spectrum of frequencies rather than an identi-
fiable fðtÞ.
The ratio of detection distance for eccentric templates to

circular templates ranges from 100%–175% with a mean of
130%. This corresponds to an average ratio of sensitive
volumes of 250%. This is comparable to the gain in
sensitivity when going from Bézier curves to circular
templates [37]. The sensitivity distances for eccentric
waveforms decreases as eccentricity increases. The falloff
is significantly slower for the eccentric templates. This is
due to the breakdown of the circular binary approximation.

The breakdown becomes more pronounced at higher
eccentricities, as one would expect. The increase in
sensitivity when going from an all-sky search to a triggered
search is between 10%–20% for both circular and eccentric
templates.
Table I shows that the sensitive distances are not always

monotonically decreasing functions of the eccentricity for
either eccentric or circular templates. This is because the
sensitive distances are determined both by the fitting factors
as well as the waveforms themselves. Because the fitting
factors are maximized over the parameter space, some of
the waveforms will be better fit than others. In addition, the
waveforms will have different amounts of available
“power” to be fit. Therefore, it is not necessarily surprising
that the sensitive distances are not monotonically
decreasing.

B. Recovery of circular signals

We now turn our attention to the sensitivity distances.
The trends in the sensitivity distances are similar to those
seen in the fitting factors. In general, the sensitivity to the
circular waveforms for the eccentric templates is slightly
worse than the circular waveforms. This is predominantly
due to the increased background distribution from the
expansion of the parameter space. The ratio of detection
distance for eccentric templates/circular templates ranges
from 90%–100% with a mean of 95%. The average ratio of
sensitive volumes is 88%.

V. COMPUTATIONAL REQUIREMENTS

To estimate the computational cost of an all-sky seedless
clustering search (with eccentric chirplike templates), we
carried out a benchmark study using a Kepler GK104s GPU
and an eight-core Intel Xeon E5-4650 CPU. Each job was
allotted 8 g of memory. The GPU was able to analyze 660 s
of data in 106 s, corresponding to a duty cycle of ≈16%.
This is about a factor of 2 slower than the circular-template
search. Using all eight cores, the CPU duty cycle was
comparable; the job-by-job variability in run time is greater
than the difference between GPUs and eight-core CPUs on
average.
If we require background estimation at the level of

FAP ¼ 1%, which corresponds to performing 100 time
slides, it follows that a continuously running seedless
clustering search with chirplike templates can be carried
out with just 32 continuously running GPUs (or eight-core
CPUs). Here, we have taken into account an additional
factor of 2 needed to implement overlapping spectrograms
to ensure that signals do not fall on the boundary.
(Background estimation at the level of FAP ¼ 0.1% would
require 320 GPUs/eight-core CPUs.) In reality, the duty
cycle from coincident GW detectors may be ≈50%, in
which case these computing requirements are conservative
by a factor of 2.

FIG. 2 (color online). This plot shows a BNS waveform (red)
with ϵ ¼ 0.4 and m1 ¼ m2 ¼ 1.4M⊙ compared to eccentric
templates using Eq. (A9) with eccentricities ranging from
ϵ ¼ 0 (light green) through ϵ ¼ 0.4 (blue). The shaded regions
represent a nominal 1 Hz band around the track. Ideally, the
shaded region for a track would overlap with the red waveform.
While the best fit (which happens for ϵ ¼ 0.3) is not associated
with the correct eccentricity, it is nonetheless a reasonable fit to
the waveform that is better than could be obtained using only a
circular parametrization (ϵ ¼ 0). This exhibits the superiority of
the shape of the eccentric parametrization in fitting eccentric
waveforms.
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VI. ASTROPHYSICAL IMPLICATIONS

O’Leary et al. present a model where the scattering of
stellar mass black holes in galactic cores which contain a
supermassive black hole can lead to CBCs with high
eccentricities, corresponding to eccentricities near to 1
[20].We discuss here the potential for detecting such systems
given the rates presented in the paper. Table I of Ref. [20]
presents the merger rate per Milky Way equivalent galaxy
(MWEG) for the models considered. We can straightfor-
wardly convert from the rates in this paper towhat we expect
in the advanced detector era. The most optimistic scenario,
given by model F-1, predicts 1.5 × 10−2 MWEG−1Myr−1.
The median scenario, given by the median of the models
considered, predicts 3.3 × 10−4 MWEG−1Myr−1. The
pessimistic scenario, given by model Aβ3, predicts
2.0 × 10−4 MWEG−1Myr−1. We now find the rates of
CBCs given by Table II of Ref. [3]. The low, realistic, and
high rates for BBHs are 0.01 MWEG−1Myr−1,
0.4 MWEG−1Myr−1, and 30 MWEG−1Myr−1, respec-
tively. The matched filter detection rates of CBCs for
advanced LIGO are given by Table IV of Ref. [3]. The
low, realistic, and high detection rates for BBHs are 0.4, 20,
and 1000, respectively.
Using these estimates, we can compute the expected

rates of eccentric detections by a matched filtering pipeline
using the ratio of the O’Leary et al. and aLIGO detection
rates, multiplied by the BBH detection rate. These are
0.008, 0.02, and 0.5 for the low, realistic, and high
detection rates for BBHs. We can convert between matched
filter and seedless clustering detection rates by dividing
through by 8 (as the distances differ by about a factor of 2)
[37]. These are given by 0.001, 0.002, and 0.06 for the low,
realistic, and high detection rates for BBHs. Table II
summarizes these results. We note here that the matched
filtering results stated here would require a dedicated
eccentric binary matched filtering pipeline, which does

not currently exist. A matched filtering pipeline using
circular templates would have rates similar in order of
magnitude to that of seedless clustering. We describe in
Sec. IV where seedless clustering is most competitive. The
relatively low detection rates are due to the significantly
fewer eccentric binaries expected relative to circular bina-
ries, at least in the O’Leary et al. model.
Samsing et al. [21] estimate that eccentric binaries

formed from interactions between compact binaries and
single objects are about 1% of the anticipated total compact
object merger rate. Therefore, we can scale the matched
filter detection rates of CBCs for advanced LIGO from
Table IVof Ref. [3] for the BNS, NSBH, and BBH systems
by 0.01. This results in 0.004, 0.4, and 4 for the low,
realistic, and high detection rates for BNS; 0.002, 0.1, and 3
for NSBH; and 0.004, 0.2, and 10 for BBH. Performing the
same scaling as above for seedless clustering, we find
0.0005, 0.05, and 0.5 for the low, realistic, and high
detection rates for BNS; 0.0003, 0.01, and 0.4 for
NSBH; and 0.0005, 0.03, and 1 for BBH.
Antonini and Perets [24] estimate that eccentric binaries

formed from Kozai resonances have rates of 1% and 10%
of the realistic detection rates of circular binaries for BNS
and BBH systems, respectively. About 0.5% of these
binaries will enter the sensitive band with significant
eccentricities (ϵ ≥ 0.5). Therefore, we can scale the realistic
rates from Table IV of Ref. [3] for the BNS and BBH
systems by 0.00005 and 0.0005, respectively. This results
in 0.002 and 0.01 for BNS and BBH, respectively.
Performing the same scaling as above for seedless cluster-
ing, we find 0.0003 and 0.001.

VII. DISCUSSION

We have described an analytic expression for the
frequency evolution of low-mass, low-to-moderate eccen-
tricity waveforms. We showed how an implementation of

TABLE II. Potential detection rates of eccentric compact binary coalescences for both matched filtering and seedless clustering. The
rates combine results for eccentric binaries given by O’Leary et al. [20], Samsing et al. [21] and Antonini and Perets [24], as well as
aLIGO detection rates. The matched filtering line assumes a dedicated eccentric binary matched filtering pipeline, which does not
currently exist. The seedless clustering algorithm is the one presented in this paper. Please see the text of Sec. VI for further details.

Model Source Algorithm Low rate Realistic rate High rate

Scattering in galactic cores [20]
BBH

MF 0.008 0.02 0.5
SC 0.001 0.002 0.06

Binary-single stellar encounters [21]

BNS
MF 0.004 0.4 4
SC 0.0005 0.05 0.5

NSBH
MF 0.002 0.1 3
SC 0.0003 0.01 0.4

BBH
MF 0.004 0.2 10
SC 0.0005 0.03 1

Kozai resonances [24]
BNS

MF - 0.002 -
SC - 0.0002 -

BBH
MF - 0.01 -
SC - 0.001 -
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this evolution for seedless clustering, optimized for
compact binary coalescences, can improve searches
for eccentric signals significantly. We find that the
eccentric search can expand the sensitive volume by as
much as a factor of 3× depending on the waveform (a factor
of 1.4 on average) compared to a comparable circular
search.
In the event that circular template banks are used by

matched filtering to search for eccentric signals [45], there
will be a non-negligable loss in sensitivity for these
searches. Huerta and Brown estimate signal-to-noise-ratio
loss factors of about 0.5 and 0.2 for BNS systems with
eccentricities of 0.2 and 0.4, respectively [11]. This would
bring the matched filtering sensitivity distances of these
signals to 225 and 90 Mpc, compared to 160 Mpc for these
two eccentricity values when using seedless clustering;
therefore, seedless clustering with eccentric template banks
may provide further opportunities for observing these types
of signals.
In the future, we intend to explore the possibility that

including amplitude information in the track recoveries
improves the detection sensitivities. This is beneficial
especially for compact binaries, where the amplitude
information is known. Therefore, the spectrogram pixels
predicted to contain a higher amplitude of SNR are
weighted more strongly than those predicted to contain
less. This would help account for the relatively low-SNR
contribution at low frequency and not overweight the pixels
in that band, which would increase the background SNR
distribution. Also, it will be useful to carry out a systematic
comparison of seedless clustering with matched filtering
pipelines using non-Gaussian noise. Mock data challenges
with injected compact binary signals are currently being
performed, and the results of these will be useful for a one-
to-one comparison of methods. Finally, we intend to use
this algorithm on future data from advanced LIGO and
advanced Virgo.
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APPENDIX: ECCENTRIC TEMPLATE
DERIVATION

To derive an expression for eccentric CBC signals, we
use the lowest-order, quadrupole formula for eccentric
binaries (for simplicity, we will set G ¼ c ¼ 1) [18,19].
We write our equations in terms of eccentricity ϵ and a new
variable x ¼ ðMtotal × ωÞ2=3, where w is the angular veloc-
ity of the compact object. To derive an analytic solution, we
keep the lowest-order terms in x for both the x and ϵ
evolution. Because we are fitting the frequency evolution of
the inspiral, the fact that the PN calculations tend to slowly
converge at late inspiral are less important here. The
differential equations are [27]

_x¼ 2η

15ð1−ϵ2Þ7=2 ð96þ292ϵ2þ37ϵ4Þx5þOðx6Þ ðA1Þ

_ϵ ¼ −ϵη
15ð1 − ϵ2Þ5=2 ð304þ 121ϵ2Þx4 þOðx5Þ: ðA2Þ

Taking the ratio of these equations, we obtain

dx
dϵ

¼ −2
ϵ

�
1

1 − ϵ2

��
96þ 292ϵ2 þ 37ϵ4

304þ 121ϵ2

�
x: ðA3Þ

We integrate this equation, yielding

xðϵÞ ¼ C0

�
1 − ϵ2

ϵ12=19ð304þ 121ϵ2Þ870=2299
�
: ðA4Þ

Plugging this equation back into the original differential
equation and expanding to fourth order in epsilon results in

ϵðtÞ ¼
�

B − t
A ×M

�
19=48

; ðA5Þ

where

A ¼ 5 × 31046

172 × 22173=2299 × 191118=229ηC4
0

ðA6Þ

C0 ¼ ð2πMf0Þ2=3
�

1 − ϵ20
ϵ12=190 ð304þ 121ϵ20Þ870=2299

�−1
ðA7Þ

B ¼ AMϵ48=190 : ðA8Þ

Combining these together,

fðtÞ ¼ 1

2πM

�
C0ð1 − ϵ2Þ

ϵ12=19ð304þ 121ϵ2Þ870=2299
�
3=2

; ðA9Þ

where f0 is the initial frequency of the binary and ϵ0 is the
initial eccentricity.
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