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The LIGO and VIRGO kilometer length laser interferometric gravitational radiation detectors should ob-
serve numerous mergers of compact binary systems. The accurate determination of the binary’s signal param-
eters is a critical task for the observers. Important cosmological information, such as an independent measure-
ment of the Hubble constant, can be derived if an accurate determination of the distance to the event is
achieved. A Bayesian approach to the parameter estimation problem has become a popular topic. Unfortunately
the multidimensional integrals that are inherent in the calculation of the Bayes estimator can be computation-
ally prohibitive. In this paper we show that computational difficulties can be overcome by using the Gibbs
sampler to calculate posterior distributions. The Bayesian approach and its implementation via Markov chain
Monte Carlo calculations is illustrated by way of an example involving four parameters.
[S0556-282(198)07918-1

PACS numbg(s): 04.80.Nn, 02.70.Lq, 06.20.Dk

[. INTRODUCTION physical observationgl0]. The Bayesianversusfrequentist
approaches to gravitational radiation data analysis are well
A number of collaborations around the world will be op- presented by Finfil1]. Parameter estimation from the grav-
erating laser interferometric gravitation radiation antennadty wave signals of coalescing compact binaries provides an
within the next few years. In the United States the Laseimportant application of Bayesian methods6,12,13. The
Interferometric Gravitational Wave ObservatofylGO) is inevitable difficulty in calculating the multidimensional inte-
under construction, with 4 km arm length interferometers indrals necessary for the determination of posterior probability
Hanford, Washington, and Livingston, Louisiaid. A simi- d!str|but|ons has hlnder_ed the further development of_Baye—.
lar French-ltalian detector will be built in Eurog¢IRGO) ~ Sian parameter estimation methods. However, these impedi-
[2]. Coalescing binaries containing neutron St&XSs or ments have been overcome by the_ progress made W_lthln the
black holesBHs) promise to be the cleanest and most prom_Iast decf'ide in Bayesian computational technology via Mar-
ising source of detectable radiatiof8]. Ultimately the kov chain Monte CarldMCMC) methods(see[14] for an
LIGO-VIRGO network may observe binaries out to a dis- introduction). Since the seminal paper by Geman and Geman
tance of 2 Gpd4]. [15] in the context of dlgl'tal image analysis, MCMC r_neth—
The detection of coalescing binary events will provideds have already revolutionized many areas of applied sta-
physicists with extremely useful cosmological information. tistics and will have an impact on gravitational wave data
Initially Schutz [5] noted that a detected signal contains@nalysis. MCMC approaches to dynamic modeling represent
enough information to decipher the absolute distance to théome of the currently critical research frontiers in Bayesian
system, and hence the determination of the Hubble constagtatistical modeling. .
would be achieved through the observed distribution of sey- The organization of this paper is as follows. To encourage
eral binaries. Subsequent woi] indicates that the uncer- 1tS Use in gravitational radiation data analysis, the Bayesian
tainty in the measured distance can be comparable to thapproach to statistical inference and its |mplen_1entat|on via
distance itself, but important cosmological tests will still be Markov chain Monte Carlo methods will be discussed in
possible through the observation of numerous mergdrs ~ Sec. Il In Sec. Ill we apply the MCMC methods to a four
In addition to the cosmological importance, accurate paParameter Bayesian estimation; thls.example is identical to
rameter estimation in the observed coalescing binaries wiihat of Cutler and Flanagai6] in their application of the
provide a host of information of great physical significance.Markovic approximatior{ 16] towards the calculations of the
Observation of the time of tidal disruption of an NS-NS bi- distance erroAD. Section IV presents our conclusions.
nary system may permit a determination of the NS radii and
information on the NS equation of stdi®]. The character- Il. BAYESIAN COMPUTATION VIA MARKOV CHAIN
istics of radiation in the post-Newtonian regime will provide MONTE CARLO METHODS
insight into highly non-linear general relativistic effects
[6,9]. The formation of a BH at the end of a NS-NS coales-
cence, or the merger of two BHs, will produce gravitational In Bayesian data analysis, the model consists of a joint
radiation as the system decays to a Kerr BH; this is an exdistribution over all unobservetharametersand observed
tremely interesting radiation production regif. (datg quantities, and one conditions on the data to obtain the
Application of Bayes’ theorem is well suited to astro- posterior distribution of the parameters. This Bayesian ap-

A. Bayesian inference
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proach to statistical inference can be integrated in the usuaould then marginalize the joint posterior over certain com-
decision-theoretic frameworksee e.g.[17]). The starting ponents of@ to obtain the marginal posterior densities and
point is a statistical experiment described by a parametricharacteristics of interest, such as the posterior mean, me-
family of probability distribution functions (PDF9  dian, or mode of a specific componeht

{p(y|0); 6O} on the sample spac®. The researcher’s Thus, the second step, though conceptionally easy, is in-
subjective belief and knowledge about the unknown parameeed a formidable problem in general because it requires
eters is comprised in the prior distributigef ), # @ CR"  high-dimensional integration to obtain the normalization
which together with the sampling distributign(y| ), the  constantm(y) and to calculate one-dimensional characteris-
likelihood, specifies the Bayesian model. The loss functiortics.

[(6,a) defined on the product of the parameter sp@cand

the set of allowable actions gives the loss incurred whem

is the true state of nature and a decision éois made. B. Markov chain Monte Carlo methods

Certain choices of these correspond to point or interval esti- Before the development of MCMC methods there had

mation and hypothesis testing. Given a measurergeny  been essentially three different approaches to handle this
and prior beliefp(#), the rationale underlying the Bayesian multidimensional integration:

approach to the selection of a decision rd{g) is to choose (0 Laplace expansiofi.e. normal approximation

the actiona=d(y) that minimizes the posterior risk (i) Numerical integration via Gaussian quadrature tech-
niques.
R(p,d(y))=Eg[1(0,d(y))]= f 1(6,d(y))p(68ly)de, (i) Monte Carlo integration via importance sampling, hit-
(2.1 and-miss etc.

since in the light of the datgp the researcher’s opinion as to _ ) ) .
the state of nature is summarized by the posterior distributior] N first two methods require a high degree of mathematical

of @ given by the Bayes theorem sophistication of the data analyst. Laplace expansion relies
on large sample asymptotics and the approximations can be
p(y|@)p(0) very bad in small sample situations. Gaussian quadrature suf-
p(dy)= Ty)“p(o)p(ﬂ 0) (22 fers from the curse of dimensionality in that the amount of
computation rises exponentially with the number of param-
where eters. Monte Carlo methods substitute the deterministic inte-

gration by a statistical estimation problem, that of estimating
the mean of a certain multivariate distribution. This can be
m(y) = f p(ylO)p(6)do (23 done by drawing a random sample and estimating the expec-
tation by the sample mean. Although applicable to high-
is the marginal density of, which can be regarded as a dimensional problems, conventional Monte Carlo methods
normalizing constant as it is independent@®fin the one- can be very inefficient in certain situations.
dimensional case under squared error loss, for instance, A major breakthrough for the routine implementation of
|(6,a)=(6—a)? and the minimum of the risk is attained at Bayesian inference was the realization that any high-
the posterior meak[ 4|y], the “Bayes estimator'(see also dimensional integration can be performed by using MCMC

Appendix A of[6]). methods of which the Gibbs samplglescribed beloyis an
The Bayesian approach in general consists of two concepmportant special case.
tually and practically distinct steps: Instead of generating a sequence of independent samples

(1) Constructing a full probability model which consists of a from the joint posterior, in MCMC methods a Markov chain

joint probability distribution for all observable and un- is constructed, whose equilibrium distribution is just the joint
observable quantities posterior. Thus, after running the Markov chain for a certain

& 8y conditonng on he obsrved date, caloeting thy DU e USCOTE nEs  ,
p_ost.eriolr distribution, e, the condi_tional pro_bability reachgd convergen):peVarious methods to assess conver-
distribution of the unobservables of interest, given thegence have been developete e.g[18]) and implemented
observed data. in coDA [19], a software package for convergence diagnos-
In the first step, the joint probability densip(y, 8) of the  tics and statistical and graphical output analyses for Markov

observations/ and the unobservable®= (6, ...,6,) can be chains. Statistical theory ensures that averaging of a function

written as the product of two densities, referred to as theof interest over realizations from a single run of the chain
prior densityp(#) and the sampling density or likelihood Provides a consistent estimate of its expectation.

function p(y| 6), i.e. The Gibbs sampler is a specific MCMC method where in
a cycle we sample from each of the fatnditionalposterior
p(y,0)=p(Op(y| ). (2.4 distributions:

In the light of the data, our opinion as to the state of nature is
then updated to the posterior distribution, E&.2). One POy, 01,....0,_1,011,...,0,). (2.5
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. . . O .
Given an arbitrary set of starting valué§”,...,6{") the al- Kerre densty for D
gorithm proceeds as follows:

0.002

simulate 6{Y~p(6,]y,6%,...,6°)

simulate 657~ p(8,y, 8,6 ,...,60) 500 1000
(2-6) D (Mpc)

Kernel density for phig
(5000 values)

simulate 6V~ p(6,ly, 6" ...,60Y))

05

and yields ™= (6{™,...,6{™) after m such cycles. This o

defines a Markov chain with transition kernel 0 1 2
phig

m+1) m)

k(o( ’0( ) Kernel density for psi
N (6000 values)
1 1 1
=IL Py o7 T T
27 o

which converges to the joint posterior as its equilibrium dis-
tribution (see[14]). Consequently, if all the full conditional
posterior distributions are available, all that is required is Ke;gg:)gev";‘ljg‘;’v
sampling iteratively from these. Thereby, the problem of

sampling from am-variate probability distribution function
(PDF) is reduced to sampling from univariate PDFs.

psi

1

C. Sampling from non-log-concave densities 0 05 1
v

In many applications where the prior distribution is con-
jugate to the likelihood, the full conditionals in fact reduce FIG. 1. Kernel density estimates of the marginal posteriors of
analytically to closed-form distributions and we can usethe variablesD, v, ¢, and ¢, assuming the initial “best-fit” pa-
highly efficient special purpose Monte Carlo methods forrameters of Dy=432 Mpc, v,=0.31, #,=11.5°, and ¢
generating from thesgee e.g[20]). In non-conjugate Baye- =114.6°.
sian models the full conditional density of a certain param-

eter can in general be constructed from those few terms afampling using squeezing functiof. [22]). A further ad-

the joint distribution which depend upon it. This demon-,aniage is its “adaptivity” in that with each rejection step
strates the need for fast and efficient black-box methods tthe bounding function gets closer to the target density and

sample from an arbitrarily complex full conditional posterior

distribution which is known only up to a constant of propor- thereby reduces the rejection probability in the subsequent

. . . . . step. To calculate the tangents, the first derivatives of the
tionality for use in each cyclic step of the Gibbs sampler. . : . - . =
density are required in the original algorithm. A derivative-

At first sight, this seems to be an arduous task without an¥ree version was developed [93]. For an efficient rejection
further assumptions on certain properties of the full condi- P : J

tional distributions that are under consideration. A rich Classsgmplmg algorithm it is also esseptlgl that the eqvelope den-
of distributions, however, is given by the class of those withSItY be easy to sample from. This is .the case in ARS, the
log-concavedensities. Examples of log-concave densities aré€NVelope being a piecewise exponential density.
listed in the table of Gilks and Wilf21] or Devroye[20], p. In an attempt to dispose of the crucial requirement of
287. log-concavity, Gilkset al.[24] proposed a “Metropolized”
Various fast and efficient simulation methods for sam-version of adaptive rejection samplirtgrms), basically an
pling from log-concave distributions have been proposed irfpplication of Tierney'sejection sampling chainf25]. For
the literature: see e.20]. However, these require the loca- a comprehensive non-technical explanation of rejection sam-
tion of the mode of the density, thereby necessitating a timepling chains the reader is also referred 26], for a detailed
intensive and computer-expensive maximization step. Usingeview of these variants of adaptive rejection sampling see
the fact that any log-concave density can be bounded frorf24], and for an empirical computational comparison see
above and below by its tangents and chords, abaptive  [27].
rejection samplingARS) developed by Gilks and Wilf21] We used the universal algoritharms [24,28 to sample
was able to dispense with the awkward and time-consuminfrom all the full conditional posterior densities in the follow-
optimization. It is based on the usual Monte Carlo rejectioning example.
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TABLE I. The posterior mean, standard deviati®D), time series standard err¢8E), and lower
quartile, median, and upper quartile of the paramelers, ¢, and ¢ (cf. Fig. 1.

Parameter Mean SD SE 25% Median 75%

D (Mpc) 689 168 5.34 546 704 820

v 0.709 0.234 0.0077 0.537 0.774 0.908

Y 0.456 0.329 0.0125 0.171 0.366 0.725

be 1.39 0.675 0.0259 0.817 1.58 1.97
IIl. EXAMPLE OF BAYESIAN ESTIMATION D(AA):ND(O)(AA)

FOR A COALESCING BINARY SYSTEM

2

Mo A \* 5 AB
We now give an example whereby we apply MCMC Xexr{ 2 (Aam A (A= A5)0
methods in order to calculate the Bayes estimators for pa- 3.1)
rameters in a coalescing binary system. We choose to reex- '
amine an example used by Cutler and Flang@anthe defi-  \whereA/is the normalization constamg(®) the prior density,
nition of parameters will come from their paper, and hencegnd

our notation will subsequently follow theirs. Using the Mark-

ovic approximation[16] (i.e. there is no uncertainty of the l+ep 0
location in the sky of the binajy the dependence on the ®=o0p| 0 1- e (3.2
detected wave amplitude paramet#y [Eq. (4.16) of [6]] is

reduced to the distance to the binddy the cosine of the _

inclination angle: to the line of sighty = cos., the polariza- [cf. Eq. (4.5)) of [6]]. With t_h_e help.OfMATHEMAT.'CA and

tion angle of the gravity wavé, and the phase of the wave- Eq. (4.16 of [6] we explicitly write PUt AA In terms

form at the “collision time” & . of the parameters E(,v,zﬁ,qbc)_ and A, in terms of
In this example it is assumed that the LIGO-VIRGO net-(Po.vo.%0,$c0). We assume independent priors for the

work has detected a NS-NS binary merger with a signal-tofour Parameters. For the marginal prior PES Eq. (4.56

noise ratio of p=12.8 in the direction given by & ¢) of [6]] we choosey to be uniformly distributed between 0

=(50°,276°). For this direction the network parameféig. and 77/2’. d’c. uniformly distributed between 0 ansl, v uni- .
= ~ . formly distributed between-1 and 1, and the sources will
(4.24) of [6]] are 0p=1.03 andep=0.74. It is further as- . - o .
) " be uniformly distributed within a sphere of radil,.x
sumed that from the detected signal the “best-fit” param-_" — : :

i 31 the dist D.—432 M by =ry=7.25 Gpc (derived from the assumed noise depen-
‘iiﬂrs[_ 1]4"":;‘3 ?he 'chzi%ee oofo';]e incliﬁ(;tioﬂazs;;bl dence of advanced interferometer designs,(BE®8 of [6]).
=Mz=L1l4Mg, 0
=0.31, and the polarization anglg,=11.5°. Note that in Kemel density for D
the caption of Fig. 10 of6] an incorrect value ofyy was (6000 values)
stated, but the displayed PDF was calculated with
=11.5°[29]. In Cutler and Flanagan’s derivation of their
PDF for D they found that their approximation technique
eliminated the dependence @f,; we will use a value of
dc0=114.6°, but we have found that the Bayes estimators 500 1000 1500
for the other three parameters are independent of the choice

0.001 0.002

0

of this angular value, in agreement with the previous analysis D (ec)

[6].
Our calculation will then commence with the posterior Ke::zg‘;e";"g’”

probability density function s
TABLE Il. The cross-correlation matrix of the parametBrsv,

¢, and ¢ (cf. Fig. 1).

Variable D v W be 0 05 !
D 1.0 '
v 0.91 1.0 FIG. 2. Kernel density estimates of the marginal posteriors of
] 0.416 0.48 1.0 the variableD,v starting with the probability distribution function

—0.458 —0.528 —0.989 1.0 obtained via Eq(4.57) of [6] and assuming the initial “best-fit”

be

parameters oDy=432 Mpc,v(,=0.31, andy,=11.5°.
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Kernel density for psi
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FIG. 4. Kernel density estimates of the marginal posteriors of

o == ‘ the variableD,v starting with the probability distribution function
0 02 04 08 08 obtained via Eq(4.57 of [6] and assuming the initial “best-fit”
psi parameters oD,=432 Mpc,v,=—0.1, andy,=11.5°.
Rorsr A =0.24 in this example can easily be calculated using
o MCMC methods. Summary statistics including posterior

mean, standard deviation, the time series standard éher
square root of the spectral density estimate divided by the

o sample sizg and the 25%, 50%, and 75% quantiles are listed
-1 -05 0 05 in Table I. In Table Il we present the cross-correlation ma-
v trix.

A number of noticeable features of the parameters are
discernable from Fig. 1 and Tables | and Il. One can observe
that the angular distributions are relatively flat. kb there
is a peak atp.o=114.6°. The distribution ofy has its peak
at yo=11.5°. There is a strong correlation of 0.91 between
the parameters and andD. A small v implies a smaller

the universal algorithmaRMS to sample from the posterior 'Srlgga:ls \;\g:‘llgztggui:? tﬁlso g:tgr?grsg%gﬁg g_:_elzqaeteBradlztsﬁJ;g_e
distribution. This is implemented asaprogram on a SUN P : Yes &

ULTRA workstation (143 MH2. We perform 120 000 timators, i.e. the posterior means, found via our analy3is,
cycles of the Gibbs sampler and thin the chain by taking=689 Mpc andv =.709, are not necessarily the same as the
every 20th observation to avoid highly correlated values. Fofmaximum-likelihood estimates'D, andv,, i.e. the poste-
the remaining 6000 samples we use a burn-in of 1000 whichior modes; this effect was also noted beff8¢ Asymptotic
yields a final chain of length 5000. A typical run for the four theory tells us that the posterior distribution can be approxi-
parameter case takes about 20 min. mated by a Gaussian distribution having mean equal to the
Extensive convergence diagnostics were calculated for thposterior mode. This example illustrates the shortcomings of
four parameterd,v,#, and ¢, using thecopa software this Gaussian approximatid@1].
[19]. All chains passed the Heidelberger-Welch stationarity A joint posterior PDF folD andv was derived by Cutler
test. The Raftery-Lewis convergence diagnostics confirmednd Flanagaf6] by expanding the argument of the exponen-
that the thinning and burn-in period were sufficient. Lags andial in Eg. (3.1 to second order iny— ¢, and ¢— ¢ and
autocorrelations within each chain were reasonably lowintegrating over) and ¢.. The result is given by Eq4.57)
Geweke’sZ-scores were low for all parameters. These con-of [6], and by numerical integration overthey obtain their
vergence diagnostics are summarizedllifi] (see also refer- Fig. 10[6]. Starting with Eq(4.57) of [6] we can also apply
ences therein our MCMC method to obtain the marginal posterior PDF of
In Fig. 1 we display the kernel density estimaf88] of D andv. Figure 2 shows that our procedure gives a similar
the four marginal posterior densities using a bandwidth ofistribution forD as that displayed in Fig. 10 ¢6]. How-
one-eighth of the sample range. In contrast to elaboratever, we also note that when the four parameters for the
asymptotic techniques precision estimates of the Bayes esfproblem are maintained throughout the calculation we obtain
mators, e.g. the distance measurement accufady/D differing distributions forD andv. Our MCMC method is

FIG. 3. Kernel density estimates of the marginal posteriors of
the variablesD, v, ¢, and ¢. assuming the initial “best-fit” pa-
rameters of Dy=432 Mpc, vo=—0.1, ¢¥y=11.5°, and ¢
=114.6°.

We employ the Gibbs sampléR.6) in conjunction with
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Kernel density for D Kernel density for D
{5000 values) (5000 values)
e 3
S 3
N
s
- o
(=)
200 400 600 .
D (Mpc) 200 400 600
Kernel density for phi,, D (Mpc)
(5000 values)
::? Kernel density for v
o (5000 values)
(=]
[=)
0 1 2 N
phic
Kemel density for psi e
(5000 values) 0.2 04 0.6 0.8 1
7 v
[te!
FIG. 6. Kernel density estimates of the marginal posteriors of
= the variableD,v starting with the probability distribution function
0 05 1 obtained via Eq(4.57 of [6] and assuming the initial “best-fit”
psi parameters oD,=432 Mpc,v,=0.8, andyy=11.5°.
Kernel density for v
(6000 values) techniques can be utilized for different types of waveforms,
but coalescing compact binary systems offer obvious and
o exciting prospects. The expected “clean” signal from the
system will allow excellent prospects for parameter estima-
(=] 3

tion. This in turn will provide important insights into cos-
mology, general relativistic effects, and potentially even the
equation of state of the neutron star. All of these important
FIG. 5. Kernel density estimates of the marginal posteriors ofphysics goals depend on a successful parameter estimation
the variablesD, v, ¢, and ¢, assuming the initial “best-fit” pa- procedure. Bayesian techniques are well suited for this pro-
rameters of Dy=432 Mpc, vo=0.8, #,=11.5°, and ¢ gram, but unfortunately progress has been hindered by the
=114.6°. complexity of the multidimensional integrals necessary for
the calculation of the Bayes estimators.
not time consuming to run, and it correctly calculates the The MCMC methods discussed in this paper can be di-
Bayes estimators without bringing in potential errors by uti-rectly applied to Bayesian gravitational radiation data analy-
lizing approximation techniques. sis. Over the last ten years MCMC techniques have greatly
By way of comparison we display in Fig. 3 the Bayes simplified statistical calculations in numerous scientific dis-
estimators for all four parameters withy=—0.1 (all other  ciplines. Even when one includes post-Newtonian effects in
parameters the sameand compare it to the results from a the dynamics of the binary merger, plus spin interaction ef-
two dimensional MCMC methodFig. 4 based on the ap- fects [6,9], the computational ability of MCMC methods
proximate two dimensional PDF of Eg4.57) of [6]. We  should permit the calculation of all posterior distributions.
likewise do the same fow,=0.8 (Figs. 5, §. A numerical In this paper we have examined a relatively simple system
integration of Eq.(4.57 of [6] overv produced similar dis- whereby the amplitude of the gravity wave depends upon
tributions forD as seen in Figs. 4, 6. For these values therenly four parameters. This system was used by Cutler and
is better agreement between the marginal posterior PDFSlanagan[6] to display the increase in information that a
from the four dimensional problem and the two-dimensionalBayesian analysis can provide. Even with only a four dimen-
approximation. One can observe that the distributionsfor sional integral the exact extraction of all the Bayes estima-
and ¢. become narrowly peaked as approaches 0; this tors proved to be numerically prohibitive. The MCMC
displays the fact that the observed signal depends more critinethod permits a quick and accurate solution. The computa-
cally on the precise angular values when the orbital plane dfional time will increase only linearly with the number of
the binary system is edge-on to our line of sight. parameters; this is a marked improvement over the exponen-
tially increasing time scale for multidimensional numerical
integrations. We have shown that our more exact solution
can eliminate potential errors created by the instigation of
The application of MCMC methods should prove usefulapproximation techniques.
in gravitational radiation data analysis. Bayesian statistical The implementation of the MCMC method to the full pa-

04 0.6 0.8 1

v

IV. CONCLUSION
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rameter estimation problem of coalescing compact binarieparameter estimation. Our initial results will be presented in
will not be trivial. In this present paper we wish to bring this a forthcoming publication.

technique to the attention of the numerous physicists who are
actively involved in data analysis studies for the LIGO- ACKNOWLEDGMENTS

VIRGO systems. We are currently working on the extension This work was supported by the Royal Society of New
of full Bayesian techniques, to be applied to the coalescingealand Marsden Fund and the University of Auckland Re-

binary problem, and the application of MCMC methods for search Committee.

[1] A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. @el, S.

Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero,
K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M.

E. Zucker, Scienc@56, 325(1992.

[2] C. Bradaschieet al., Nucl. Instrum. Methods Phys. Res. A
289 518(1990.

[3] K. S. Thorne, in300 Years of Gravitationedited by S. W.
Hawking and W. IsraelCambridge University Press, Cam-
bridge, England, 1987 pp. 330-458.

[4] L. S. Finn and D. F. Chernoff, Phys. Rev.47, 2198(1993.

[5] B. F. Schutz, NaturéLondon 323 310(1986.

[6] C. Cutler and E. F. Flanagan, Phys. Rev4®) 2658(1994).

[7] L. S. Finn, Phys. Rev. [33, 2878(1996.

[8] C. Cutler, T. A. Apostolatos, L. Bildsten, L. S. Finn, E. E.
Flanagan, D. Kennefick, D. M. Markovi@. Ori, E. Poisson,
G. J. Sussman, and K. S. Thorne, Phys. Rev. L#it.2984
(1993.

[9] E. E. Flanagan and S. A. Hughes, Phys. Rev5D 4535
(1998.

[10] P. C. Gregory and T. J. Loredo, Astrophys398 146(1992.

[11] L. S. Finn, gr-qc/9709077.

[12] L. S. Finn, Phys. Rev. 36, 5236(1992.

[13] D. Nicholson and A. Vecchio, Phys. Rev. &Y, 4588(1998.

[14] W. R. Gilks, S. Richardson, and D. J. Spiegelhaltdarkov
Chain Monte Carlo in PracticdChapman and Hall, London,
1996.

[15] S. Geman and D. Geman, IEEE Trans. Pattern. Anal. Mach.

Intell. 6, 721(1984).

[16] D. Markovic, Phys. Rev. D48, 4738(1993.

[17] C. P. Robert,The Bayesian ChoicéSpringer, New York,
1996.

[18] M. K. Cowles, B. P. Carlin, J. Am. Stat. Asso6l1, 883

(1996.

[19] N. G. Best, M. K. Cowles, and S. K. Vine§ODA manual
version 0.30(MRC Biostatistics Unit, Cambridge, England,
1995.

[20] L. Devroye, Non-Uniform Random Variate Generation
(Springer, New York, 1986

[21] W. R. Gilks and P. Wild, Appl. Sta#1, 337 (1992.

[22] B. D. Ripley, Stochastic SimulatiofWiley, New York, 1987.

[23] W. R. Gilks, inBayesian Statistics,4dited by J. M. Bernardo,

J. O. Berger, A. P. Dawid, A. F. M. SmittDxford University
Press, Oxford, 1992pp. 89-114.

[24] W. R. Gilks, N. G. Best, and K. K. C. Chan, Appl. Stdd,
455-472(1995.

[25] L. Tierney, Ann. Stat22, 1701(1994.

[26] S. Chib and E. Greenberg, Am. St48, 327 (1995.

[27] A. E. Gelfand and T. M. Lee, J. R. Stat. Soc5B, 72(1993.

[28] W. R. Gilks and R. M. Neal, Appl. Stal6, 541(1997).

[29] E. E. Flanagariprivate communication

[30] B. W. Silverman,Density Estimation for Statistics and Data
Analysis(Chapman and Hall, London, 1986

[31] The method for determining the “best-fit” or “maximum-
likelihood” parameters is not addressed here. Our purpose in
this present paper is only to display the MCMC methods for
Bayesian computation in systems that may seem prohibitive
due to the complexity of the multidimensional integrals. We
feel that a proper Bayesian approach to parameter estimation
in the coalescing compact binary systems has not been ad-
equately described; this is a topic of current research by us and
will be discussed in a forthcoming publication.

082001-7



