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Gravitational-wave geodesy: Defining false alarm probabilities with respect
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Future searches for a gravitational-wave background using Earth-based gravitational-wave detectors
might be impacted by correlated noise sources. A well-known example are the Schumann resonances,
which are extensively studied in the context of searches for a gravitational-wave background. Earlier work
has shown that a technique termed “gravitational-wave geodesy” can be used to generically differentiate
observations of a gravitational-wave background from signals due to correlated terrestrial effects, requiring
true observations to be consistent with the known geometry of our detector network. The key result of this
test is a Bayes factor between the hypotheses that a candidate signal is astrophysical or terrestrial in origin.
Here, we further formalize the geodesy test, mapping distributions of false-alarm and false-acceptance
probabilities to quantify the degree with which a given Bayes factor will boost or diminish our confidence
in an apparent detection of the gravitational-wave background. To define the false alarm probability of a
given Bayes factor, we must have knowledge of our null hypothesis: the space of all possible correlated
terrestrial signals. Since we do not have this knowledge, we instead construct a generic space of smooth
functions in the frequency domain using Gaussian processes, which we tailor to be conservative. This
enables us to use draws from our Gaussian processes as a proxy for all possible nonastrophysical signals.
During the O2 observing run, the LIGO and Virgo collaborations observed an SNR = 1.25 excess in their
search for an isotropic gravitational-wave background. To demonstrate the utility of gravitational-wave

geodesy, we apply the method to the observed cross-correlated data.

DOI: 10.1103/PhysRevD.105.082001

I. INTRODUCTION

Since the first detection of gravitational waves (GWs)
in 2015 [1], the Advanced LIGO [2], Advanced Virgo [3],
and KAGRA [4] (LVK) collaborations have announced
many more binary mergers [5-8]. These include binary
black hole mergers, binary neutron star mergers, as well as
neutron star—black hole mergers. In total, 90 observations
were reported by the LVK collaborations in GWTC-1 [5],
GWTC-2 [6], and GWTC-3 [8], and some lower-signifi-
cance events in GWTC-2.1 [9].

Gravitational waves from the mergers of most binary
systems at cosmological distances are too weak to be
individually detected. However, the superposition of these
signals forms a gravitational-wave background (GWB)
[10-15]. The LVK collaborations have conducted searches
for both an isotropic [16] and anisotropic [17] gravitational-
wave background, but no such signal has yet been detected
by the advanced detectors. Predictions based on the merger
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rate and mass distribution of compact binaries indicate that
the GWB from the superposition of these events might be
detected by LIGO, Virgo, and KAGRA during forthcoming
observing runs [16,18]. Apart from the GWB from unre-
solved binary mergers, many other astrophysical and
cosmological signals could contribute to a GWB [19].
As the GWB is too weak to be observed in a single
detector, we rely instead on the cross correlation of strain
data from multiple detectors [19,20]. If we assume that
the noise present at different detector sites is uncorrelated,
any excess correlation between the strain measured in two
detectors must be due to an astrophysical gravitational-
wave signal. However, it is not the case that gravitational-
wave detectors measure strictly independent noise
realizations. While many sources of terrestrial noise are
indeed local, there are known sources that are correlated on
global scales, introducing nonastrophysical correlations in
the LIGO-Hanford, LIGO-Livingston, Virgo, and KAGRA
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interferometers, despite their separation by several thou-
sand kilometers. Some known examples of such noise
sources are Schumann resonances [21,22] and the synchro-
nization of on-site electronics to Global Positioning System
(GPS) time [23]. Schumann resonances are electromagnetic
excitations in the cavity formed by the Earth’s surface and
the ionosphere, sourced by lightning strikes across the
globe [21,22]. They are expected to couple magnetically
to the interferometers and induce a correlated signal of
terrestrial origin [24,25].

The existence of known sources of correlated noise
raises an important question: if we detect evidence for a
correlated signal between two (or more) GW interferom-
eters, how can we be confident that this source is of
astrophysical origin rather than terrestrial? Until now,
several methods have been or are being developed to help
differentiate whether a correlated signal is due to gravita-
tional waves or terrestrial sources. For Schumann reso-
nances, in particular, methods have been investigated to
directly measure and remove their effect by applying
Wiener filtering [24-27] and more recently to incorporate
Schumann resonances and a GW signal in one consistent
Bayesian parameter estimation framework [28].

A complementary method, gravitational-wave geodesy
(GW-geodesy), was previously proposed [29]. In GW-
geodesy, the geometry of an interferometer network (the
relative distances and orientations of component detec-
tors) is reverse engineered from an observed GWB. This
forms the basis for a consistency check that a true
astrophysical signal must pass. A true GW signal must
yield results consistent with the known geometry of our
baseline, while the same is not the case for other sources.
In the first implementation of the GW-geodesy frame-
work, it was shown that the method can successfully
differentiate an isotropic GWB coming from unresolved
binary mergers from correlated terrestrial noise due to
Schumann resonances or the synchronization of electron-
ics to GPS time [29].

The output of the GW-geodesy test is a Bayes factor
between two hypotheses: (i) a tentative detection yields
consistency with our known baseline geometry and is
therefore astrophysical, or (if) the signal prefers an unphys-
ical geometry and is hence nonastrophysical in origin. This
Bayes factor acts as a secondary test statistic, independent
of and complementary to the signal-to-noise ratio (SNR)
with which we observe a given signal. Namely, this Bayes
factor [which will be defined in Eq. (7) of Sec. II] makes a
statement on how well the data fits the model, that is, the
true geometry combined with a GW signal, whereas the
SNR [which will be defined in Eq. (12) of Sec. IV] is a
measure of the data’s deviation from uncorrelated Gaussian
noise. One might compare the Bayes factor we construct
here with the y? statistic in searches for compact binary
coalescences [30] (which measures how well a template fits
a signal) or a Bayesian coherence ratio [31] (which

quantifies the self-consistency of a signal observed with
multiple detectors). Like our geodesy Bayes factor, these
statistics capture additional information beyond the overall
amplitude of a signal, and are critical in determining the
astrophysical significance of an apparent detection.

While these Bayes factors can be qualitatively inter-
preted, until now we have not been able to assign a precise
statistical significance to a given Bayes factor. Ideally, we
could assign any given Bayes factor a false alarm prob-
ability (FAP) and a false dismissal probability (FDP). The
FAP indicates how often one might accidentally confirm a
terrestrial signal based on this test, whereas the FDP
indicates how often we accidentally dismiss a real signal.
In this work, we quantity these FAPs and FDPs, allowing us
to answer the crucial question: how likely is an observed
correlated signal with a given SNR and geodesy Bayes
factor to be of astrophysical origin, rather than a yet-
unidentified source of terrestrial correlation? In this
fashion, we can utilize GW-geodesy not only as a tool
with which to reject terrestrial signals, but also as one to
bolster our confidence in a real gravitational-wave back-
ground detection.

To be able to construct FAPs and FDPs, we first need a
proxy for unknown correlated terrestrial signals, which
have the possibility of contaminating the isotropic stochas-
tic search. This is, by definition, challenging: we cannot
know the nature of unknown contaminants. We therefore
instead utilize Gaussian processes to represent random and
a priori unknown contaminants, defining FAPs and FDPs
over the space of continuous cross-correlation functions
that LVK detectors might measure.

In Sec. I we cover some mathematical concepts of
stochastic searches and the GW-geodesy framework that
are crucial elements in this work. In Sec. III we introduce
Gaussian processes, and we optimize the model parameters
to create a very conservative scenario. In Sec. IV we
demonstrate how the Gaussian processes can be used
within the framework of GW-geodesy and why it can
become a powerful tool to help in validating future
observations of an isotropic stochastic background. As
part of this demonstration, we apply our framework in
Sec. IV C to the SNR = 1.25 excess observed for a 2/3
power law by the LIGO and Virgo collaborations during
their second observing run (O2). In Sec. V we discuss the
tool together with an outlook on possible future additions
or improvements.

II. GRAVITATIONAL-WAVE GEODESY

We often characterize the GWB in terms of its energy-
density spectrum Q(f) [Eq. (1)], expressed as the energy
density dpgw of GWs per logarithmic frequency interval
dIn(f). Q(f) is made dimensionless by dividing by the
Universe’s critical energy density p. = 3Hjc?/(87G),
where H, is the Hubble constant, ¢ is the speed of light,
and G is Newton’s constant [20,32]:
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To measure the energy density of the GWB, one
computes the cross-correlation spectrum C (f) between
two gravitational-wave observatories. If 5;(f) is the mea-
sured (Fourier-domain) strain of observatory I and AT is
the duration of the analyzed data, one can express C (f) as

R 1 207>

C(f) :ET%PRC[ET(]C)@(]C)]- (2)

The normalization of C(f) is chosen such that its expect-
ation value is given by [32]

(C() =r(H(f). (3)

y(f) is the normalized overlap reduction function, which
encodes the imprint of the detectors’ baseline geometry
(location and relative orientations) on the observed corre-
lations. For two laser interferometers, the normalized
overlap reduction is given by [33]

5

r(f) :&T;Aky F‘i‘(ﬁ)Fg(ﬁ)eZEifoﬁ/cdﬁ‘ )

F7(f) is the antenna response of detector I to GWs with
polarization A. Ax represents the separation vector between
the two detectors, whereas h indicates the sky direction.
One sums over all tensor polarizations (“plus” and “cross”
and integrates over all sky directions. By virtue of the
leading factor ;—ﬂ, colocated and coaligned detectors will
have y(f) = 1 for all frequencies.

If we assume that we are in the weak-signal limit (which
is a valid assumption since the GWB has yet to be
observed), the covariance of C(f) at two different frequen-
cies f and f' is given by (C(f)C(f")) = 8(f = f")o*(f),
where ¢%(f) is given by [20,32]

77,'2 2
() =57 (3m) SRR, )

and P;(f) is the noise power spectral density of detector I.
Traditionally, searches for a GWB assume a power law
of the form

Qf) = Ot (ff) (6)

A power-law index a =0 is expected from several
cosmological sources of a GWB, while a=2/3 is
expected from individually unresolved binary coalescence
events. A GWB with a =3 could be produced by
supernovae [19,34].

Given the detection of a gravitational-wave back-
ground, we could seek to infer Q. and @. Additionally,
however, the dependence of our measured cross-correlation
spectrum C (f) on the overlap reduction function means
that the GWB could be used to infer the geometry of our
detector network itself. This fact forms the basis of GW-
geodesy: a true GWB should yield an inferred geometry
consistent with the true geometry of our detector network.
An isotropic astrophysical/cosmological GWB must be
consistent with the expected functional form of our base-
line’s overlap reduction function. Correlated terrestrial
noise sources, on the other hand, do not necessarily need
to follow the behavior of the overlap reduction function.
Thus, there is no reason why non-GW correlated noise
sources would prefer the true geometry over any random
geometry [29].

We formalize this test by defining the following two
hypotheses:

(1) Hypothesis H,: The measured cross-correlation is
consistent with the frue baseline geometry and
overlap reduction function.

(2) Hypothesis Hpe: The measured cross-correlation
spectrum is consistent with an unphysical baseline
geometry. Under this hypothesis, we treat our
detector positions and orientations as free variables
to be inferred from the data, allowing them to range
(unphysically) across the surface of the Earth.

To compare the hypotheses H, and Hp., one can
construct a Bayes factor B between these hypotheses to
establish which model is favored by the cross-correlated
data C,

_ p(C,) o
p (6|HFrec) ’

where p(C|H,) and p(C|Hpy.) are the probabilities of
finding the observed cross correlation [as defined in
Eq. (2)] given hypothesis H, and Hpy, respectively.
Because Hp,. iS a more complex model, it will be
penalized by the Bayesian “Occam’s factor.” Therefore,
an isotropic astrophysical signal will be consistent with
both H, and Hpye, but will favor H, since it is the simpler
hypothesis. Non-GW correlated noise sources have a priori
no preference for H, and therefore will be better fit by the
additional degrees of freedom provided by nonphysical
geometries, leading to favoring the Hpg.. hypothesis.

ITI. GAUSSIAN PROCESSES

If, in the future, we compute a geodesy Bayes factor B
associated with a candidate gravitational-wave background,
we do not yet know exactly how we should quantitatively
interpret this result. In order to fully understand the
statistical significance of a particular Bayes factor,
we need to know how often it arises simply by chance.
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This poses a dilemma, however. To quantify a false-alarm
probability, we would need to know all possible terrestrial
signals, which we do not. So instead, we can ask a similar
question: how often do particular Bayes factors arise from
the generic space of smooth functions in the frequency
domain? This latter question can be answered using
Gaussian processes.

Gaussian processes are very flexible and are frequently
used for model fitting or model predictions based on a data
set [35]. In this work, we use the Gaussian processes to
produce a distribution of functions with a given mean and
variance. We consider each draw from this distribution to
be a possible realization of a correlated terrestrial signal.

The two main inputs of the Gaussian process are a
covariance matrix, often called the kernel, and the mean. In
this work, we use the Gaussian processes to generate
possible realizations of (C(f)). The probability density
function for the draws is given in Eq. (8). This is the
probability to draw a certain cross-correlation spectrum
C(f), from the function space governed by the covariance
matrix X [35],

1
(2ﬂ)n/2|2| 172

xexp (= (€)= (€0 -0 ®)

p(C(f)|u.2) =

In Eq. (8), n is the dimension of the covariance matrix X.

We generate distributions of cross-correlation spectra
with zero mean and consider one of the most commonly
used covariance matrices: the so-called squared exponen-
tial (SE). In this case, the covariance between cross-
correlation values measured at frequencies f; and f; is
given by [35]

2

T M

st.ij(O-’ l) = 62 exXp (—T .

o? is the variance at a single frequency, and while this
parameter can be used to scale the signal strength with
respect to observations, it will have no impact on the
spectral shape of the draws from the distribution. [ is the
characteristic length scale over which our C(f) measure-
ments are correlated.

In order to utilize Egs. (8) and (9), we still need to choose
a length-scale parameter /. We will tune this parameter by
deliberately targeting the most conservative scenario, in
which the Gaussian process yields cross-correlation spectra
that look (on average) most like a proper astrophysical/
cosmological signal. In doing so, we will always obtain
conservative estimates of the false-alarm probability for a
given geodesy Bayes factor.

To select the most conservative value of the length-scale
parameter, we will maximize the probability for our farget
astrophysical signal itself to be drawn from the Gaussian

process. The cross-correlation spectrum we expect from a
gravitational-wave background is C(f) =yyp - Qe (%)" 1=

C,(f), with a = 0,2/3, or 3, where we approximate the
mean to be zero. These are the power laws typically looked
for by the LIGO, Virgo, and KAGRA collaborations [16].
Note that we have chosen the Hanford-Livingston (HL)
baseline as our observing baseline. This baseline is the
most sensitive for observing an isotropic GWB, due to their
better sensitivity compared to Virgo, but more importantly
because their overlap reduction function is considerably
larger. The log-likelihood of this signal under our Gaussian
process is

In(£) =Inp(Cqy(f)|n=0.%)
1 1
= —Eln(|2\) —ECa(f)TZ‘ICa(f) + constants.  (10)
As we will later freely adjust the overall amplitude of our
Gaussian process draws in order to vary their SNRs, we will
optimize only the length parameter /, fixing the overall
covariance to 6> = 1. Accordingly, for consistency we
normalize our target astrophysical signal via

~ C,(f)

Cll) = e
choosing the [ that maximizes In p(C,(f)|u = 0.%).

In practice, the inversion of X is unstable, with a
determinant that is nearly zero. To increase stability, we
add a diagonal term to the covariance matrix: £ — X + €l
where / is the identity matrix and € is a small dimensionless
constant, here chosen to be 1073, This diagonal term can be
interpreted as a noisy observation of our function C,(f).

We optimize the kernel parameter / using the formalism
described above in the following parameter range:
[ € [10~* Hz, 10* Hz]. The optimal length-scale parame-
ters to mimic a power law with slope @ = 0,2/3, and 3 are,
respectively, [ = 47.65, 33.18, and 29.20 Hz, determined
using a 0.01 Hz frequency resolution for /.

In Fig. 1 we show several random draws from the
Gaussian process described by the SE kernel, optimized
to most closely match an @ = 2/3 astrophysical signal, as
well as the signals we expect to observe from unresolved
binary mergers and terrestrial Schumann resonances. Here
we have chosen a =2/3 since this gravitational-wave
background is the signal expected to be first observable
by Advanced LIGO and Advanced Virgo.

The Schumann resonance spectrum used here is identical
to the spectrum used in the first description of GW-geodesy
[29]. This spectrum is obtained by replacing the strain data
sy and s, in Eq. (2) with data from magnetometers
measuring the Schumann resonances in a magnetically
quiet location, the Hylaty station in Poland, as reported in
Ref. [27]. We furthermore assume that the transfer function

(11)
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FIG. 1. Expected cross-correlation for an astrophysical back-

ground from unresolved binary systems (blue/bold), Schumann
resonances (orange), and 20 random draws from the SE kernel
(gray). The kernel parameter used for the Gaussian process
instantiations is the optimal value for mimicking a 2/3-power-
law signal, as described in the text. The injected signal strength
yields a SNR = 3 after a 3-year long observation at LIGO’s
design sensitivity.

linking environmental magnetic fields to gravitational-
wave interferometers is a power law that declines as o< f~2
in frequency [29]. An important assumption about our
correlated magnetic spectrum is that it is positive since the
frequency-dependent sign of the cross power between
the two LIGO sites is unknown. More detailed studies in
the future could investigate the effect when relaxing this
assumption. Two models have been developed modeling a
Schumann resonance: a simple analytical model [36], and a
more complex model taking the anisotropic character of
lightning strikes sourcing the Schumann resonances into
account [37]. These analytical models give a mathematical
framework to investigate the departure of the assumption of
a fully positive magnetic cross spectrum as a function of the
magnetic phase angle between the two sites [36] or the
global lightning density map [37].

This figure illustrates that the SE kernel with optimized
parameters is able to produce cross-correlation curves
that are, on average, functionally similar to the true-signal
curve. As discussed above, this behavior is deliberately
conservative, maximizing the probability that our Gaussian
process will spuriously yield cross-correlation measure-
ments with favorable geodesy Bayes factors. As already
was stated in the initial implementation of the GW-geodesy
framework, having similar zero crossings might play a
crucial role in mimicking a signal [29]. Everywhere in this
analysis we investigate the GW-geodesy framework in the
frequency range of 10-250 Hz with a frequency resolution
of 0.24 Hz. The lower limit is based on the lowest
frequency that can be observed by current ground-based
interferometers. Because of the combined effects of the
overlap reduction function and the reduced sensitivity at
higher frequencies, there is a negligible gain when going to
higher frequencies compared to the computational costs.

For example, when looking for an isotropic power-law
signal using the HL baseline with a power-law slope of
a=0,2/3, and 3, 99% of the sensitivity during the latest
O3 run was respectively contained below 76.1, 90.2, and
282.8 Hz [16].

In the rest of this paper, when we mention a Gaussian
process signal, we are referring to a Gaussian process
with a SE kernel and a length-scale parameter optimized
for the relevant power-law slope a. Also, when mentioning
“unknown correlated noise sources,” we refer to this
Gaussian process signal, which in this study serves as a
conservative proxy for these unknown correlated noise
sources.

IV. FALSE-ALARM PROBABILITIES AND
DETECTION CONFIDENCE

A. Simulations

Using our Gaussian process machinery, we will explore
the false-alarm probabilities and statistical significance
associated with geodesy Bayes factors. We will make
use of three different sources of cross correlation: a
power-law signal with slope @, magnetic Schumann reso-
nances, and a proxy for unknown terrestrial cross corre-
lation mimicking an a-power-law signal using Gaussian
processes. As a proof of concept we will start by inves-
tigating Bayes factors given by signals with SNR = 3 after
3 years of observation at LIGO’s design sensitivity [38].
This specific signal-to-noise ratio is chosen as this is the
fiducial value when one might first claim evidence for a
detected GWB.

The signal-to-noise ratio of our model signal C,(f) is
given by

o LG <
6(1

(e e

In what follows we will drop the subscript a and refer to the
signal-to-noise ratio SNR,, as just SNR. One can compute
the expected SNR or the observed SNR. In the former case
C(f) is the injected signal, whereas in the latter case
Gaussian-distributed noise consistent with Eq. (5) has been
added to each frequency bin of C(f). When performing an
injection for a certain power law with slope a = 0,2/3, 3,
the signal is injected with an expected SNR,, of the desired
strength. Note that in the cases of the Schumann signal
and the Gaussian process signal, sometimes a power law
with a different slope might be recovered with a higher
SNR: SNR; > SNR,, where & # a.

Note that the SNR defined in Eq. (12) can be positive (if
the data well match our signal model, that is, the true HL
overlap reduction function with a power-law GW signal) or

with
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negative (if data anticorrelate with our signal model).
As we are concerned primarily with signals that we might
mistake as astrophysical, we only investigate those that
yield positive SNRs as observed by the HL baseline.
Therefore, if the SNR of a Gaussian process draw is
negative at the target o (0, 2/3 or 3), it is rejected and a
new signal is simulated. This happens, on average, 50% of
the time. The rejection of this signal is chosen to match a
realistic experimental condition. In the case of a detection,
one would like to apply this tool mainly to a positive SNR
detection, whereas a negative SNR detection would
immediately be categorized as unphysical.

For our three signal classes, we simulate and analyze
5000 simulated cross-correlation spectra. In the case of the
astrophysical power law and Schumann resonances, this
involves generating 5000 distinct Gaussian noise realiza-
tions that are added to the fixed underlying models. Under
our Gaussian process, meanwhile, each trial involves a
random draw from our Gaussian process (restricted to
positive SNR) and a randomly generated noise spectrum.
For every injection, we use PyMultiNest to compute
Bayesian evidences [39], using 2000 live points.
PyMultiNest is a PYTHON interface for MultiNest [40,41],
which is an implementation of the nested sampling algo-
rithm [42,43].

The model corresponding to our hypothesis H, has two
free parameters: the reference amplitude Q..; of the signal
at fi.r = 25 Hz, and the power-law slope a. We use a log-
uniform prior for the reference amplitude between 1072
and 107°. For a we use a Gaussian prior with a standard
deviation of 3.5. Our alternative hypothesis Hg,. has three
additional free parameters: the distance between the two
interferometers Ax, and the rotation angles of the interfer-
ometers ¢, and ¢, [29]. We use uniform priors on ¢; and
¢, (0, 27). Furthermore we use a uniform prior on cos 6,
where Ax = 2Rg,, sin /2. This corresponds to a prior on
the distance between the detectors: p(Ax) o< Ax. These
priors are chosen to be consistent with earlier work [29].

Figure 2 represents the log-Bayes distribution for the
different signal models, assuming a SNR = 3 and a = 2/3.
The lower bin in the histograms also includes all simu-
lations with a recovered log-Bayes factor smaller than —6.
The smallest log-Bayes factor for an injection with a
Schumann signal is approximately —23, whereas this is
approximately —6 x 107 in the case of the Gaussian process
signal.

First, we notice that the overlap of the histograms of the
Gaussian process and the power-law signals is significantly
larger than the overlap between the Schumann signal and
the power-law signal. This shows that the selection of the
Gaussian process parameters in Sec. III is successful and
indeed yields a conservative condition, where the Gaussian
process is able to mimic the power-law signal. However, it
also shows what is possibly one of the weaknesses of the
current implementation of the tool: our Gaussian process

101 5
] Astrophysical £2/* Signal Schumann signal

1004 Gaussian Process
Z 3
< 1071 4
E B
Z 10724
o
e L
A 10734

1074 - — - — T T T

<-6 —4 -2 0 2 4 6
InB

FIG. 2. Probability density of In 3 for an astrophysical @ = 2/3
power-law signal, random draws from a Gaussian process using
our optimized (most conservative) SE kernel, and a Schumann
signal. The lowest bin contains all In 3 < —6. For each signal
type, 5000 injections were performed with an injection strength
of SNR = 3, when recovered with an @ = 2/3 signal model.

might be overly conservative as it is able to very well mimic
the o = 2/3 power law, and therefore to a large extent yield
similar log-Bayes factors.

On the other hand, whereas power-law signals yield a
handful of mildly negative log-Bayes values, the Gaussian
processes give an extended tail towards negative log-Bayes
factors, which will further grow as we increase the SNR of
our injections. This illustrates the intrinsic random nature of
the Gaussian process. Despite the process being able to
produce signals mimicking the power-law signal, at the
same time, other types of signals are produced that are not
properly described by a power law.

Assuming the Gaussian process is a (very) conservative
estimate of a terrestrial contamination for isotropic GWB
searches, we can construct an upper bound on the FAP
and detection probability associated with our geodesy
Bayes factors. The FAP is the probability with which
our terrestrial signal (for which the Gaussian process is our
proxy) gives a geodesy Bayes factor as high as or higher
than the Bayes factor we recover from our actual data.
The detection probability gives the probability to detect
the signal at a certain FAP/log-Bayes factor. The detection
probability and FDP are linked to each other by FDP =
1 —det. prob., where the FDP is a figure of merit of the
probability to wrongly reject the signal model.

For future observations, we would like the FAP to be as
small as possible (unlikely to be a false signal) and a large
detection probability (likely to be a true signal). Generally,
before analyzing the data, one chooses a FAP considered to
be the largest allowed value, such as 5% or 1%. Given a
signal injected with a SNR = 3, the log-Bayes factors and
detection probability are shown in Table I for a FAP of 5%
and 1%. We also show the results when looking for a
power-law signal with slope @« =0 or 3. We see, for
example, that given an apparent detection of the gravita-
tional-wave background with SNR = 3 under an a = 2/3
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TABLE I. Log-Bayes factor and detection probabilities matching a FAP of 1% and 5% comparing a a-power-law GW signal and a
Gaussian process signal. For each signal type, 5000 injections were performed with an injection strength of SNR = 3.

a=20 o= 2/3 a=23
FAP InB det. prob. InB det. prob. InB det. prob.
5.0% 2.95 6.92% 2.94 10.56% 3.42 15.44%
1.0% 3.68 0.76% 3.72 1.78% 4.04 8.10%
TABLE II. Log-Bayes factor and detection probabilities matching a FAP of 1% and 5% comparing a a-power-law GW signal and a
Gaussian process signal. For each signal type, 5000 injections were performed with an injection strength of SNR = 5.

a=0 a=2/3 a=3
FAP InB det. prob. InB det. prob. InB det. prob.
5.0% 3.54 6.78% 3.67 15.54% 391 67.08%
1.0% 4.12 0.62% 4.30 1.80% 4.71 41.40%

model, there is no more than a 5% chance that a log-Bayes
factor In B =2.94 would arise by chance from a non-
astrophysical signal.

We notice that for a given FAP, the detection probability
becomes higher for power-law signals with a steeper slope
(larger ). However, all reported detection probabilities are
very small. This is linked to our Gaussian process being
(overly) conservative and very good at mimicking the GW
power-law signals. This was already clear from Fig. 2
fora =2/3.

Table II shows the same for an injected signal with
SNR =5 when looking for a power law with slope
a=0,2/3, or 3. The detection probability for a flat
and 2/3 power law remains very small. Note that for a
flat power law the detection probability even decreases
slightly when going from SNR = 3 to SNR = 5. On the
other hand, for an o =3 power law there is a drastic
increase in detection probability when going from SNR =
3to SNR =5.

Table III, for comparison, shows log-Bayes factors and
detection probabilities when one compares the power-law
signals with a Schumann signal. For a fixed FAP of 1%, the
detection probability is >99%, meaning the GW-geodesy
tool is very effective at differentiating a Schumann signal
from a power-law signal at a SNR of 3.

TABLE III. Log-Bayes factor and detection probabilities
matching a FAP of 1% and 5% comparing a a-power-law GW
signal and a Schumann signal. For each signal type, 5000
injections were performed with an injection strength of SNR = 3.

a=0 a=2/3 a=73
InB FAP det. prob.
—-0.82 5.0% 99.72% 99.64% 99.60%
—-0.55 1.0% 99.44% 99.28% 99.28%

As searches for the gravitational-wave background
accumulate SNR slowly over the course of months to
years, the above scenario in which a candidate signal has a
moderate SNR = 3 represents a realistic situation in which
we will first need to use the Geodesy test. It is instructive,
however, to more broadly investigate how the distributions
of log-Bayes factors evolve as a function of SNR. To do
this, we simulate signals with strengths logarithmically
spaced between SNR = 0.1 and SNR = 100. Here we only
look at the @ = 2/3 case, injecting astrophysical o = 2/3
power laws and drawing random “‘terrestrial” signals from
our Gaussian process optimized to this same power-law
form.

As mentioned above, the free parameters are the refer-
ence signal strength Q¢ at 25 Hz and the power-law slope
a in the case of our hypothesis H,. For the hypothesis
Heree» the set of five free parameters consists of Q,¢, a, Ax,
¢, and ¢,. Note that for our astrophysical signal, even
though we inject @ = 2/3, our best-fit @ may well differ due
to different noise instantiations, whereas for the Gaussian
process realizations a will adjust to best fit the random
signal with a power law.

In Fig. 3 the median of the a posterior is shown with
respect to the SNR at which this signal would be observed by
the HL baseline. Note that both @ and SNR are calculated
from the posterior consistent with the HL. baseline. Although
this might be disfavored with respect to the posteriors from
the random baseline, we are interested in how the HL
baseline would observe such a signal.

For an extremely small SNR (< 1), a is closely centered
around O for both the true power-law GW signal as well as
the simulated Gaussian process signal. These signals are
so weak that whatever we observe is dominated by the
Gaussian background of our search. With respect to itself
this Gaussian background has by definition no power-law
slope and therefore matches a = 0.
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FIG. 3. The median of the posterior of the power-law slope «a is

represented against the median of the SNR-posterior, assuming
the signal has been observed by the HL baseline. Each point in
this scatter plot represents one injected signal. For each signal
type, 5000 injections were performed with a logarithmically
spaced injection strength between SNR = 0.1 and SNR = 100.

When our signal has a strength of order SNR = 1, the
retrieved values of «a are still centered around zero, but the
variance increases. The posterior-median a spans a range
from large negative to large positive power-law slopes. We
start to see some excess, but given the weak strength of the
signal the randomness of the Gaussian background can
drive the large negative or positive a.

The behavior for power-law GW signals and the
Gaussian process signals starts to differ from SNR ~ 10.
In the case of a power-law signal, the variation in «
drastically decreases and the center of the retrieved values
shifts from O to the real value: 2/3. This kind of behavior is
not present in the case of the Gaussian process signal,
which remains centered around zero with a large variation.

This seems to indicate that with a large enough SNR, we
can make a clear distinction between a power-law GW
signal and some unknown (terrestrial) correlated noise
sources, simulated by the Gaussian processes.

To further strengthen this statement, Fig. 4 shows the
log-Bayes factor between H, and Hp as a function of the
observed SNR. Weak signals are on average unable to
differentiate between H, and Hg, leading to log-Bayes
factors ~0. When the observed SNR reaches values ~1, the
log-Bayes factor of the 2/3-power-law signals starts to
prefer positive values, with increasing log-Bayes factor for
increasing SNR. This is consistent with both our expect-
ations for a true signal as well as the earlier results of the
GW-geodesy tool [29].

At the same time, the data from the Gaussian process
starts to separate into two categories when the SNR reaches
order one. One population of signals starts to prefer
negative log-Bayes factors, preferring Hge, over H,.
These are the signals that look nothing like a power-law
signal as observed by the HL baseline. However, there is
also a population of signals that starts to prefer positive log-
Bayes factors. These are the signals that succeeded in

; 2/ cor
Astrophysical f2/3 Signal
Gaussian Process K

LML DALY ALY LAY LN HERELRARLY
10-3 10-2 101 10° 10 102 10%

Median SNR

FIG. 4. The log-Bayes factor comparing a 2/3-power-
law signal with a Gaussian process is represented against the
median of the SNR posterior, assuming the signal has been
observed by the HL baseline. There are 40 events with
InB < 1075, which are not shown in this figure. The smallest
In B = —5.3 x 107. Each point in this scatter plot represents one
injected signal. For each signal type, 5000 injections were
performed with a logarithmically spaced injection strength
between SNR = 0.1 and SNR = 100.

mimicking the HL baseline 2/3 power-law signal to a
(very) good extent. This behavior is expected because we
purposely chose our Gaussian process parameters to have
this kind of behavior, which is the key ingredient in
creating conservative estimates for the FAP. However, as
the observed SNR keeps increasing the population of
signals with positive log-Bayes factors decreases at the
cost of the population with negative log-Bayes factors.
Although at high SNR the probability for a Gaussian
process to have high log-Bayes factors is very small, it
is still nonzero.

Figures 3 and 4 enable us to make statements on the
distinctive character of our tool to differentiate a power-law
GW signal and some unknown (terrestrial) correlated noise
sources, simulated by the Gaussian process.

B. Detection probability curve

We construct a detection probability curve, for the
situation where @ = 2/3, where we show the behavior of
the detection probability versus the SNR of the signal for
several fixed false-alarm rates. Injections at five different
SNRs are performed: 1.25, 3, 5, 10, and 20. At each SNR,
we perform 5000 injections for both the conservative
Gaussian process signal and an @ = 2/3 power-law signal.
The result is shown in Fig. 5.

The results indicate that our Gaussian process is very
conservative. Given a FAP of 1%, the detection probability
at SNR =20 does not even reach 40%. A detection
probability of 50% and 100% is indicated by the black
dashed curves. Given a FAP of 5%, a detection probability
of 50% is reached above SNR = 10.

As shown in Table II, in the case of a power law with
SNR =5 and a steeper slope, e.g., @ =3, a detection
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FIG. 5. Detection probability of a 2/3-power-law signal, for

false-alarm probabilities of 1% (red), 5%(green), 10%(orange),
and 25% (blue). The black dashed lines indicate a detection
probability of 50% and 100%. Signals were injected at
SNR = 1.25, 3, 5, 10, and 20. For each signal type and SNR,
5000 injections were performed.

probability curve of 41.40% (67.08%) is reached for a FAP
of 1% (5%). This seems to indicate that even with our very
conservative Gaussian process signal generation, a GWB
signal with a steeper power-law slope is more easily
distinguishable from correlated terrestrial noise, here mod-
eled by the Gaussian process.

C. Application to a real-life scenario: O2 outlier

When analyzing the results of their O2 run, the LIGO
and Virgo collaborations observed an excess of SNR =
1.25 for a power-law model with ¢ = 2/3, as well as @ = 3
[44]. At the time that the paper was published, it was stated
that the low SNR excess was very likely due to random
fluctuations in the data. This was confirmed by the lack of
detection by the subsequent O3 results [16]. With the
geodesy tool described in this paper we could, at the time of
the O2 observation, have answered a complementary
question: given that we have observed an excess with
SNR = 1.25 for a power-law model with @ = 2/3, what is
the probability that the observed signal is due to a source of
correlated noise instead of gravitational waves? Although
the O3 results have confirmed that the excess was just a
random fluctuation, it is instructive to demonstrate how the
geodesy tool could be used in the future. In our demon-
stration, we only investigate the excess given a power law
with @ = 2/3, although one can easily apply the tool to the
a =3 case as well.

In what follows we use the publicly available cross-
correlation spectrum observed by LIGO during O2 [45] to
compute the log-Bayes factor linked to this observation. To
construct the FAP and detection probability, we perform
injections of the conservative Gaussian process signal,
Schumann resonances, and a 2/3-power-law signal with
an observed injection strength of SNR = 1.25. All injec-
tions consist of 5000 samples and result in the distribution
of log-Bayes factors shown in Fig. 6.

1015
] Astrophysical
= o] 23 Signal
7 10 3 LB Gaussian Process
= 1 £ Schumann signal
& _ : - 9 .
£ 10714 i L 02outlier
= E
= i
= 1 i
8 1072 3 111
[a W E <
10-3 T T ; i
<-4 -2 0 2 4 6

InB

FIG. 6. Probability density of In 3 for an astrophysical @ = 2/3
power-law signal, random draws from a Gaussian process using
our optimized (most conservative) SE kernel, and a Schumann
signal. The lowest bin contains all In 3 < —4. For each signal
type, 5000 injections were performed with an injection strength
of SNR = 1.25 The choice of @ = 2/3 and SNR = 1.25 matches
the parameters of the observed outlier of the O2 results for an
isotropic GWB [44].

The log-Bayes factor for the observed signal of the
02 run by LIGO and Virgo was computed and found
to be 0.063. Given the distributions from the simulations
shown in Fig. 6, the observed signal is consistent with a
FAP of 39.00% =+ 0.02% and a detection probability of
46.80% =+ 0.02%. The high FAP does not give us enough
confidence to prefer a gravitational-wave signal over a
correlated noise source.

However, if one compares a gravitational-wave signal
with a correlated signal coming from Schumann resonances
a FAP of 1.00% + 0.02% is found, effectively ruling out
Schumann resonances as a possible source with high
confidence. This is consistent with projections showing
that there was no significant magnetic coupling in the
analysis for an isotropic GWB using O2 data [44].

V. CONCLUSION AND OUTLOOK

In this paper we presented a tool that requires the
observed signal to be consistent with the geometry of
the observing detectors. We used Gaussian processes as a
conservative proxy for the unknown space of all terrestrial
correlated signals that might impact stochastic searches.
This enabled us to make quantitative statistical statements
and false-alarm probabilities concerning the origin of the
observed signal. The framework was applied to a SNR =
1.25 excess for a 2/3 power law, observed by the LIGO and
Virgo collaborations during their second observing run.
Based on this analysis, there was not enough evidence to
prefer a GWB signal over terrestrial correlated noise.
However, Schumann resonances were effectively ruled
out as a possible source.

In this section we discuss how this tool can be used in the
future, as well as the assumptions used in the current work
and the possibilities for future improvements.
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The primary use for this tool is to apply it to the observed
cross correlation spectrum when (a hint of) a power-law
isotropic GWB is observed. From analyzing the data, three
estimated parameters will be needed as input for the
GW-geodesy tool we are describing here: the power-law
index a, the observed SNR, and the log-Bayes factor
between Hp,. and H, for the observed signal. The
observed a will be used to reoptimize the kernel parameters
to get the most conservative scenario for this specific power
law. The SNR will dictate the injection strength of our data.
This will lead to a figure equivalent to Fig. 2 in this
work and log-Bayes factors linked to a certain FAP as in
Table 1. If the observed log-Bayes factor is larger than or
equal to the log-Bayes factor linked to the desired FAP j.greq
(fixed beforehand), we can state that the observed signal
originates from gravitational waves instead of a source of
correlated noise with a confidence of 1 — FAP p.vation-

In both its current and previous forms [29], the
GW-geodesy tool can only be used to validate an isotropic
GWB. We are currently working to extend this analysis for
use with anisotropic GWB searches.

In this paper we only demonstrated the tool for the HL
baseline, since this is currently the most sensitive detector
pair for an isotropic GWB. However, it is very easy to apply
this technique to any preferred detector pair. At some point
the ever increasing detector sensitivities and long obser-
vation times observation times may enable the detection of
a GWB by more than one detector pair. The current tool is
able to make statements about all of the baselines sepa-
rately, but one can imagine extending the tool to get one
overall figure of merit to make statements about the entire
detector network.

It is important to note that the framework demonstrated
in this paper was only tested when there was either a
power-law GW signal present or a globally coherent noise
source. The separation between a true GW signal and

correlated noise becomes less straightforward if they are
both present at the same time with similar strengths. In the
case of a known background, a technique (such as that
proposed in Ref. [28]) could be used to search for both
sources at the same time.

When applying this tool to a signal coming from
Schumann resonances, we assumed the magnetic
Schumann spectrum to have a positive cross power, since
the (possibly frequency-dependent) sign is not known for
the Hanford-Livingston baseline. In the future, a departure
from this assumption could be investigated by relying on
analytical models describing Schumann resonances and
their global cross power [36,37].

Instead of only considering power-law signals, one could
also investigate more complex models. In the earlier
implementation of the GW-geodesy framework [29] it
was shown that the tool is quite robust against modeling
a broken power law with a single power law. This could
mean that the framework is mainly sensitive to the zero
crossings of the overlap reduction function.
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