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As the sensitivity and observing time of gravitational-wave detectors increase, a more diverse range of
signals is expected to be observed from a variety of sources. Especially, long-lived gravitational-wave
transients have received interest in the last decade. Because most long-duration signals are poorly modeled,
detection must rely on generic search algorithms, which make few or no assumptions on the nature of the
signal. However, the computational cost of those searches remains a limiting factor, which leads to suboptimal
sensitivity. Several detection algorithms have been developed to cope with this issue. In this paper, we present
a new data analysis pipeline to search for unmodeled long-lived transient gravitational-wave signals with
duration between 10 and 103 s, based on an excess cross-power statistic in a network of detectors. The
pipeline implements several new features that are intended to reduce computational cost and increase
detection sensitivity for a wide range of signal morphologies. The method is generalized to a network of an
arbitrary number of detectors and aims to provide a stable interface for further improvements. Comparisons
with a previous implementation of a similar method on simulated and real gravitational-wave data show an
overall increase in detection efficiency for all but one signal morphologies tested and a computing time
reduced by at least a factor 10.
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I. INTRODUCTION

A new era in astronomy began in September 2015 with
the observation of gravitational waves (GWs) from the
merger of two stellar mass black holes [1]. Since then,
the Advanced LIGO [2] and Advanced Virgo [3] have
regularly observed a larger volume of the Universe leading,
among major discoveries, to the observation of the merger of
two neutron stars [4] in August 2017 associated with gamma
ray burst GRB190817A [5] followed up with kilonova
AT2017gfo in NGC4993 [6]. As of mid-2021, Advanced
LIGO and Advanced Virgo have reported ∼50 confirmed
mergers of compact objects, black holes, and/or neutron
stars [7].
Yet many GW sources have not yet been observed: core

collapse supernova, isolated neutron stars, magnetars, cos-
mic strings, and the resulting stochastic background of GWs
[8]. The diversity of the GW signal expected from these
sources require different detection algorithms.When the GW
signal waveform is predicted analytically, matched filter
techniques can be used. In practice, this concerns mainly
compact objects’ binary coalescence, cosmic strings’ signals
[9], and GWs from pulsars [10,11]. When the GW emission
is poorly modeled, detection will rely on unconstrained
searches that make few assumptions about the characteristics
of the signal. In the last 20 years, several search algorithms
have been developed, mostly focusing on GW signals of
duration less than a few seconds [12–16]. More recently,

transient GW signals of longer duration have received
attention, bridging the gap between short-duration transient
and continuous emission of GWs, and dedicated search
algorithms have been developed [17–23].
Several astrophysical processes could be at the origin of

long-duration transient GWs emission, for example, those
related to core collapse supernova, compact object binary
mergers, and isolated neutron stars [18]. Some of them are
associated with the most energetic phenomena observed in
the Universe. There is evidence [24,25] that core collapse
supernovae and long gamma-ray bursts (GRBs) are con-
nected to the death of massive stars where the iron core
collapses under its own gravity, forming either a black
hole or a highly magnetized neutron star, releasing an
incredible amount of energy (1053 erg) mainly through
neutrino emission, while ∼1% goes into the kinetic energy
of the explosion [26]. Once the collapse is triggered, very
powerful nonspherical flows develop in the outer region of
the protoneutron star that are expected to generate GWs
energetically bounded to 1044–1047 erg [27]. The GW
emission will last until the onset of the explosion or until a
black hole is formed. The signal is expected to be no
longer than 1–2 s.
In the collapsar model, massive stars collapse to black

holes either without an initial supernova explosion or via
fallback accretion after a successful but weak explosion [28];
a rotating black hole is formed when the inner layers of the
star lack momentum to eject all the matter. Over a period of
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minutes to hours, 0.1–5 M⊙ falls back onto the collapsed
remnant, turning it into a black hole and establishing an
accretion disk. GWs may be emitted by disk turbulence and
disk instabilities that may lead to clumping or disk frag-
mentation [29,30]. The GW signal expected from accretion
disk fragmentation would lastOð10–100Þ s with a character-
istic strain h ∼ 10−22 at 100 Hz for a source at 100 Mpc [29].
When the core collapse explosion is successful, a magnetar
is formed. Convective currents and dynamical and secular
nonaxisymmetric rotational instabilities in the proto-
magnetar develop and may emit GWs [31]. In both scenarios,
a GRB jet is launched either thanks to magnetohydrody-
namical processes and neutrino pair annihilation powered by
accretion or by the high Lorentz factor outflow that follows
the birth of the proto-magnetar.
When a magnetar is formed, gravitational-wave emission

from viscosity-driven “spin-flip” instability may last hours
to days, with a detection horizon of 3–4 Mpc for Advanced
LIGO/Advanced Virgo detectors and unmodeled searches
[32–34].
The merger of two neutron stars will form a hot super-

massive neutron star; depending on the component masses,
the centrifugal forces induced by differential rotation and the
stiffness of the nuclear equation of state may allow it to
survive for hundreds of milliseconds before collapsing to a
black hole or forming a massive neutron star [35,36]. It is
very likely that the remnant is surrounded by an accretion
disk that may endeavor instabilities like in the collapsar
scenario. If the newly formed neutron star survives more
than a few seconds, it could emit long-lived GWs through
magnetic field-induced ellipticity [37,38] or r-mode insta-
bilities [39], although the precise amplitude of such signals
remains unclear. So far, no postmerger GW signals have
been detected for any of the binary neutron star mergers
found in LIGO and Virgo data [40–42].
Isolated neutron stars are another potential source of long-

duration GW signals. Sudden speed-ups of the rotation of
pulsars observed in radio and x-ray data are followed by a
period of relaxation (weeks long) during which the pulsar
slows down. GWs may be emitted during this period, but the
amplitude is expected to be low as the rotational energy
changes remain below 1043 erg [43–46]. Seismic phenom-
ena in the crust of magnetars are thought to be at the origin of
soft gamma repeaters and anomalous x-ray pulsars. Soft
gamma repeaters’ giant flares are associated with huge
emission of electromagnetic energy, up to 1046 erg, followed
by long-duration quasiperiodic oscillations, which may
be associated with GW emission over the same timescale
[47–49]. The recent observation of GRB 200415a, sug-
gesting that a magnetar giant flare may be a distinct class of
short GRB, with a substantially higher volumetric rate than
compact object mergers [50], is reenforcing the interest for
magnetar giant flare events in nearby galaxies.
The diversity of long transient expected GW waveforms

has led to the development of algorithms that do not rely on a

signal model. Coherent wave burst [13,51] and X-Pipeline
[15], used for short-duration searches, have been adapted to
search for transients with duration up to a few hundred
seconds, while the Stochastic Transient Analysis Multi-
detector Pipeline (STAMP) excess cross-power algorithm
[18] has been developed to target specifically long and very
long transient signals lasting up to several weeks. It has been
used to search for long-duration GW transients associated
with GRBs [52], for postmerger GW signals associated with
GW170817 [40,42], and adapted to perform an all-sky/all-
time search for long-duration GW transients in LIGO and
Virgo data [53–55].
An enhanced version of the STAMP algorithm is pre-

sented in this article. It is a complete rewrite in PYTHON of
the all-sky/all-time STAMP-AS pipeline that was built using
the STAMP algorithm library written in MATLAB. As such, it
has been optimized to search for GW signals of duration in
the range 10–103 s in a large dataset at a lesser computing
cost than STAMP. It especially implements a hierarchical
strategy, similar to the algorithm proposed in [19] to select
the most interesting periods of the data without losing
detection efficiency.
This paper is organized as follows. In Sec. II, we present

the formalism of the analysis and the methods used to
generate candidate events in the framework of a two-detector
search. We describe the implementation of the pipeline and
the methods used for background and efficiency estimation
in Sec. III. Section IV summarizes the performance of the
pipeline over simulated Gaussian noise and real data from
the second LIGO-Virgo observation campaign (O2). Finally,
we summarize those results in Sec. V and propose several
improvements to increase the pipeline sensitivity in the
future.

II. OVERVIEW OF A CROSS-CORRELATION GW
TRANSIENT SEARCH ALGORITHM

A. Definitions and conventions

We are considering a network of GW detectors whose
strain data time series sðtÞ ¼ nðtÞ þ hðtÞ is a linear sum of
independent detector noise nðtÞ and the detector’s response
to a GW strain amplitude given by hðtÞ. The detector noise
is itself the sum of random noise and non-Gaussian noise
transients, or “glitches.” The GW signal is assumed to be
described by two polarization modes hþðtÞ and h×ðtÞ and
originates from a pointlike source whose sky position is
given by the right ascension and declination (α, δ). We
define Ω̂ as the direction to the source and h̃ðfÞ as the
Fourier transform of any hðtÞ time series. The detector’s
response to a GW strain is the linear combination of the two
polarizations weighted by the detector antenna factors
hðtÞ ¼ Fþðt; Ω̂Þ × hþðtÞ þ F×ðt; Ω̂Þ × h×ðtÞ. We consider
an interval of duration T of GW strain data that are discrete
measurements sampled at fs. In the following, the variable
t; refers to the time segment start time.
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The STAMP algorithm is an extension of the radiometer
method developed to detect pointlike sources of stochastic
background GWs [56]. To estimate the GW strain power
spectrum of a transient signal, excess power is searched in
frequency-time maps (ft maps) formed by cross-correlating
the data of two spatially separated gravitational-wave detec-
tors I and J. Following [18], an estimator of theGWpower in
a single ft pixel is given by

Ŷðt; f; Ω̂Þ≡ Re½QIJðt; f; Ω̂Þs̃⋆I ðt; fÞs̃Jðt; fÞ�; ð1Þ

where

QIJðt; f; Ω̂Þ ¼
1

ϵIJðt; Ω̂Þ
e2πifΩ̂·Δx⃗IJ=c ð2Þ

is a filter function that takes into account the arrival time
delay of the signal in the two detectors, whose distance is
given by Δx⃗IJ and the pair efficiency

ϵIJðt;Ω̂Þ≡1

2
ðFþ

I ðt;Ω̂ÞFþ
J ðt;Ω̂ÞþF×

I ðt;Ω̂ÞF×
J ðt;Ω̂ÞÞ; ð3Þ

which weights the GW strain cross-power according to the
alignment of the detectors. To normalize the cross-
correlation, we compute the variance of Ŷ for which an
estimator is

σ̂2Yðt; f; Ω̂Þ ¼ jQIJðt; f; Ω̂Þj2PIðt; fÞPJðt; fÞ; ð4Þ

where PIðt; fÞ is the noise one-sided autopower spectrum.
We then define the signal-to-noise ratio SNRðt; f; Ω̂Þ for a
single pixel

SNRðt;f; Ω̂Þ≡ Ŷðt;f; Ω̂Þ
σ̂Yðt;f; Ω̂Þ

¼Re

�
s̃⋆I ðt;fÞs̃Jðt;fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PIðt;fÞPJðt;fÞ

p e2πifΩ̂·Δx⃗IJ=c
�
: ð5Þ

SNRðt; f; Ω̂Þ depends only on the single-detector whitened
statistic

ỹIðt; fÞ≡ s̃Iðt; fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PIðt; fÞ

p ð6Þ

and the time delay τ≡ Ω̂ · Δx⃗IJ=c of the signal in the two
detectors.
In the context of an all-sky search, the source direction Ω̂,

and therefore τ, are unknown. An error in the time delay
induces a dephasing in the computation of Ŷðt; f; Ω̂Þ that can
cause an underestimation of the SNR of coherent signals. A
solution is to span all sky positions Ω̂ and retain the one that
gives the largest SNR. That was the strategy implemented in
STAMP-AS used to search for long-duration transient GW

signals in initial LIGO data [53,57] and advanced LIGO data
[54,55]. However, the computational time required to process
numerous sky positions was a limitation of the pipeline.
Additionally, background estimation requires repeating, a
large number of times, the same coherent cross-correlation of
the data streams for each sky position tested using complete
ft maps, while a large fraction of the pixels do not contain
relevant information. As a consequence, the amount of
simulated background was restricted to ∼100 y, and the
number of sky positions tested was limited to a few. All these
suboptimal features resulted in a loss of sensitivity of
∼10%–20% [53].
The PySTAMPAS pipeline addresses these limitations by

implementing the hierarchical approach proposed in [19],
which consists of first identifying the most interesting
clusters of pixels in single-detector autopower ft maps. In
a second stage, a coherent detection statistic is computed
using only the pixels that have been selected in the first stage.
The computationally intensive calculations are carried out
only once, allowing rapid background estimation without
sacrificing the sensitivity gained by the use of coherence and
spanning the whole sky positions. The gain in computational
performance has also allowed the introduction of the use of
several time-frequency resolutions to gain sensitivity to GW
signals that may have time-varying frequency evolution. In
the following sections, we describe the different computa-
tions that are performed at each stage.

B. Single-detector stage

1. Single-detector f t map

The simplest time-frequency representation of the GW
time series sIðtÞ is a spectrogram obtained using one-sided
Fourier transform of short segments of duration Δt. The
short segments are first Hann windowed and overlap by 50%
with each other, such that the pixel resolution is, respectively,
ðΔt=2Þ × ð1=ΔtÞ in time and frequency—the factor 1

2
comes

from the 50% overlap between short segments.
The spectrograms are whitened by the one-sided power

spectral density of each segment PIðt; fÞ. Two methods
to compute the autopower have been implemented. The
first one, inherited from STAMP, takes the average of
js̃Iðt; fÞj2 over time-neighboring pixels in a similar way to
Welch’s method. The other one considers the median over
the frequency-neighboring pixels. The pros and cons of
the two methods are discussed in Sec. IVA 1. For each
time-frequency resolution, ft maps of the whitened
statistic ỹIðt; fÞ are built.
The durationΔt of the Fourier transformed segments is an

arbitrary choice that depends of the type of signal searched.
Long-duration GW searches generally use Fourier trans-
formed segments of duration ≃1 s, which are suited to
reconstruct signals lasting ∼101–103 s. However, when the
frequency evolution of the signal is changing with time, parts
of it can be better reconstructed using different resolutions.
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In order to improve signal reconstruction as demonstrated by
coherent wave burst [13], we opt for a multiresolution
approach which consists in building several ft maps of
different resolutions and combine them into a single multi-
resolution ft map.

2. Clustering

The long-duration GW signal signature in ft maps
appears as a cluster of pixels that a pattern recognition
algorithm must be able to reconstruct without assuming a
model. A year-long dataset is typically used. The unknown
morphology assumption leads us to consider a seed-based
clustering algorithm. The principle is to group high-energy
pixels together by proximity, without imposing any pre-
ferred morphology for the cluster. For PySTAMPAS, we
have adapted the BURSTEGARD algorithm, developed for
STAMP [57] to multiresolution ft maps.
We consider all pixels ỹIðt; fÞ from every map with

individual resolution Δti × Δfi. Pixels for which jỹIðt; fÞj
exceeds a given threshold are kept to form a set of pixels for
which we keep the time and frequency of the bottom left
corner,Δti,Δfi, and ỹIðt; fÞ. The clustering algorithm starts
with a seed pixel, the first pixel in the list, as the order does
not matter. All pixels that are above threshold and within a
given distance (in time and frequency) of the seed become
part of the same cluster, whatever their resolution. Each new
pixel added to the cluster then becomes the seed pixel and
the same process is repeated recursively until no more pixels
can be added. The next remaining unclustered pixel becomes
the seed of the next cluster and the operations are applied
again until all isolated pixels have been clustered. To
eliminate clusters composed of only a few pixels, we select
clusters that have a user-determined minimal number of
pixels. The different parameters of the clustering (pixel
threshold, radius, and minimal number of pixels per cluster)
are free parameters that can be tuned considering that the
number of operations is proportional toOðN logðNÞÞ, where
N is the number of pixels above threshold. As the GW signal
energy is spread over many pixels, the threshold on jỹIðt; fÞj
should not be too selective, and the distance between two
pixels should not be too strict as well.

C. Coherent analysis

Considering all possible detector pairs, clusters from one
detector are cross-correlated with the other detector’s pixels.
At this stage, the clusters can be composed of pixels of
different time-frequency resolution. To be able to cross-
correlate pixels of different time-frequency resolution, we
define virtual pixels that have resolution minΔti × minΔfi.
Each of these pixels is assigned a value that is the largest
jỹIðt; fÞj value of all pixels that overlap the virtual pixel. As
Δti × Δfi is constant over all resolution maps, the virtual
pixels assigned values have the same weight. The same
construction of virtual pixels is performed for the pixels of
the other detector’s ft map.

The cross-correlation SNR given by Eq. (5) is then
computed considering the virtual pixels. As already men-
tioned, pixel SNR depends only on the time delay between
two detectors τ ¼ Ω̂ · Δx⃗IJ=c. In an all-sky search, the
direction to the source is not known a priori, and an error
on the time delay can cause one to underestimate the SNR
of coherent signals. A solution is to span the time delay
parameter space over all possible values for a given pair.
The maximal SNR loss due to an error of dΩ⃗ corresponding
to dτ is

SNRðt;f;Ω̂þdΩ⃗Þ¼ cosð2πfdτÞSNRðt;f;Ω̂Þ: ð7Þ

The time delay bin size dτ is determined such that the
maximal SNR loss is lower than ϵ ∈ ½01� for the maximal
frequency considered in each cluster;

dτ ¼ arccosðϵÞ
2πfmax

ð8Þ

with fmax being the maximal frequency of all pixels of the
cluster, which can be much lower than the maximal fre-
quency of the search, reducing the number of time delays to
test. In the most general case, we would need to test Nτ time
delay values between 0 and ΔxIJ=c by steps of dτ to recover
a signal accurately. However, because we are considering a
phase factor, a degeneracy appears: ϵ ¼ cosð2πfdτÞ ¼
cosð2πfðdτ þ 1=fÞÞ. As a consequence, for a pixel at
frequency f, it is sufficient to test time delays in the interval
½0; 1=f� instead of ½0;ΔxIJ=c� to get the correct phase factor.
In the case of a broadband cluster with pixel frequencies
between fmin and fmax, this interval is the largest for
f ¼ fmin, so we need to test time delay values between 0
and 1=fmin by steps of dτ. Finally, the number of time delays
to test to recover a signal with an accuracy ϵ is

Nτ ¼
2π

arccosðϵÞ
fmax
fmin

: ð9Þ

In the end,Nτ remains rather small (less than a few hundred),
especially compared to the thousands of sky positions that
need to be tested using a regular grid in sky coordinates α,
cosðδÞ. Since the computations are done only over the small
subset of pixels that constitute the cluster, it is possible to test
hundreds of time delays in a reasonable time and therefore
limit the loss of SNR to ϵ ¼ 0.95 regardless of the signal
morphology, as shown in Sec. IVA 2.
The time delay τ0 that maximizes the sum of all pixel

SNRs provides a detection statistic that reflects the sig-
nificance of the cluster

SNRΓ ≡
X

ðt;fÞ∈Γ
SNRðt; f; τ0Þ: ð10Þ
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This detection statistic is used to test the hypothesis of a
GW signal or the null hypothesis. However, hierarchical
processing methods such as PySTAMPAS applied on real
GW data tend to bias the selection of triggers because of the
presence of noise outliers in one detector. When combined
with noise fluctuation in the second detector, such triggers
may have large SNRΓ values despite being incoherent. In
order to mitigate this effect, we estimate the residual noise
energy that is left in one detector’s data after subtracting the
sum of jỹIðt; fÞj2 over all pixels belonging to the cluster.
We define the quantity

Eres
I ≡ X

ðt;fÞ∈Γ
jSNRðt; fÞ − jỹIðt; fÞj2j: ð11Þ

For a coherent GW signal, recovered with the right time
delay, this residual energy is expected to be much smaller
than both SNRΓ and the autopower energy EI

EI ≡
X

ðt;fÞ∈Γ
jỹIðt; fÞj2: ð12Þ

On the contrary, for a cluster due to a noise outlier in one of
the detectors, Eres

I may become large in the second detector.
We can then define a second discriminant variable in
addition to SNRΓ,

Σres ≡
X
I

Eres
I =EI: ð13Þ

Finally, we combine these two variables into a single-
detection statistic Λ defined by

Λ≡ SNRΓ

SNRΓ þ Σres
: ð14Þ

Λ should tend to 1 in the presence of a coherent GW signal
and take ≪ 1 values in case of noise outliers. For
convenience, we define

pΛ ≡ − logðj1 − ΛjÞ ð15Þ

such that the detection statistic increases with the signifi-
cance of the trigger. Note that pΛ is not the only possibility to
combine SNRΓ and Σres. We show in Sec. IVC that pΛ is
robust to loud noise triggers using a sample of real data from
GW detectors, but other combinations may be relevant
depending on the distribution of background noise.

III. DETAILS OF THE PIPELINE
IMPLEMENTATION

In the following sections, we describe the implementation
of PySTAMPAS in the case of a two-detector network, and
we propose a generalization to the case of a network of more

than two detectors. In practice, the pipeline is implemented
using PYTHON 3 and relies on the GWpy package [58].

A. Data conditioning

The GW detectors’ data streams are first searched
individually to reveal clusters of energy that may contain
coherent GW signals. Real GW detector data are available as
an ensemble of time series of different lengths. For a given
pair of GW detectors, only coincident times are analyzed.
This reduces the dataset to a list of coincident segments of
time. For each of the coincident segments, the data are split
into windows of duration Twin that overlap by 50%. The
duration of the data window is a free parameter that can be
adjusted to the typical duration of the GW signal that is being
investigated. In this study, we use Twin ≃ 500 s, as it is done
in previous long-duration searches [54,55]. STAMP was
originally designed to search for signals with duration up to
several weeks [18]. Although there is no fundamental
limitation to extending PySTAMPAS to longer signals,
we limit ourselves to signals in the range 10–103 s in this
paper. Working with very large windows leads to dropping
up to Twin=2 s of data at the end of each coincident segment
and increases the computing cost of clustering.
The data are first high-pass filtered to suppress energy

outside the analysis frequency bandwidth whose lower
boundary is adapted to the GW detectors’ noise spectrum
of each dataset. Real GW detector data often contain non-
Gaussian, short-duration spikes (glitches) [59,60]. When the
magnitude of the glitch is large, an excess of energy is
present in the ft maps and generates single-detector clusters
with very large energy (orders of magnitude larger than what
a real GW signal would generate). The coherent step is
usually not able to eliminate them completely and a better
strategy consists in gating the data time series before
computing the ft maps. PySTAMPAS mitigates the effect
of the loud glitches by applying a Planck window on the
hIðtÞ samples that exceeds a fixed threshold.1 This threshold
is a free parameter that should be tuned for each analysis in
order to remove most of the glitches without penalizing
signal recovery. After this preprocessing step, ft maps of
ỹIðt; fÞ are built.
As shown in all GW detectors’ noise spectra [61,62], real

GW data contain many spectral artifacts corresponding to
mechanical resonances, power lines, and pump or fanlike
machines surrounding the detectors [63,64]. Most of these
spectral lines are of low amplitude and relatively constant
over time, while some have a time-varying frequency.
These artifacts can generate false long-duration tracks in ft
maps. To attenuate the impact of lines, we set to zero
(“frequency notch”) ỹIðt; fÞ pixels corresponding to a list
of frequencies that are constructed following two steps:

1These samples are found by the SciPy function find_peaks.
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(1) For each ft map built, we compute the median value
ȳðfÞ over time of jỹðt; fÞj. Frequencies for which
ȳðfÞ is higher than a given threshold are flagged.

(2) If a frequency is flagged in more than a given
fraction of the total ft maps, it is added to the list.

This last condition reduces the risk that a monochromatic
GW transient of duration ≲Twin is mistaken for an instru-
mental line and notched. One should note, however, that a
very long monochromatic transient signal (on the order of
weeks or months) could still be flagged if it is spread over a
fraction of the total ft maps higher than the threshold
chosen. If a signal crosses a notched frequency, it may be
divided into several parts that will be reconstructed by
BURSTEGARD as separate clusters, reducing the significance
of the signal. To reconnect these parts, we implement the
FINDTRACK algorithm [57]. If the minimal distance between
the corners of two clusters is smaller than a given radius,
these clusters are connected and treated as one single cluster.

B. Coincident search

The coincident search is the proper analysis during which
true GW signals are searched in the data. The individual
detector’s ft maps are searched for clusters of excess energy
following the procedure described in Sec. II B. Two lists of
clusters are extracted from a pair of detectors. They are saved
along with the ft maps to be analyzed in the coherent stage
following the procedure described in Sec. II C. The pipeline
produces a list of coherent triggers that are ranked according
to pΛ.

C. Background estimation

In order to assess the significance of triggers found in
coincidence, one has to estimate the accidental rate of noise
triggers caused by instrumental and environmental effects.
Like almost all GW transient search pipelines, to encom-
pass any particular effect in the data and augment the total
volume of data, we use the time-slides technique to
estimate our background [65]. One data stream is time
shifted with respect to the other one by an amount of time
greater than the light traveling time between the detectors.
Assuming the number of detectable GW signals is small,
this assures that the cross-correlated data do not contain a
coherent GW signal. In the meantime, non-Gaussian and
nonstationary features of the detectors’ noise are preserved.
By repeating the analysis for many time-shift values, one
simulates multiple instances of the noise.
In PySTAMPAS, time shifts are performed considering

data streams split over Nwin windows that are time ordered
on a circle. Data are shifted by a multiple of windows (lags)
and for each lag by a multiple of Δtmax the maximal time
resolution (minilags). For example, considering only lags,
at the nth lag, clusters from detector I that have been
extracted in window i are matched with detector J data
from window (iþ n). With this technique, the maximal
number of time shifts is

ðNwin − 1Þ × Twin

Δtmax
: ð16Þ

The total background lifetime simulated Tbkg is the number
of time shifts performed times the duration of data available
for a pair of detectors. The cumulative background trigger
rate gives an estimation of the false-alarm rate (FAR) as a
function of the detection statistic, which is used to rank the
triggers.

D. Sensitivity studies

PySTAMPAS performs sensitivity studies by injecting
simulated signals into the data. A simulated signal consists
primarily of a “waveform,” which describes the two polar-
izations modes hþðtÞ and h×ðtÞ of a GW. Waveforms are
stored in files in the form of two time series sampled at fs, as
well as metadata (duration, frequency range, physical model,
etc.). A bank of waveforms with various properties is
available to sample the rather large parameter space of
long-duration transient GW signals with representative signal
morphologies.
To compute the detector’s response hIðtÞ to a given GW

signal, one has to specify a waveform and the following
parameters:
(1) the time of arrival t0 at the center of Earth;
(2) the direction Ω̂ to the source;
(3) the inclination and polarization angles ðι;ψÞ that

characterize the orientation of the source’s reference
frame with respect to Earth’s equatorial frame;

(4) a scaling amplitude factor α to modulate the strength
of the signal.

Source frame GW polarizations are then rotated to be
expressed in Earth’s equatorial frame

h0þðtÞ ¼ aþ cos 2ψhþðtÞ − a× sin 2ψh×ðtÞ;
h0×ðtÞ ¼ aþ sin 2ψhþðtÞ þ a× cos 2ψh×ðtÞ; ð17Þ

where aþ ≡ 1þcos ι2
2

and a× ≡ cos ι.2 The polarizations are
then time shifted by the delay of arrival between the
detector’s position r⃗I and the center of Earth

τI ¼
Ω̂ · r⃗I
c

ð18Þ

and rescaled by the amplitude factor α such that, finally,

hIðtÞ ¼ α½Fþ
I ðt; Ω̂Þh0þðt− τIÞ þF×

I ðt; Ω̂Þh0×ðt− τIÞ�; ð19Þ

where Fþ
I ðt; Ω̂Þ and F×

I ðt; Ω̂Þ are the detector’s sensitivity to
þ and × polarizations (expressed in Earth’s equatorial
frame) of a GW signal coming from direction Ω̂ at time t.

2The dependence of aþ and a× on iota is correct for
quadrupolar emission.
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The computed response is resampled and interpolated tomatch
with the detector’s sampling, and the first and last seconds of
the time series are tapered with a Hann window to avoid
numerical artifacts when the signal starts or stops abruptly. The
signal is injected in the data, which are then analyzed the same
way as in a coincident search (restricted to the windows that
overlap the injection to gain time). An injection is considered
detected if the search produces a trigger within the time and
frequency boundaries of the simulated signal and with a
detection statistic pΛ larger than a given threshold.
To estimate the detection sensitivity to a given waveform

at a given amplitude, a statistically significant number of
injections are performed with random starting time, sky
position, polarization angle, and cosine of the inclination.
Starting times are selected in such a way that they always fall
within a coincident data segment. By computing the fraction
of recovered injections for different signal amplitudes, it is
possible to characterize the detection efficiency as a function
of signal’s strength, which is usually expressed with the root-
sum-squared amplitude hrss given by

hrss ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

ðh2þðtÞ þ h2×ðtÞÞdt
s

: ð20Þ

E. Generalization to a network of detectors

The search algorithm can be generalized in a straightfor-
ward manner to a network of N detectors ðI; J; K;…Þ,
constituting pðNÞ ¼ NðN − 1Þ=2 pairs. For a given time-
frequency pixel ðt; fÞ and sky direction Ω̂, we define the
total coherent SNR as the sum of cross-correlated SNRs
from all detector pairs,

SNRðt; f; Ω̂Þ ¼
XN
I¼1

X
J>I

SNRIJðt; f; Ω̂Þ; ð21Þ

with SNRIJðt; f; Ω̂Þ the coherent SNR computed from
Eq. (5) corresponding to the pair IJ. This allows us to
generalize the definitions of Eres

I and SNRΓ for a cluster of
pixels Γ,

Eres
I ≡ X

ðt;fÞ∈Γ
jSNRðt; fÞ=pðNÞ − jỹIðt; fÞj2j; ð22Þ

SNRΓ ≡
X

ðt;fÞ∈Γ
SNRðt; fÞ; ð23Þ

and finally the definition of Λ remains unchanged,

Λ≡ SNRΓ

SNRΓ þ
P

I
Eres
I
EI

: ð24Þ

The pipeline’s implementation does not fundamentally
change with N ≥ 3 detectors. The clustering step is

performed independently over each individual detector’s ft
maps, following the hierarchical method of [19]. For each
cluster, cross-correlation is computed for the pðNÞ pairs to
compute its ranking statistic pΛ. However, as the degeneracy
between sky direction and time delay between detectors is
broken for N ≥ 3, it is necessary in this case to test all sky
positions by choosing uniformly α and cosðδÞ and select that
position that maximizes SNRΓ. Therefore, a full-scale study
of the pipeline’s performances over a network of three or four
detectors will be necessary in the future, considering realistic
detectors’ sensitivity curves.

IV. PERFORMANCES AND COMPARISONS

To test the pipeline and demonstrate its performance,
we consider 13 waveforms commonly used in long-
duration searches [54,55] whose main characteristics
are listed in Table I. Most of the waveforms are based
on astrophysical models and fall into three categories:
eccentric inspiral-merger-ringdown nonspinning compact
binary coalescence (ECBC) [66], broadband chirps from
innermost stable circular orbit waves around rotating
black holes (ISCOchirp) [67,68], and accretion disk
instability models (ADI) [30]. We include two ad hoc
waveforms to better cover the parameter space; a 250-
s-long sine Gaussian signal (SG-C) with a decay time of
50 s and a 20-s-long band-limited white noise burst
(WNB-A). These signals of different morphology cover
the time-frequency space with durations within 9–290 s
and frequencies in the 10–2048 Hz range. In the follow-
ing, we consider the case of a two-detector search to
compare performance with STAMP-AS. If not stated
differently, we are using simulated Gaussian noise fol-
lowing LIGO’s best sensitivity during the second observ-
ing run (O2) [69] to simulate the data from the two LIGO
detectors at Hanford (H1) [70] and Livingston (L1) [71].

A. Signal reconstruction

We investigate the effects of several parameters of the
pipeline on the detection capability and the signal
reconstruction in order to find a set of parameters that
maximize the detection of a wide range of different
morphology signals, while keeping the computational costs
affordable.

1. Power spectral density estimation

The accuracy of the noise power spectral density (PSD)
estimation plays a central role in reconstructing GW signals
efficiently. Yet, this task is complicated in the case of GW
detectors, as the noise contains non-Gaussian and nonsta-
tionary features such as glitches, spectral lines, and slow
drifts of the noise amplitude.
Consider a detector’s strain time series given by

sIðtÞ ¼ hIðtÞ þ nIðtÞ, where hIðtÞ is a deterministic GW
signal and nIðtÞ is random noise. A good estimator of the
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one-sided PSD of the noise is given by the squared modulus
of its Fourier transform,

PIðt; fÞ≡ hj enIðt; fÞj2i: ð25Þ

This value is not directly accessible because, in case of an
unknown GW waveform, it is not possible to disentangle
a priori signal from noise. One has to rely on the
observable jesIðt; fÞj2, which may contain a GW signal.
Assuming signal and noise are not correlated,

hjesIðt; fÞj2i ¼ hjehIðt; fÞj2i þ PIðt; fÞ: ð26Þ

Therefore, an assumption over the nature of the signal
h̃Iðt; fÞ must be made in order to build an unbiased
estimator of PIðt; fÞ. PySTAMPAS implements two meth-
ods to estimate the PSD that are suited for different signal
morphologies.
The first method consists of taking the average of

js̃Iðt; fÞj2 over nt symmetrically chosen neighboring
Fourier transformed segments. The underlying assumptions
are that (1) the noise is stationary over the time window
considered, and (2) no signal is present in the adjacent
pixels. As discussed above, (1) is often wrong because of
the presence of short glitches in the data, which are
therefore not factored in the PSD and appear as signal.
Conversely, (2) is wrong when a monochromatic or
quasimonochromatic signal is present in the data, leading
these to be mistakenly included in the PSD. Degraded
sensitivity to monochromatic signals is a known weakness
of STAMP [53].
To address these issues, we propose to estimate the PSD

by taking the median of js̃Iðt; fÞj2 over nf adjacent
frequency bins. The pros and cons of this method are
opposite to the first one: short glitches are well taken into
account and monochromatic signals are better reconstructed.

However, signals whose frequency evolution is rapid tend to
be less well reconstructed. In the case of noise only, both
methods provide similar PSD estimates, except that spectral
narrow features are better reconstructed with the method
averaging the neighboring time segments’ pixels, as shown
in Fig. 1. We use the median, as it is more robust that the
average to extreme values. Because of instrumental lines, it is
likely that one of the neighboring frequency bins has pixels
with a very high value of s(t;f), which would spoil the PSD
estimation.
The effect of the PSD estimation on the signal recon-

struction in PySTAMPAS is illustrated in Fig. 2. Two signals
with very different spectral morphologies, a broadband
ISCOchirp (ISCOchirp-C) [68] and a monochromatic sine
Gaussian (SG-C), are injected in Gaussian noise. By taking
the median over adjacent frequency bins (hereafter referred
to as “frequency-median PSD”) instead of averaging over
neighboring Fourier transformed segments (“time-average

FIG. 1. Estimation of the PSD for a 100-s-long segment of
LIGO Hanford data from the O2 observing run using the two
different methods implemented in PySTAMPAS. The squared
modulus of the Fourier transform (averaged over ten independent
realizations of the noise) is shown in blue for reference.

TABLE I. Name, parameters, duration, frequency range, and spectral morphology of waveforms used to characterize PySTAMPAS.
Mi is the component compact object mass; ecc is the eccentricity of the binary orbit at 10 Hz;MBH and aBH are the mass and normalized
spin of the black hole.

Waveform Parameters Duration (s) Frequency (Hz) Morphology

ECBC-A M1 ¼ 1.4 M⊙, M2 ¼ 1.4 M⊙, ecc ¼ 0.2 291 10–250 Chirp
ECBC-B M1 ¼ 1.4 M⊙, M2 ¼ 1.4 M⊙, ecc ¼ 0.4 178 10–275 � � �
ECBC-C M1 ¼ 1.4 M⊙, M2 ¼ 1.4 M⊙, ecc ¼ 0.6 64 10–350 � � �
ECBC-D M1 ¼ 3.0 M⊙, M2 ¼ 3.0 M⊙, ecc ¼ 0.2 81 10–180 � � �
ECBC-E M1 ¼ 3.0 M⊙, M2 ¼ 3.0 M⊙, ecc ¼ 0.4 49 10–200 � � �
ECBC-F M1 ¼ 3.0 M⊙, M2 ¼ 3.0 M⊙, ecc ¼ 0.6 15 10–200 � � �
ISCOchirp-A mBH ¼ 5.0 M⊙ 237 1049–2048 Broadband chirp down
ISCOchirp-B mBH ¼ 10.0 M⊙ 237 705–2048 � � �
ISCOchirp-C mBH ¼ 20.0 M⊙ 236 196–1545 � � �
ADI-A mBH ¼ 5.0 M⊙, aBH ¼ 0.3 35 135–166 Chirp down
ADI-B mBH ¼ 10.0 M⊙, aBH ¼ 0.95 9 110–209 � � �
SG-C 243 402–408 Monochromatic
WNB-A 20 50–400 Band-limited white noise
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PSD”), the sine Gaussian signal is better reconstructed, but
the fast frequency evoluting part of the ISCOchirp is blurred
out. The optimal choice of a PSD estimation method
depends on the type of signals targeted and the character-
istics of the noise, especially spectral lines and/or nonsta-
tionary features. Another way to restore the sensitivity to
monochromatic triggers would be to consider a very long
(∼103 s) time period to estimate the PSD in the case of the
time adjacent pixels method. However, noise from GW
detectors tends to become nonstationary over such time
intervals at low frequencies (below ∼100 Hz) [63].

2. Source sky location determination

The number of sky locations tested in the coherent step
(which reduces to a single time delay parameter in the case of
a two-detector network) is currently a limiting factor of all-
sky searches and illustrates the necessary trade-off between
detection sensitivity and computational cost [53]. The
hierarchical processing implemented in PySTAMPAS allows
for scanning many positions at a low cost. In Sec. II C, we
have seen that Nτ, the number of time delays between
detectors to be tested, depends on the ratio between the
maximal and the minimal frequency of the trigger. Here, we
investigate empirically the pipeline sensitivity loss as a
function of the number of time delays for different waveform
families.
Signal waveforms are injected coherently into Gaussian

noise, simulating data from LIGO Hanford and LIGO

Livingston, from a given sky direction Ω̂0, and are
recovered by PySTAMPAS. We vary the number of time
delays and keep the maximal SNRΓ obtained, which is
compared to SNRΓðΩ̂0Þ, the SNR value corresponding to
the true source position Ω̂0.
The ratio SNRΓ to SNRΓðΩ̂0Þ as a function of the number

of time delays between detectors is shown in Fig. 3 for sine
Gaussians of different central frequency and for a selection
of waveforms of different morphology/durations. We com-
pare the number Nτ of delays tested to get ϵ ¼ 0.95 to the
theoretical prediction from Eq. (9) given in Table II. We see
that the optimal value of Nτ does not depend on the signal
frequency, but mainly on its frequency range fmax=fmin.
Monochromatic sine Gaussians are recovered equally rap-
idly no matter their frequency and faster than signals of
broader band. The empirical values are overall lower than the
theoretical ones. This discrepancy comes from the fact that
the clustering algorithm does not always reconstruct the
entirety of the waveform, leading to a lower effective value
of fmax=fmin. To optimize the detection efficiency while
keeping the number of tested sky positions minimal, we fix ϵ
such that the maximal SNR loss parameter is 5% and Nτ is
determined for each cluster following Eq. (9).

3. Multiresolution and clustering

The energy of long-duration GW signals is spread over a
potentially large number of pixels. This would mean it is
necessary to lower the threshold on the individual pixel’s

FIG. 2. Time-frequency maps of jỹðt; fÞj for two injected signals (top: ISCOchirp; bottom: sine Gaussian) realized with the two
different PSD methods [left: average over n ¼ 32 adjacent time bins (time average); right: moving median over n ¼ 20 frequency bins
(frequency median)].
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energy jỹIðt; fÞj and rely on the clustering algorithm to
group all pixels belonging to the cluster. Clustering a large
number N of pixels is computationally expensive since
BURSTEGARD’s time complexity is OðN logNÞ. However,
because of the hierarchical implementation, that step is
computed only once per ft map and is therefore no longer
a bottleneck for analyzing long periods of data. Yet, the risk is
to includepixels due to noise fluctuations andgenerate clusters
that are only composed of noise pixels. By increasing the

minimal number of pixels per cluster, one can control the rate
of noise clusters that are generated.
Another way to collect, as best as possible, all the

energy in the ft maps is to process the data with a range
of different time-frequency resolutions that match well all
the different GW signal shapes. The choice of time-
frequency resolutions depends on the waveform, but we
have seen that, for the diversity of signals we are
targeting, a limited number of time resolutions is enough
to improve the detection efficiency of nonmonochromatic
GW signals. Using a set of four resolutions ranging from
4 s × 0.25 Hz to 0.5 s × 2 Hz, we report an efficiency
increase by 5%–40% for the waveforms tested (at con-
stant FAR), compared to 1 s × 1 Hz pixels. We report the
relative increase in detection efficiency for each astro-
physical waveform in Table III.
It is not possible to perform a fine optimization of all

PySTAMPAS parameters for a generic all-sky/all-time
search because of the large parameter space, but we present
in the next sections the pipeline performance for both
Gaussian simulated noise and real GW data to detect long-
duration GW signals using the set of parameters given in
Table IV.

B. Test on simulated data

We carry out a study with simulated Gaussian noise to
test the pipeline as a whole and evaluate its performance.
First, we generate two sets of 14 days of stationary
Gaussian GW noise following LIGO’s O2 sensitivity to
simulate the data from the two LIGO detectors at Hanford
and Livingston. We analyze these data with PySTAMPAS,
using parameters given in Table IV.

FIG. 3. Ratio between the recovered SNRΓ and SNRΓðΩ̂0Þ as a
function of the number of time delays between the LIGO Hanford
and LIGO Livingston detectors for different waveforms. For each
value ofNτ, 50 injections have been performed. Crosses represent
the theoretical number of time delays to test to reach a ratio of
0.95, computed from Eq. (9).

TABLE II. Theoretical minimal number Nτ of time delays
between two detectors (here LIGO Hanford and LIGO Living-
ston) to be considered for each waveform in order to recover the
coherent signal SNR with an accuracy larger than 0.95. Nτ

depends on the frequency ratio fmax=fmin of the signal considered
as given in Eq. (9).

Waveform fmax=fmin Nτ

ADI-A 1.2 24
ADI-B 1.9 37
ISCOchirp-A 1.9 37
ISCOchirp-B 2.8 56
ISCOchirp-C 7.9 155
ECBC-A 12.5 247
ECBC-B 13.8 272
ECBC-C 17.5 346
ECBC-D 9 178
ECBC-E 10 197
ECBC-F 10 197
SG-C 1 20
WNB-A 1.2 23

TABLE III. Relative increase on the distance at 50% detection
efficiency between a single-resolution approach (pixels of
1 s × 1 Hz) and the multiresolution approach implemented in
PySTAMPAS (four different resolutions from 0.5 s × 2 Hz to
4 s × 0.25 Hz), all other parameters being equal, for the astro-
physical waveforms described in Table IV.

Waveform Effiency increase

ADI-A þ25%
ADI-B þ5%
ISCOchirp-A þ17%
ISCOchirp-B þ10%
ISCOchirp-C þ18%
ECBC-A þ23%
ECBC-B þ17%
ECBC-C þ40%
ECBC-D þ38%
ECBC-E þ41%
ECBC-F þ3%

MACQUET, BIZOUARD, CHRISTENSEN, and COUGHLIN PHYS. REV. D 104, 102005 (2021)

102005-10



Background triggers are generated following the method
described in Sec. III C. We perform 128,000 time slides,
simulating ∼4900 y of background noise accounting for
34 days of CPU time on a dual-core modern processor. As a
comparison, the previous version of STAMP-AS took
95 days of CPU time to perform 1000 time slides over
the same data, meaning that PySTAMPAS is faster by at
least one order of magnitude. In Fig. 4, showing the
cumulative FAR as a function of pΛ, the blue curves
correspond to the distribution of simulated Gaussian noise
triggers for the two PSD estimation methods; the shape of
the two curves is similar, but the median-frequency PSD
method produces ∼60 more triggers than the time-average
PSD. This has little effect on the pipeline sensitivity, as the
tails of the pΛ distribution are similar.
For each waveform described in Table I, we estimate the

detection efficiency as a function of hrss following the
method described in Sec. III D. We fix a detection threshold
corresponding to a FAR of 1=50 yr−1 and determine the
value h50%rss of hrss for which 50% of the injections are
recovered. To provide a comparison, we perform the same
search with STAMP-AS over the same simulated Gaussian
noise. We use the quantity h50%rss to estimate the detection
efficiency of the search. It is inversely proportional to the
typical detection range. In Fig. 5, we show the ratio of h50%rss
between STAMP-AS and PySTAMPAS for each waveform
and each PSD estimator.
For a majority of the waveforms tested, PySTAMPAS is

more sensitive than STAMP-AS, up to a factor 2, with the
exception of the ISCOchirp family for which detection
efficiencies are worse by down a factor 0.8–1 in the best
case with the time-average PSD. For this specific family,
the single-detector clustering algorithm reconstructs low
amplitude signals poorly because the energy is spread over
too many pixels. Down to a certain amplitude, most pixels

fall below the clustering threshold and the signal is not
reconstructed at all. A finer tuning of BURSTEGARD could
be done to address this limitation, but this type of signal

TABLE IV. PySTAMPAS parameter values used in the all-sky/
all-time long-duration GW search with Advanced LIGO/Ad-
vanced Virgo data presented in this paper.

Parameters Value

ft maps
Window duration 512 s
Frequency range 20–2000 Hz
Δti × Δfi ½4.0 s × 0.25 Hz–2.0 s × 0.5 Hz

–1.0 s × 1.0 Hz–0.5 s × 2.0 Hz�
PSD estimation
Time average 32 time bins
Frequency median 20 Hz
Clustering
Pixel energy threshold 2.0
Clustering radius 2 s × 2 Hz
Minimum pixels number 30
Coherent stage
SNR loss 1 − ϵ 5%

FIG. 4. FAR obtained with data from LIGO O2 observing run
versus the detection statistic pΛ with frequency-median PSD
(top) and time-average PSD (bottom). The blue curves represent
the FAR obtained with Gaussian noise. FAR of triggers remaining
after applying Rveto is shown by the green curve.

FIG. 5. Ratio between the hrss at 50% detection efficiency
obtained with STAMP-AS and with PySTAMPAS for a FAR ¼
1=50 yr−1 for both PSD estimation methods. The white noise
burst waveform WNB-A was not recovered at all using the
frequency-median PSD. A ratio above 1 means that PySTAMPAS
recovered the signal better than STAMP-AS.
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would certainly be better reconstructed by seedless cluster-
ing algorithms. This also illustrates the difficulty of tuning
the pipeline to maximize sensitivity to a wide variety of
waveforms.
The ad hoc waveforms illustrate the most extreme cases.

Detection efficiency is multiplied by ∼6 for the mono-
chromatic sine Gaussian signal when the PSD is computed
over adjacent frequency bins as compared to STAMP-AS.
On the other hand, the large band white noise burst is not
recovered at all with this method and recovered almost
equally well with the time-average PSD. We note that the
sine Gaussian is also better recovered using the time-
average PSD. This is due to the fact that we consider a
wider time window to compute the PSD (32 pixels from
each side instead of 8).

C. Tests on real data

Real data from GW detectors have non-Gaussian and
nonstationary features that challenge pipelines. To under-
stand the behavior of PySTAMPAS on real GW noise, we
analyze LIGO data from the Advanced LIGO and Advanced
Virgo O2 observing run downloaded from the Gravitational
Wave Open Science Center [72,73]. The chosen period runs
from August 1, 2017 00:00:00 UTC to August 15, 2017
00:00:00 UTC and contains 9.21 days of coincident data
from H1 and L1. We keep the pipeline’s parameters given in
Table IV, but switch on the spectral lines removal algorithm
described in Sec. III A. About 5% of the total frequency bins
are flagged as spectral lines and notched for each detector. As
in the simulated data study, we consider both PSD estimation
methods. Cumulative FAR distributions for O2 data are
compared to simulated Gaussian noise FAR distributions in
Fig. 4. For both PSD estimation methods, an excess of
triggers is present compared to the simulated Gaussian noise
distributions, meaning that the FAR of the search for a given
value of pΛ is higher than with Gaussian noise.
For the frequency-median PSD, the excess of triggers

(∼20% more triggers in real data than in the Monte Carlo
study with Gaussian noise) consist of long-duration (> 50 s),
quasimonochromatic events that correspond to instrumental
lines being punctually excited. These lines are too low
amplitude and are not excited regularly enough to be flagged
by the spectral lines removal algorithm. However, that excess
becomes marginal for large value of pΛ and thus does not
affect the overall pipeline sensitivity for this set of data.
Using the time-average PSDmethod, the excess of triggers

compared to Gaussian noise is much larger, by at least 1.5
orders of magnitude. It is dominated by short glitches with
frequencies between 20 and 100 Hz that have passed the
gating procedure. They generate triggers with high pΛ that
populate the tail of the distribution. To discriminate those
triggers, we implement a veto, “Rveto,” based on the ratio of
incoherent energy between the detectors R ¼ EI=EJ, similar
to what is done for STAMP-AS in [55]. Figure 6 shows the
cumulative distributions of R for background triggers and for

triggers recovered for a GW waveform (ADI-A). Vetoing
triggers with R > 4 allows one to reduce by a factor 5
the number of triggers, but more interestingly, the tail of
the distribution of pΛ is drastically reduced to approach the
Gaussian noise triggers estimation, while no more than 5% of
GW signal triggers are vetoed. In this paper, we are just
illustrating that the pipeline behavior changes considerably

FIG. 6. Distribution of the incoherent energy ratio R obtained
for background triggers (in blue) and GW signal triggers from the
ADI-A waveform (in orange) using the time-average PSD.
Rejecting triggers with R > 4 allows for reducing the excess
of large pΛ background triggers, while marginally affecting the
pipeline efficiency to recover GW signals.

TABLE V. Values of hrss at 50% detection efficiency for
different waveforms obtained with PySTAMPAS for the two
PSD methods and STAMP-AS over O2 data from LIGO Hanford
and LIGO Livingston, using a FAR threshold of 1=50 yr−1. The
last column shows the ratio between STAMP-AS and the lowest
value of PySTAMPAS among the two PSD methods. White noise
burst waveforms WNB-A are not recovered at all with the
frequency-median PSD.

PySTAMPAS STAMP-AS

Waveform
Frequency
median Time average Ratio

ISCOchirp-A 9.18 × 10−21 8.17 × 10−21 6.20 × 10−21 0.76
ISCOchirp-B 1.84 × 10−21 2.01 × 10−21 1.44 × 10−21 0.78
ISCOchirp-C 8.89 × 10−22 1.06 × 10−21 1.01 × 10−21 0.95
ECBC-A 9.95 × 10−22 1.07 × 10−21 1.55 × 10−21 1.55
ECBC-B 8.81 × 10−22 8.61 × 10−22 1.34 × 10−21 1.56
ECBC-C 8.64 × 10−22 8.00 × 10−22 1.35 × 10−21 1.69
ECBC-D 1.20 × 10−21 8.95 × 10−22 1.48 × 10−21 1.65
ECBC-E 1.12 × 10−21 8.82 × 10−22 1.89 × 10−21 2.14
ECBC-F 9.25 × 10−22 7.83 × 10−22 9.64 × 10−22 1.23
ADI-B 3.26 × 10−22 3.26 × 10−22 4.81 × 10−22 1.47
SG-C 4.34 × 10−22 6.88 × 10−22 4.35 × 10−21 10.0
WNB-A � � � 2.0 × 10−21 2.04 × 10−21 1.00
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in the presence of non-Gaussian and nonstationary data.
We also show that simple postprocessing selection criteria
can be easily developed and applied with a relatively small
penalty for the overall pipeline sensitivity.
As we have done for the study with simulated Gaussian

noise, we now estimate the detection efficiency of this search
with the two PSD estimators and compare it to results
obtained by STAMP-AS during the second Advanced LIGO
observing run [55] for a FAR of 1=50 yr−1. For the time-
average PSD, signals with R > 4 are rejected like is done in
the background study. Best results obtained for each wave-
form among the two PSD methods are presented in Table V
and compared to STAMP-AS. The relative detection effi-
ciency depends on the waveform, but the overall
PySTAMPAS pipeline efficiency increase observed with
real data is very similar to what was obtained on simulated
Gaussian data.

V. CONCLUSION

In this paper, we have presented PySTAMPAS, a new data
analysis pipeline designed to search for GWs of duration
∼10–103 s in a network of detectors with minimal assump-
tions on the nature and origin of the signal. The search
algorithm relies on a hierarchical method, initially designed
for a seedless clustering algorithm [19], where candidate
events are first identified in single-detector ft maps, and a
coherent detection statistic is then computed by cross-
correlating data streams from each pair of detector. This
method provides a significant gain in computational effi-
ciency compared to the initial implementation of STAMP-AS
with seed-based clustering, while still benefiting from the
increased sensitivity of coherent searches. This is especially
critical for all-sky/all-time searches for which both the dataset
and the parameter space can be very large.
The reduced computational cost allows us to implement

several new features to improve the overall sensitivity of
the pipeline. The use of multiresolution ft maps enables
the better reconstruction of signals with fast frequency
evolution. An alternative method to estimate the noise
PSD is proposed that is best suited for monochromatic and
quasimonochromatic signals. We also introduce a new
detection statistic that compares the coherent SNR of an
event to the incoherent autopower in single detectors in
order to discriminate coherent GW signals from loud
noise events. Additionally, it is now feasible to scan
hundreds of sky positions during the coherence stage and
therefore to reduce the loss of SNR due to an error in the
sky position to less than 5%. The combination of these
features results in a detection efficiency increased by a
factor ∼1.5 on average compared to the previous version
of STAMP-AS with seed-based clustering for the different
waveforms tested, which have durations between 8 and

291 s, frequencies between 10 and 2048 Hz, and various
spectral morphologies. We note that the changes in
detection efficiency are dependant on the type of wave-
form, with PySTAMPAS performing slightly less well on
waveforms from the ISCOchirp family and better for the
remaining waveforms. We plan to improve the tuning of
the clustering algorithm to address this issue.
PySTAMPAS is able to perform all-sky or targeted

searches over a full observing run and a network of
detectors and provides a basis for further developments.
For example, the BURSTEGARD algorithm has been used
here to identify clusters of excess power pixels, but other
detection algorithms could be considered, such as seedless
clustering [74] or more complex pattern recognition
algorithms. This will be need to be done in order for
the pipeline to be fully competitive, as shown by the
example of the ISCOchirp waveforms family, which are
currently slightly less well recovered by PySTAMPAS.
We have shown that a real GW data search requires one to
develop specific trigger selection to cope with non-
Gaussian and nonstationary features of GW detectors
data, but another possibility of improvement could consist
in implementing a better identification and subtraction of
non-Gaussian features of the GW detectors noise, as well
as better discriminant variables.
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