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Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis
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The LIGO and VIRGO kilometer length laser interferometric gravitational radiation detectors should ob-
serve numerous mergers of compact binary systems. The accurate determination of the binary’s signal param-
eters is a critical task for the observers. Important cosmological information, such as an independent measure-
ment of the Hubble constant, can be derived if an accurate determination of the distance to the event is
achieved. A Bayesian approach to the parameter estimation problem has become a popular topic. Unfortunately
the multidimensional integrals that are inherent in the calculation of the Bayes estimator can be computation-
ally prohibitive. In this paper we show that computational difficulties can be overcome by using the Gibbs
sampler to calculate posterior distributions. The Bayesian approach and its implementation via Markov chain
Monte Carlo calculations is illustrated by way of an example involving four parameters.
@S0556-2821~98!07918-1#

PACS number~s!: 04.80.Nn, 02.70.Lq, 06.20.Dk
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I. INTRODUCTION

A number of collaborations around the world will be o
erating laser interferometric gravitation radiation anten
within the next few years. In the United States the La
Interferometric Gravitational Wave Observatory~LIGO! is
under construction, with 4 km arm length interferometers
Hanford, Washington, and Livingston, Louisiana@1#. A simi-
lar French-Italian detector will be built in Europe~VIRGO!
@2#. Coalescing binaries containing neutron stars~NSs! or
black holes~BHs! promise to be the cleanest and most pro
ising source of detectable radiation@3#. Ultimately the
LIGO-VIRGO network may observe binaries out to a d
tance of 2 Gpc@4#.

The detection of coalescing binary events will provi
physicists with extremely useful cosmological informatio
Initially Schutz @5# noted that a detected signal contai
enough information to decipher the absolute distance to
system, and hence the determination of the Hubble cons
would be achieved through the observed distribution of s
eral binaries. Subsequent work@6# indicates that the uncer
tainty in the measured distance can be comparable to
distance itself, but important cosmological tests will still
possible through the observation of numerous mergers@7#.

In addition to the cosmological importance, accurate
rameter estimation in the observed coalescing binaries
provide a host of information of great physical significanc
Observation of the time of tidal disruption of an NS-NS b
nary system may permit a determination of the NS radii a
information on the NS equation of state@8#. The character-
istics of radiation in the post-Newtonian regime will provid
insight into highly non-linear general relativistic effec
@6,9#. The formation of a BH at the end of a NS-NS coale
cence, or the merger of two BHs, will produce gravitation
radiation as the system decays to a Kerr BH; this is an
tremely interesting radiation production regime@9#.

Application of Bayes’ theorem is well suited to astr
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physical observations@10#. The Bayesianversusfrequentist
approaches to gravitational radiation data analysis are
presented by Finn@11#. Parameter estimation from the gra
ity wave signals of coalescing compact binaries provides
important application of Bayesian methods@4,6,12,13#. The
inevitable difficulty in calculating the multidimensional inte
grals necessary for the determination of posterior probab
distributions has hindered the further development of Ba
sian parameter estimation methods. However, these imp
ments have been overcome by the progress made within
last decade in Bayesian computational technology via M
kov chain Monte Carlo~MCMC! methods~see@14# for an
introduction!. Since the seminal paper by Geman and Gem
@15# in the context of digital image analysis, MCMC meth
ods have already revolutionized many areas of applied
tistics and will have an impact on gravitational wave da
analysis. MCMC approaches to dynamic modeling repres
some of the currently critical research frontiers in Bayes
statistical modeling.

The organization of this paper is as follows. To encoura
its use in gravitational radiation data analysis, the Bayes
approach to statistical inference and its implementation
Markov chain Monte Carlo methods will be discussed
Sec. II. In Sec. III we apply the MCMC methods to a fo
parameter Bayesian estimation; this example is identica
that of Cutler and Flanagan@6# in their application of the
Marković approximation@16# towards the calculations of th
distance errorDD. Section IV presents our conclusions.

II. BAYESIAN COMPUTATION VIA MARKOV CHAIN
MONTE CARLO METHODS

A. Bayesian inference

In Bayesian data analysis, the model consists of a jo
distribution over all unobserved~parameters! and observed
~data! quantities, and one conditions on the data to obtain
posterior distribution of the parameters. This Bayesian
© 1998 The American Physical Society01-1
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proach to statistical inference can be integrated in the u
decision-theoretic framework~see e.g.@17#!. The starting
point is a statistical experiment described by a parame
family of probability distribution functions ~PDFs!
$p(yuu); uPQ% on the sample spaceY. The researcher’s
subjective belief and knowledge about the unknown para
eters is comprised in the prior distributionp(u), uPQ#Rn

which together with the sampling distributionp(yuu), the
likelihood, specifies the Bayesian model. The loss funct
l (u,a) defined on the product of the parameter spaceQ and
the set of allowable actionsA gives the loss incurred whenu
is the true state of nature and a decision fora is made.
Certain choices of these correspond to point or interval e
mation and hypothesis testing. Given a measurementyPY
and prior beliefp(u), the rationale underlying the Bayesia
approach to the selection of a decision ruled(y) is to choose
the actiona5d(y) that minimizes the posterior risk

R„p,d~y!…5Euuy@ l „u,d~y!…#5E l „u,d~y!…p~uuy!du,

~2.1!

since in the light of the datay the researcher’s opinion as t
the state of nature is summarized by the posterior distribu
of u given by the Bayes theorem

p~uuy!5
p~yuu!p~u!

m~y!
}p~u!p~yuu! ~2.2!

where

m~y!5E p~yuu!p~u!du ~2.3!

is the marginal density ofy, which can be regarded as
normalizing constant as it is independent ofu. In the one-
dimensional case under squared error loss, for insta
l (u,a)5(u2a)2 and the minimum of the risk is attained
the posterior meanE@uuy#, the ‘‘Bayes estimator’’~see also
Appendix A of @6#!.

The Bayesian approach in general consists of two conc
tually and practically distinct steps:

~1! Constructing a full probability model which consists of
joint probability distribution for all observable and un
observable quantities.

~2! By conditioning on the observed data, calculating t
posterior distribution, i.e., the conditional probabili
distribution of the unobservables of interest, given t
observed data.

In the first step, the joint probability densityp(y,u) of the
observationsy and the unobservablesu5(u1 ,...,un) can be
written as the product of two densities, referred to as
prior density p(u) and the sampling density or likelihoo
function p(yuu), i.e.

p~y,u!5p~u!p~yuu!. ~2.4!

In the light of the data, our opinion as to the state of natur
then updated to the posterior distribution, Eq.~2.2!. One
08200
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could then marginalize the joint posterior over certain co
ponents ofu to obtain the marginal posterior densities a
characteristics of interest, such as the posterior mean,
dian, or mode of a specific componentu i .

Thus, the second step, though conceptionally easy, is
deed a formidable problem in general because it requ
high-dimensional integration to obtain the normalizati
constantm(y) and to calculate one-dimensional character
tics.

B. Markov chain Monte Carlo methods

Before the development of MCMC methods there h
been essentially three different approaches to handle
multidimensional integration:

~i! Laplace expansion~i.e. normal approximation!.
~ii ! Numerical integration via Gaussian quadrature te

niques.
~iii ! Monte Carlo integration via importance sampling, h

and-miss etc.

The first two methods require a high degree of mathemat
sophistication of the data analyst. Laplace expansion re
on large sample asymptotics and the approximations ca
very bad in small sample situations. Gaussian quadrature
fers from the curse of dimensionality in that the amount
computation rises exponentially with the number of para
eters. Monte Carlo methods substitute the deterministic in
gration by a statistical estimation problem, that of estimat
the mean of a certain multivariate distribution. This can
done by drawing a random sample and estimating the ex
tation by the sample mean. Although applicable to hig
dimensional problems, conventional Monte Carlo metho
can be very inefficient in certain situations.

A major breakthrough for the routine implementation
Bayesian inference was the realization that any hi
dimensional integration can be performed by using MCM
methods of which the Gibbs sampler~described below! is an
important special case.

Instead of generating a sequence of independent sam
from the joint posterior, in MCMC methods a Markov cha
is constructed, whose equilibrium distribution is just the jo
posterior. Thus, after running the Markov chain for a cert
‘‘burn-in’’ period, one obtains~correlated! samples from the
limiting distribution ~provided that the Markov chain ha
reached convergence!. Various methods to assess conve
gence have been developed~see e.g.@18#! and implemented
in CODA @19#, a software package for convergence diagn
tics and statistical and graphical output analyses for Mar
chains. Statistical theory ensures that averaging of a func
of interest over realizations from a single run of the cha
provides a consistent estimate of its expectation.

The Gibbs sampler is a specific MCMC method where
a cycle we sample from each of the fullconditionalposterior
distributions:

p~u i uy,u1 ,...,u i 21 ,u i 11 ,...,un!. ~2.5!
1-2
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Given an arbitrary set of starting valuesu1
(0) ,...,un

(0) the al-
gorithm proceeds as follows:

simulate u1
~1!;p~u1uy,u2

~0! ,...,un
~0!!

simulate u2
~1!;p~u2uy,u1

~1! ,u3
~0! ,...,un

~0!!
~2.6!

]

simulate un
~1!;p~unuy,u1

~1! ...,un21
~1! !

and yieldsu(m)5(u1
(m) , ...,un

(m)) after m such cycles. This
defines a Markov chain with transition kernel

k~u~m11!,u~m!!

5)
i 51

n

p~u i
~m11!uy,u1

~m11! ,...,u i 21
~m11! ,u i 11

~m! ,...,un
~m!!,

~2.7!

which converges to the joint posterior as its equilibrium d
tribution ~see@14#!. Consequently, if all the full conditiona
posterior distributions are available, all that is required
sampling iteratively from these. Thereby, the problem
sampling from ann-variate probability distribution function
~PDF! is reduced to sampling fromn univariate PDFs.

C. Sampling from non-log-concave densities

In many applications where the prior distribution is co
jugate to the likelihood, the full conditionals in fact redu
analytically to closed-form distributions and we can u
highly efficient special purpose Monte Carlo methods
generating from these~see e.g.@20#!. In non-conjugate Baye
sian models the full conditional density of a certain para
eter can in general be constructed from those few term
the joint distribution which depend upon it. This demo
strates the need for fast and efficient black-box method
sample from an arbitrarily complex full conditional posteri
distribution which is known only up to a constant of propo
tionality for use in each cyclic step of the Gibbs sampler

At first sight, this seems to be an arduous task without
further assumptions on certain properties of the full con
tional distributions that are under consideration. A rich cla
of distributions, however, is given by the class of those w
log-concavedensities. Examples of log-concave densities
listed in the table of Gilks and Wild@21# or Devroye@20#, p.
287.

Various fast and efficient simulation methods for sa
pling from log-concave distributions have been proposed
the literature: see e.g.@20#. However, these require the loca
tion of the mode of the density, thereby necessitating a tim
intensive and computer-expensive maximization step. Us
the fact that any log-concave density can be bounded f
above and below by its tangents and chords, theadaptive
rejection sampling~ARS! developed by Gilks and Wild@21#
was able to dispense with the awkward and time-consum
optimization. It is based on the usual Monte Carlo reject
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sampling using squeezing functions~cf. @22#!. A further ad-
vantage is its ‘‘adaptivity’’ in that with each rejection ste
the bounding function gets closer to the target density
thereby reduces the rejection probability in the subsequ
step. To calculate the tangents, the first derivatives of
density are required in the original algorithm. A derivativ
free version was developed by@23#. For an efficient rejection
sampling algorithm it is also essential that the envelope d
sity be easy to sample from. This is the case in ARS,
envelope being a piecewise exponential density.

In an attempt to dispose of the crucial requirement
log-concavity, Gilkset al. @24# proposed a ‘‘Metropolized’’
version of adaptive rejection sampling~ARMS!, basically an
application of Tierney’srejection sampling chains@25#. For
a comprehensive non-technical explanation of rejection s
pling chains the reader is also referred to@26#, for a detailed
review of these variants of adaptive rejection sampling
@24#, and for an empirical computational comparison s
@27#.

We used the universal algorithmARMS @24,28# to sample
from all the full conditional posterior densities in the follow
ing example.

FIG. 1. Kernel density estimates of the marginal posteriors
the variablesD, v, c, and fc assuming the initial ‘‘best-fit’’ pa-
rameters of D05432 Mpc, v050.31, c0511.5°, and fc0

5114.6°.
1-3
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TABLE I. The posterior mean, standard deviation~SD!, time series standard error~SE!, and lower
quartile, median, and upper quartile of the parametersD, v, c, andfc ~cf. Fig. 1!.

Parameter Mean SD SE 25% Median 75%

D (Mpc) 689 168 5.34 546 704 820
v 0.709 0.234 0.0077 0.537 0.774 0.908
c 0.456 0.329 0.0125 0.171 0.366 0.725
fc 1.39 0.675 0.0259 0.817 1.58 1.97
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III. EXAMPLE OF BAYESIAN ESTIMATION
FOR A COALESCING BINARY SYSTEM

We now give an example whereby we apply MCM
methods in order to calculate the Bayes estimators for
rameters in a coalescing binary system. We choose to r
amine an example used by Cutler and Flanagan@6#; the defi-
nition of parameters will come from their paper, and hen
our notation will subsequently follow theirs. Using the Mar
ović approximation@16# ~i.e. there is no uncertainty of th
location in the sky of the binary!, the dependence on th
detected wave amplitude parameterAA @Eq. ~4.16! of @6## is
reduced to the distance to the binaryD, the cosine of the
inclination anglei to the line of sightv5cosi, the polariza-
tion angle of the gravity wavec, and the phase of the wave
form at the ‘‘collision time’’ fc .

In this example it is assumed that the LIGO-VIRGO n
work has detected a NS-NS binary merger with a signal
noise ratio of r512.8 in the direction given by (u,w)
5(50°,276°). For this direction the network parameters@Eq.
~4.24! of @6## are sD51.03 andeD50.74. It is further as-
sumed that from the detected signal the ‘‘best-fit’’ para
eters @31# are the distance ofD05432 Mpc, massesM1

5M251.4M ( , the cosine of the inclination anglev0

50.31, and the polarization anglec0511.5°. Note that in
the caption of Fig. 10 of@6# an incorrect value ofc0 was
stated, but the displayed PDF was calculated withc0

511.5° @29#. In Cutler and Flanagan’s derivation of the
PDF for D they found that their approximation techniqu
eliminated the dependence offc0 ; we will use a value of
fc05114.6°, but we have found that the Bayes estimat
for the other three parameters are independent of the ch
of this angular value, in agreement with the previous analy
@6#.

Our calculation will then commence with the posteri
probability density function

TABLE II. The cross-correlation matrix of the parametersD, v,
c, andfc ~cf. Fig. 1!.

Variable D v c fc

D 1.0
v 0.91 1.0
c 0.416 0.48 1.0
fc 20.458 20.528 20.989 1.0
08200
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p~AA!5Np~0!~AA!

3expF2
r 0

2

2
~AA2ÂA!* ~AB2ÂB!QABG

~3.1!

whereN is the normalization constant,p(0) the prior density,
and

Q5sDS 11eD 0

0 12eDD ~3.2!

@cf. Eq. ~4.51! of @6##. With the help ofMATHEMATICA and
Eq. ~4.16! of @6# we explicitly write out AA in terms
of the parameters (D,v,c,fc) and ÂA in terms of
(D0 ,v0 ,c0 ,fc0). We assume independent priors for th
four parameters. For the marginal prior PDFs@cf. Eq. ~4.56!
of @6## we choosec to be uniformly distributed between
andp/2, fc uniformly distributed between 0 andp, v uni-
formly distributed between21 and 1, and the sources wi
be uniformly distributed within a sphere of radiusDmax
5r 057.25 Gpc „derived from the assumed noise depe
dence of advanced interferometer designs, Eq.~4.28! of @6#….

FIG. 2. Kernel density estimates of the marginal posteriors
the variablesD,v starting with the probability distribution function
obtained via Eq.~4.57! of @6# and assuming the initial ‘‘best-fit’’
parameters ofD05432 Mpc, v050.31, andc0511.5°.
1-4
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We employ the Gibbs sampler~2.6! in conjunction with
the universal algorithmARMS to sample from the posterio
distribution. This is implemented as aC-program on a SUN
ULTRA workstation ~143 MHz!. We perform 120 000
cycles of the Gibbs sampler and thin the chain by tak
every 20th observation to avoid highly correlated values.
the remaining 6000 samples we use a burn-in of 1000 wh
yields a final chain of length 5000. A typical run for the fo
parameter case takes about 20 min.

Extensive convergence diagnostics were calculated for
four parametersD,v,c, and fc using theCODA software
@19#. All chains passed the Heidelberger-Welch stationa
test. The Raftery-Lewis convergence diagnostics confirm
that the thinning and burn-in period were sufficient. Lags a
autocorrelations within each chain were reasonably lo
Geweke’sZ-scores were low for all parameters. These co
vergence diagnostics are summarized in@19# ~see also refer-
ences therein!.

In Fig. 1 we display the kernel density estimates@30# of
the four marginal posterior densities using a bandwidth
one-eighth of the sample range. In contrast to elabo
asymptotic techniques precision estimates of the Bayes
mators, e.g. the distance measurement accuracy~DD/D

FIG. 3. Kernel density estimates of the marginal posteriors
the variablesD, v, c, and fc assuming the initial ‘‘best-fit’’ pa-
rameters of D05432 Mpc, v0520.1, c0511.5°, and fc0

5114.6°.
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50.24 in this example!, can easily be calculated usin
MCMC methods. Summary statistics including poster
mean, standard deviation, the time series standard error~the
square root of the spectral density estimate divided by
sample size!, and the 25%, 50%, and 75% quantiles are lis
in Table I. In Table II we present the cross-correlation m
trix.

A number of noticeable features of the parameters
discernable from Fig. 1 and Tables I and II. One can obse
that the angular distributions are relatively flat. Forfc there
is a peak atfc05114.6°. The distribution ofc has its peak
at c0511.5°. There is a strong correlation of 0.91 betwe
the parameters andv and D. A small v implies a smaller
signal, which could also be caused by a greater distanceD.
This is reflected in the posterior PDF forD. The Bayes es-
timators, i.e. the posterior means, found via our analysisD̄

5689 Mpc andv̄5.709, are not necessarily the same as
‘‘maximum-likelihood estimates’’D0 andv0 , i.e. the poste-
rior modes; this effect was also noted before@6#. Asymptotic
theory tells us that the posterior distribution can be appro
mated by a Gaussian distribution having mean equal to
posterior mode. This example illustrates the shortcoming
this Gaussian approximation@31#.

A joint posterior PDF forD andv was derived by Cutler
and Flanagan@6# by expanding the argument of the expone
tial in Eq. ~3.1! to second order inc2c0 and f2fc0 and
integrating overc andfc . The result is given by Eq.~4.57!
of @6#, and by numerical integration overv they obtain their
Fig. 10@6#. Starting with Eq.~4.57! of @6# we can also apply
our MCMC method to obtain the marginal posterior PDF
D andv. Figure 2 shows that our procedure gives a simi
distribution forD as that displayed in Fig. 10 of@6#. How-
ever, we also note that when the four parameters for
problem are maintained throughout the calculation we ob
differing distributions forD and v. Our MCMC method is

f

FIG. 4. Kernel density estimates of the marginal posteriors
the variablesD,v starting with the probability distribution function
obtained via Eq.~4.57! of @6# and assuming the initial ‘‘best-fit’’
parameters ofD05432 Mpc, v0520.1, andc0511.5°.
1-5
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NELSON CHRISTENSEN AND RENATE MEYER PHYSICAL REVIEW D58 082001
not time consuming to run, and it correctly calculates
Bayes estimators without bringing in potential errors by u
lizing approximation techniques.

By way of comparison we display in Fig. 3 the Bay
estimators for all four parameters withv0520.1 ~all other
parameters the same!, and compare it to the results from
two dimensional MCMC method~Fig. 4! based on the ap
proximate two dimensional PDF of Eq.~4.57! of @6#. We
likewise do the same forv050.8 ~Figs. 5, 6!. A numerical
integration of Eq.~4.57! of @6# over v produced similar dis-
tributions forD as seen in Figs. 4, 6. For these values th
is better agreement between the marginal posterior P
from the four dimensional problem and the two-dimensio
approximation. One can observe that the distributions foc
and fc become narrowly peaked asv approaches 0; this
displays the fact that the observed signal depends more
cally on the precise angular values when the orbital plane
the binary system is edge-on to our line of sight.

IV. CONCLUSION

The application of MCMC methods should prove use
in gravitational radiation data analysis. Bayesian statist

FIG. 5. Kernel density estimates of the marginal posteriors
the variablesD, v, c, and fc assuming the initial ‘‘best-fit’’ pa-
rameters of D05432 Mpc, v050.8, c0511.5°, and fc0

5114.6°.
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techniques can be utilized for different types of waveform
but coalescing compact binary systems offer obvious
exciting prospects. The expected ‘‘clean’’ signal from t
system will allow excellent prospects for parameter estim
tion. This in turn will provide important insights into cos
mology, general relativistic effects, and potentially even
equation of state of the neutron star. All of these import
physics goals depend on a successful parameter estim
procedure. Bayesian techniques are well suited for this p
gram, but unfortunately progress has been hindered by
complexity of the multidimensional integrals necessary
the calculation of the Bayes estimators.

The MCMC methods discussed in this paper can be
rectly applied to Bayesian gravitational radiation data ana
sis. Over the last ten years MCMC techniques have gre
simplified statistical calculations in numerous scientific d
ciplines. Even when one includes post-Newtonian effects
the dynamics of the binary merger, plus spin interaction
fects @6,9#, the computational ability of MCMC method
should permit the calculation of all posterior distributions

In this paper we have examined a relatively simple syst
whereby the amplitude of the gravity wave depends up
only four parameters. This system was used by Cutler
Flanagan@6# to display the increase in information that
Bayesian analysis can provide. Even with only a four dime
sional integral the exact extraction of all the Bayes estim
tors proved to be numerically prohibitive. The MCM
method permits a quick and accurate solution. The comp
tional time will increase only linearly with the number o
parameters; this is a marked improvement over the expon
tially increasing time scale for multidimensional numeric
integrations. We have shown that our more exact solut
can eliminate potential errors created by the instigation
approximation techniques.

The implementation of the MCMC method to the full p

f

FIG. 6. Kernel density estimates of the marginal posteriors
the variablesD,v starting with the probability distribution function
obtained via Eq.~4.57! of @6# and assuming the initial ‘‘best-fit’’
parameters ofD05432 Mpc, v050.8, andc0511.5°.
1-6
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rameter estimation problem of coalescing compact bina
will not be trivial. In this present paper we wish to bring th
technique to the attention of the numerous physicists who
actively involved in data analysis studies for the LIGO
VIRGO systems. We are currently working on the extens
of full Bayesian techniques, to be applied to the coalesc
binary problem, and the application of MCMC methods f
er
M
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c
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parameter estimation. Our initial results will be presented
a forthcoming publication.
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