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With the goal of observing a stochastic gravitational-wave background (SGWB) with LISA, the spectral
separability of the cosmological and astrophysical backgrounds is important to estimate. We attempt to
determine the level with which a cosmological background can be observed given the predicted
astrophysical background level. We predict detectable limits for the future LISA measurement of the
SGWB. Adaptive Markov chain Monte Carlo methods are used to produce estimates with the simulated
data from the LISA Data Challenge. We also calculate the Cramer-Rao lower bound on the variance of the
SGWB parameter estimates based on the inverse Fisher information using the Whittle likelihood.
The estimation of the parameters is done with the three LISA channels A, E, and T. We simultaneously
estimate the noise using a LISA noise model. Assuming the expected astrophysical background around
QGw astro (25 Hz) = 0.355 — 35.5 x 107%, a cosmological SGWB normalized energy density of around
Q6w Cosmo & 1 x 10712 to 1 x 10713 can be detected by LISA after 4 years of observation.
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I. INTRODUCTION

Since the accomplishment of the first detection of
gravitational waves from the merger of two stellar mass
black holes [1] by Advanced LIGO [2,3] and thereafter
with Advanced Virgo [4,5], gravitational-wave observato-
ries have become a new means to observe astronomical
phenomena. So far LIGO and Virgo have announced the
observation of 50 signals produced from compact binary
coalescence [6,7], including two from binary neutron star
mergers [8,9]. Gravitational wave detections are expanding
our understanding of astrophysics and of the Universe.

The Laser Interferometer Space Antenna (LISA) [10] is a
future ESA mission, also supported by NASA, with the
aim to observe gravitational waves in the low frequency
band [1073, 1] Hz. The mission lifetime will nominally
be 4 years, but could be extendable to 6 or 10 years of
scientific observations. LISA is a triangular constellation of
three spacecraft, separated from one another at a distance of
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L =2.5x10° m. The low-frequency band is rich with
gravitational-wave signals. The foreground of LISA will be
dominated by sources from our galaxy, the Milky Way.
White dwarf binaries [11-13] are numerous (~35 million
binaries), and relatively near the LISA constellation. For
example, recently the Zwicky Transient Facility measured a
double white dwarf with an orbital period estimated at
7 minutes [14], which corresponds to a gravitational-wave
emission of ~30 mHz. LISA can be expected to observe
many resolved binaries, many of which are already known
from photometry studies and constitute the so-called
verification binaries [15,16]. Well-studied systems like this
can be used to verify the LISA performance, acting as a
way to confirm the sensitivity of LISA. We can expect to
have one in a thousand binaries which are resolvable. The
large majority of the galactic binaries are unresolved and
form a stochastic signal. The stochastic gravitational-wave
background from white dwarf binaries or galactic fore-
ground will be anisotropic and the signal will not be a pure
power law. A stochastic gravitational-wave background
(SGWB) [17,18] will have a significant contribution from
unresolved binaries, such as binary black holes and binary
neutron stars. This background is essentially isotropic, and
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its level can be predicted from the signals observed by
LIGO and Virgo [19,20]. Another important SGWB would
be from cosmological sources [17]. The origin of this
background comes from the early Universe [21,22], with
the possibility to measure the inflation scenario parameters
[23]. Cosmic strings could be another observable source
[24]. A cosmologically produced background can be
modeled as a flat spectral energy density « f0 [25].

In this paper, we present a strategy to separate the two
SGWBs (astrophysical and cosmological), as well as the
LISA noise, using a Bayesian strategy [12,26] based on an
adaptive Markov chain Monte Carlo (A-MCMC) algorithm.
We then show LISA’s ability to measure a cosmological
SGWB for different magnitudes for the astrophysical back-
ground. The SGWB from astrophysical sources today
represents an important goal, especially considering the
current observations by LIGO and Virgo [27,28].

Numerous studies have recently been presented which
address how to possibly detect a cosmologically produced
SGWB in the presence of an astrophysically produced
SGWB. For example a recent study displayed the use of
principal component analysis to model and observe a
SGWB in the presence of a foreground from binary black
holes and binary neutron stars in the LISA observation
band [29]. A component separation method was proposed
in Ref. [30], where they showed that it is possible to detect
an isotropic SGWB. The method uses maximum likelihood
parameter estimation with Fisher information matrices.
This is proposed to replace an MCMC approach, and
applied to the LIGO-Virgo observational band.

The proposal in Ref. [31] is to use a number of broken
power-law filters to separate different backgrounds with
gravitational-wave detectors on the Earth. In the study of
Ref. [32] the proposal is to divide the data into individual
short time segments. The method used the procedures
described in Ref. [33] to search the segments for the
presence of a binary black hole signal, either through
direct detection or subthreshold by generating a Bayesian
evidence. A cosmological SGWB would be present in all
segments, whereas a probability would exist for the
presence of a binary black hole merger for the segments.
The method is general, and could be applied to LIGO-Virgo
or LISA. The study presented in Ref. [34] noted that the
sensitivity of third-generation gravitational-wave detectors,
such as Einstein Telescope [35] or Cosmic Explorer [36],
will be so good that almost every binary black hole merger
in the observable Universe can be directly detected, and
then removed from the search for a cosmological SGWB.
The study of Ref. [37] then explored how to do such a
subtraction of binary black hole merger signals, and the
consequences of the effect of residuals from such sub-
tractions. Another study used Bayesian methods to address
spectral separation for LIGO-Virgo observations, but tried
to address how to separate a SGWB from a correlated
magnetic noise background produced by the Schumann

resonances [38—40]; the study is, however, general and can
be applied to spectral separation for different types of
backgrounds [41]. This study was then expanded to address
the simultaneous estimation of astrophysical and cosmo-
logical SGWBs, and displayed that this will be especially
important for third-generation ground-based detectors [42].
Another study, specifically dedicated to LISA observations
[43] proposed to divide the data into bins, and then within
in each bin, a fit is made to a power law or a constant
amplitude; a variation on this approach is presented here
[44]. The claim is that this method is more dynamic and
able to fit arbitrarily shaped SGWBs. The study of Ref. [45]
showed how to assign Bayes factors and probabilities to
differentiate a SGWB signal from instrumental noise.

All the SGWB studies referenced above are summarized
in Tables 11, 111, IV, respectively for LIGO/Virgo, LISA, and
third-generation detectors. We compare the goals, methods,
the performance, the limitations and the application; see
the Appendix. The study we present in this paper, using
Bayesian parameter estimation methods, has the advantage
of fitting two backgrounds and the LISA noise simulta-
neously. We note the possibility to expand the work
presented here to estimate more complex LISA noise,
and adding new models for the SGWB; for example, more
complex SGWBs could include broken power laws, peaks
in the frequency domain, or an anisotropic SGWB from our
galaxy.

The organization of the paper is as follows. In Sec. I we
introduce the SGWB spectral separation problem for LISA,
and then describe the inverse of the Fisher information
matrix of the SGWB parameters, and how this provides the
Cramer-Rao lower bound on the variance of the parameter
estimates. In Sec. III we describe the A-MCMC. The
simulated LISA mock data is presented in Sec. IV.
Presented in Sec. V are the parameter estimation procedures
and results using the LISA A and T channels; Sec. IV
presents similar results using the LISA A, E and T
channels. Conclusions are given in Sec. VL.

II. SPECTRAL SEPARATION

An isotropic SGWB observed today Qgw(f) can be
modeled with the frequency variation of the energy density
of the gravitational waves, pgw, where dpgw is the gravi-
tational-wave energy density contained in the frequency
band [f, f + df]) [46]. The distribution of the energy
density over the frequency domain can be expressed as,

Qow(f) =7 Gl =08 ()

.. . . . 3H3c?
where the critical density of the Universe is p,. = %

this paper we approximate the spectral energy density as a
collection of power-law contributions (this is a simplified
model), Qaw(f) =~ >, Ak(fi‘f)“k where the energy spectral

In
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density amplitude of the component k (representing the
different SGWBs) is A, with the respective slope a; and f ¢
is some characteristic frequency. The SGWB is predicted to
have a slope component a =~ 0 for the cosmological back-
ground. This is true for scale-invariant processes, and this is
approximately true for the standard inflation and certainly
false for cosmic strings and turbulence. However for our
study here we will model the cosmologically produced
SGWB with @ = 0. In addition, we will use a :% for a
compact-binary-produced  astrophysical  background.
According to Farmer and Phinney the slope is a :% for
quasicircular binaries evolving purely under gravitational-
wave emission [47]. The eccentricity and environmental
effects can modify the slope. We also note the limitations of
our power-law model as phase transitions in the early
Universe can produce two-part power laws, with a traction
between the rising and falling power-law component at some
peak frequency. But we start in this study with two power-
law backgrounds. As the two backgrounds are superim-
posed, the task is to simultaneously extract both the
astrophysical and cosmological properties, i.e., to simulta-
neously estimate the astrophysical and the cosmological
contributions to the energy spectral density.

To avoid identification issues, we use a Bayesian
approach by putting informative priors on the individual
slope and amplitude parameters. Our work here builds on
that of Adams and Cornish [48] where they demonstrated
that it is possible to separate a SGWB from the instrumental
noise in a Bayesian context. Similarly Adams and Cornish
then showed that one could detect a cosmological SGWB in
the presence of a background produced by white dwarf
binaries in our galaxy [11]. Since the production of those
studies LIGO and Virgo have observed gravitational waves
from binary black hole and binary neutron star coalescence.
We now know that there will definitely be an astrophysi-
cally produced background across the LISA observation
band produced by compact binary coalescences over the
history of the Universe [20], and if LISA is to observe a
cosmologically produced background it will be necessary
to separate the two.

The literature displays large differences in the estimation
of the magnitude of the astrophysically produced SGWB.
A recent simulation of the SGWB from merging compact
binary sources with the StarTrack code [49] predicts an
amplitude around Qgw ~4.97 x 107 to 2.58 x 1078 at
25 Hz. However another study considered the binary black
hole and binary neutron star observations by LIGO/Virgo,
and produced predictions going from the LISA observa-
tional band to the LIGO/Virgo band. They estimated an
amplitude for the astrophysical SGWB of Qgw ~ 1.8 x
107 to 2.5 x 107 at 25 Hz [20]. These amplitudes can be
propagated to the LISA band by recalling Eq. (1) and using
fref =25 Hz and a = 2/3. In the context of an effort to
observe a cosmological SGWB we have large variations
due to the predictions of the astrophysical component.

In our study here we predict the accuracy of a meas-
urement of Qc?w with astrophysical inputs of differing
magnitudes using fof =25 Hz, QU = [3.55 x 10710,
1.8 x 1072,3.55 x 1072,3.55 x 1078] after 4 years of
observation. We use the orthogonal LISA A, E, and T
channels, which are created from the time-delay interfer-
ometry (TDI) variables X, Y, and Z [50]. Our method fits
the parameters of two stochastic backgrounds, and simul-
taneously the LISA noise with the help of the channel 7.
We assume uncorrelated noise TDIs between the “science”
channels (A, E) and the noise channel (T"). The T channel is
“signal insensitive” for gravitational-wave wavelengths
larger than the arm lengths. The noise channel T is obtained
from a linear combination [50] of the TDIs channel
(X,Y,Z). We demonstrate a good ability to estimate the
noise present in the two science data channels A and E. We
can then set a limit on the ability to detect the cosmological
SGWB. The predictions from the Bayesian study are
confirmed via a study of the frequentist estimation of
the error. Namely, we use a Fisher information analysis,
performed for the spectral separation independently of the
Bayesian A-MCMC approach. The inverse of the Fisher
information matrix of the SGWB parameters, presented in
Sec. II, provides the Cramer-Rao lower bound on the
variance of the SGWB parameter estimates.

A useful toy model to consider is the problem of separating
two independent stationary mean-zero Gaussian noise proc-
esses that have different power spectra S,, (f) = A; f* and
S, (f) = Ayf*. Suppose we have data that is formed from
the sum of these two independent noise processes

d(t) =ny(t) +ny(r), t=1,...,T. (2)

After a Fourier transform to Zl(fk) = LT ZiT:1 d(t)e "+ at

Fourier frequencies f; = 2zk/T, k=0,...,N = % — 1 (for
T even), we can write

d(fy) =iy (fi) + fia(fr). k=0,...N. (3)

Then the vector d has an asymptotic complex multivariate
Gaussian distribution with a diagonal covariance matrix. The
diagonal elements are given by the values of the spectral
density S(fi) = A f}' + Ayf3. Our assumption of inde-
pendence implies that one can simply sum the individual
spectral densities of the two noise processes.

The Whittle likelihood approximation in the frequency
domain can then be written as

difp*ds)

)
) (4)

N
1 _

pld|A, a1, Ay, 0) = e

b E”S(fk)

where S(fi) = A f} + Ayf2. The product I,(f;) =
d(fi)*d(fy) is the periodogram, the squared magnitude
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of the Fourier coefficients at the frequency f;. The log
likelihood (up to an additive constant) is thus

Inp(dlA;, a1, A, ) = — Z (Isn((}c,f))

k=1

+lnS(fk)>. (5)

A. The Fisher information

The Fisher information matrix I" for a parameter vector
0= (0,,....0,) is given by the expected value of the
negative Hessian of the log likelihood. The element in row i

and column j of the Fisher information is given by

2

Iy = E| ool ©

The Fisher information can be easily obtained for the
parameter vector (A, a;,A,, @) by using that (asymptoti-
cally) E[L,(fi)] = S(fi) and Ty =T

N 2a1

(7)
Z +A2f )
__— EN: (ALfi In fr)? ®)
22 — ( ]f(ll +A frtz)
N 20,
[y = s )
. ;(Alfkl + A f3)?
o (A S+ A )
N 20 In
I'p,=Iy = lajlck fiz PR (11)
— (AL} + A )
N ) +ay
F3=Ty=> £ (12)
— (AL f + A
Ly =Ty = ZN: Afit P ing, (13)
k=1 <Alfz1 +A2fzz)2
F—ry = Y AT gy
PR AT+ AR
N )+ 2
AAyf P Int fy
Tp=In=Y AA . (15)
24 4 ; 1 Q(Ale]+A2fZ2)2
N 20
A% f
P =T =3 L% (16)

— (A i+ AR

B. The Cramer-Rao bound

The Fisher information can be used to give a lower
bound for the variance of any unbiased estimator, the so-
called Cramer-Rao bound. For any unbiased estimator 6, of

the unknown parameter 6,, its standard error A@,- satisfies

A o 1
(A0,)* >T;(0)~" = B 09 Z 5 I p(d]0)] (17)

Under certain regularity conditions, the posterior distribu-
tion of a parameter @ is asymptotically Gaussian, centered
at the posterior mode and covariance matrix equal to the
inverse of the negative Hessian of the posterior distribution
evaluated at the posterior mode. For flat priors, the posterior
density is proportional to the likelihood, the posterior mode
is the maximum likelihood estimate and the standard error
A@i of the Bayesian estimator 9,~ of the parameter #; can be
approximated by evaluating the Fisher information at
9[, i.e.,

Aéi u(é ) 1/2 (18)

Defining the uncertainty of an estimate éi by

~

Ad,
0;

(19)

we say that we can estimate the parameter 8; with on error
of 10% based on the Fisher analysis if the uncertainty of a
parameter estimate is equal to 0.1. The purpose of this
study is to derive a threshold on the separability by an
A-MCMC routine with the likelihood of Eq. (4). In the
following we will thus have a limiting value for the
separability of the cosmological SGWB parameters and
the astrophysical SGWB.

We use a toy problem to display the separability of two
stochastic backgrounds according to their slope difference.
For this we fix one background Q(f) :Al(fi)“‘ =

Q, 5(L)" =3.55 x 1079 (=L-)>3, and we leave free
2/3\7 - : B H

the slope of the second background Q,(f) = A, (%)“2 =

Qo(ff;l)“o =1x10" 12(25’(H )%. We show the uncertainties

9[" for 0; € [Qy/3. a3/3, Q. ], With Af; being the error

from the Fisher information; see Sec. II B) for the ampli-
tudes and spectral slopes as a function of the difference
between the spectral slopes (6a = @y — a,/3). This quantity
is also called the coefficient of variation or the relative
standard deviation, and this is the absolute value of the
standard deviation divided by the mean of the parameter.
We use this quantity to appreciate the dispersion of
values around the mean. It is preferable to use this
quantity because it is unitless. Thus it is easier to compare
parameters of different units and ranges of values. Figure 1
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FIG. 1. Uncertainties (Aé—g)') of the amplitudes and spectral slopes as a function of the difference in the differential spectral slopes

(6a = ay — ay3).

AD,
b

i

displays the uncertainties (

=5 and S.

The uncertainty of the parameter ¢, becomes larger
when the slope difference da is near zero. Here it is more
difficult to separate the two backgrounds when their slopes
are similar. The uncertainties are also not symmetric about
oa = 0 because when the slope changes the amplitude is
also changing by a factor f_§. The uncertainty of the
amplitude parameter €, is maximal when the two ampli-
tude parameters are identical. The position of the maximum
changes for different inputs of €; if €, increases the
position of the maximum converges to éa = 0.

1) as a function of da between

III. ADAPTIVE MARKOV CHAIN
MONTE CARLO

A. Markov chain Monte Carlo

Bayesian inference quantifies the estimation and uncer-
tainties of unknown parameters based on the observation of
events that depend on these parameters. The quantification
uses the posterior probability distribution. It is obtained
using Bayes’ theorem [see Eq. (20)] by updating the prior
distribution of the parameters with the likelihood p(d|0),
the conditional distribution of the observations given the
parameters:

p(d|0)p(0)
p(d)

where p(6) is the prior distribution, p(6|d) is the posterior
distribution, and p(d) = [ p(d|0)p(6)d0 is the evidence.

MCMC methods [51] provide a numerical strategy to
compute the joint posterior distribution and its marginal

p(0ld) = (20)

distributions. It is a sampling-based approach that simulates
a Markov chain constructed in such a way that its invariant
distribution is the joint posterior.

B. Metropolis-Hasting sampler

As it is generally difficult to sample independently from
a multivariate distribution, MCMC methods draw depen-
dent samples from Markov chains. The predominant
MCMC algorithm is the Metropolis-Hastings (MH) algo-
rithm. It is based on the rejection or acceptance of a
candidate parameter " where the acceptance probability is
given by the likelihood ratio between the candidate and the
previously sampled parameter value. Thus, any move in the
direction of higher likelihood (towards the maximum
likelihood estimation) will always be accepted, but because
downbhill moves still have a chance to be accepted, the MH
algorithm avoids getting stuck in local maxima.
Metropolis-Hastings algorithm
(1) Randomly select an initial point ()
(2) At the nth iteration:
(a) Generation of candidate 6" with the proposal
distribution g(¢'|6™)
(b) Calculation of acceptance probability a =
p(d|0') I’(9("))]
p(d|e™) p(@)
(c) Accept/Reject
(i) Generation of a uniform random number u
on [0, 1]
(ii) if u < a, accept the candidate: O""+1) = ¢
(iii) if u > a, reject the candidate: 91 = ()
Note that the proposal distribution g is often chosen to be
Gaussian centered around the current parameter value. While
executing the algorithm, we can monitor the acceptance rate,
the proportion of candidates that were accepted. On the one

min [1,
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hand, if this number is too close to 0 then the algorithm makes
large moves into the tails of the posterior distribution which
have low acceptance probability causing the chain to stay at
one value for a long time. On the other hand, a high
acceptance rate indicates that the chain makes only small
moves causing slow mixing. To control the mixing of the
Markov chain we can introduce an adaptive step-size
parameter that controls the size of the moves; this is the
standard deviation in the case of a univariate Gaussian
proposal or the covariance matrix of a multivariate
Gaussian proposal. As the iterations of the algorithm
proceed, it is possible to dynamically modify the step size
to improve the convergence of the chain. Intuitively, an
optimal proposal would be as close to the posterior distri-
bution as possible. Using a Gaussian proposal, its covariance
matrix should thus be as close to the covariance matrix of the
posterior distribution. Since the previous MCMC samples
can be used to provide a consistent estimate of the covariance
matrix, this estimate can be used to adapt the proposal on the
fly, as detailed in Sec. III C.

C. Adaptive Markov chain Monte Carlo

We use the version of the adaptive Metropolis MCMC
from Robert and Rosenthal [52]. For a p-dimensional
MCMC we can perform the Metropolis-Hasting algorithm
with a proposal density g, (.|0") in iteration n defined by a
mixture of Gaussian proposals:

where X, is the current empirical estimate of the covariance
matrix, f = 0.25 is a constant, p is the dimensionality of
the parameter space, N is the multinormal distribution and
1, is the p x p identity matrix. We compute an estimate %,
of the covariance matrix using the last hundred samples of
the chain. The chain generated from an adaptive algorithm
is not Markovian but the diminishing adaptation condition
ensures ergodicity and thus the convergence to the sta-
tionary distribution.

IV. DATA FROM THE MOCK
LISA DATA CHALLENGE

A. Noise and SGWB energy spectral density
of the MLDC

The Mock LISA Data Challenge (MLDC) provides
simulations of the signal and noise of LISA in the
approximation of one arm. We use the (X,Y,Z) time
series of the LDCI-6 data set from the MLDC webpage
[53]. These are simulations of a binary-produced SGWB of
the form Qgw (f) =€,/3 (%)" for f..s =25Hz with a slope
a=2% and an amplitude of Q,;;=3.55x10"7(at25Hz).
Figures 2 and 3 display the gravitational-wave periodo-
grams for the (X,Y,Z) and (A, E,T) channels.

We can transform the X, Y, Z time series to the A, E, T
channels according to

(Z - X),
(X —2Y + Z). (22)
(X+Y+2).

2

A
E 6
T

Sk sk o

3

SGWB LDC1-6 Periodogram XYZ

— X
10744 — Y
—Z

10-431 —— Injection : Su(f) =%W
1074
1074
1074
10731

10753

10—55

1077 107 1073

1074 1073 1072 107t

Frequency in Hz

FIG. 2.

[Qcw(f) =3.55 x 1079(ﬁ)2/3]

Periodogram of the channels (X,Y,Z) of the SGWB from MLDC (LDCI-6 noiseless) with a single background

103529-6



SPECTRAL SEPARATION OF THE STOCHASTIC ...

PHYS. REV. D 103, 103529 (2021)

SGWB LDC1-6 Periodogram AET

A
E
T

1074

_43 P _ 3H33.55x107°(% )%
10 Injection : Sp(f) =wr FRO

1074

107

1074

10751

10733

10755

1077 107 1073

1074 1073 1072 107t

Frequency in Hz

FIG. 3.

Qgw(f) =3.55x% 10—9(251'}{2)2/3).

This linear combination of the original channels used to
define T has been shown to be insensitive to the gravita-
tional-wave signal. While this is not exactly true, we will
maintain that assumption for this analysis. As such, T can
be regarded as a null channel which contains mainly only
noise, while channels A and E are the science channels,
containing the gravitational-wave signal in the presence
of noise [18]. In the following we focus on the science
channels, A and E.

In this study we use a simplified model where we assume
equal noise levels on each spacecraft. According to Adams
and Cornish [11] one can use a more complicated model
that allowed for different noise levels. Future work will
address this, plus the situation where the slope parameters
for the noise can also vary. These parameters could then
also be estimated by Bayesian parameter estimation
methods.

For the following studies we restrict the frequency band to
correspond to the LISA band [107,1] Hz. The power
spectral density (PSD) of the channel 7', S, can be described
as (according to Ref. [53])

Sr(x) = 1680, (x)(1 = cos(x))sin?(x)

+ 1288, (x)sin? (x)sin® (g) (23)

with x = 2”71‘ f> where Sq,, is the optical metrology system
noise and S, is the acceleration and displacement noise.
The LISA noise budget is

Periodogram of the channels (A,E,T) of the SGWB from MLDC (LDCI-6 noiseless) with an single background

(1 ().,
Sem(f) = NaceL*Sace(f)Spis (f)

with

= C225) o )
Soulf) = (227) (@)

The two free parameters, Noy and N s, are the respective
levels of the two principal sources of noise in the LISA noise
budget. In the LISA Science Requirements Document [54],
the level of the LISA noise acceleration is Np. = 1.44 x
10~* s~* Hz~! and the upper limit on the level of the optical
metrology system noise is Noy, = 3.6 x 107#7 Hz~!. From
the modeling of the strain requirements of the mission
performance requirements, this is a maximization of the
noise level. The LISA noise budget corresponds to all
sources of contamination that contribute to the power
spectral density of the LISA detection system. The two
noise sources correspond to estimates of different physical
effects. We clearly do not yet have the true values for these
physical effects; we presently only have estimates from
experiments. The LISA requirements fixed the limit
of the two magnitude levels so as to respect LISA’s
detection performance. In Fig. 4, the green curve is
the analytic noise model of the PSD of the channel 7 with
the parameters from the proposal [54]. The blue curve is the
periodogram for the channel 7" of the MLDC data (LDCI-6

(25)
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LDC1-6 Periodogram of channel T and A-MCMC fitting

—— DATA
Sr(f) from the Adaptive McMC

10743

~—— Model noise : SciRDv1 from the Proposal
W error for 10

10745

10747

1074

PSD in Hz™!

1051

10753

107 107% 1073 1072 107t
frequencies

FIG. 4. Power spectral density of the channel 7" from the
MLDC (in blue) [53]. The green line represents the analytic noise
model of the power spectral density of the channel 7 with the
parameters from the proposal [54]. The orange line is the model
from Eq. (23) with the values fit with the MCMC. In grey is the
1o error. This is the uncertainty calculated from Eq. (37), where
we take dPSDy with dN . = ON,, and dN,. = oy, ; o is the
standard deviation of the posterior estimation. See Fig. 5
and Eq. (26).

SGWRB signal); this is the magnitude squared of the Fourier
coefficients for the data [see Eq. (22)]. Assuming the
functional form of the noise PSD in channel T is given
by Eq. (23), we can use the A-MCMC (see Sec. III) to fit the
LISA noise parameters Ny and N ... The priors for the two
components are flat log-uniform distributions and we
specify # = 0.01 and N = 200000 in the A-MCMC algo-
rithm. The orange curve in Fig. 4 is the estimated PSD based
on Eq. (23) with Ny and N replaced by the posterior
means of samples obtained via the A-MCMC, given in
Eq. (26). The 1o error bands are overlaid in grey. Figure 5
shows the corner plot for the posterior samples of the two
parameters, and the empirical posterior distributions seem to
be well approximated by Gaussian distributions. It shows
that this model yields a reasonable fit to the simulated
channel T data. We acknowledge that this is a rigid noise
model for the purpose of this study, and future work will
include more realistic scenarios: allowing for different noise
levels on each spacecraft [11], allowing for small modifi-
cations of the transfer functions, and allowing for small
modifications in the spectral slopes of the noise components.
The posterior means of the two noise parameters are

Nacc =7.08 x 10_51 +4 x 10_53 S—4 HZ_I,
(26)

Nope = 1.91 x 10747 £4 x 107% Hz™.

The gravitational-wave energy spectral density Qgyw can be
defined as

5 PSDi(f)

3HE  R,(f) #7)

£2GW,I (f)

for I = A, E, where H, is the Hubble-Lemaitre constant
(Hy=~2.175 x 107" Hz), PSD; is the power spectral

IleO(Narc) = —50-15i8'88

Jfl

10g10(Nopt) = —46.72+3:1

: i
2
2
>
< . : J‘JJ'
<
) D O D W L S O D A
bl 0‘\’6 Q\'b 0% 0,\,& 057’ b"\,\ @l‘\‘) @q{ b"\g "o(é\
PSS S O A S A
10g10(Nacc) log10(Nopt)
FIG. 5. Corner plot for the A-MCMC generated posterior

distributions for the power spectral density of the channel T of
the MLDC data set, estimating the two magnitudes of the LISA
noise model from the proposal [54]. The vertical dashed lines on
the posterior distributions represent, from left to right, the
quantiles [16%, 50%, 84%].

density of the channel 7 and R; is the response function.
An asymptotically unbiased estimate of PSD is given by the

periodogram 1,(f) = 320, [d(fi)* = dj (fi)di(f)-

We use two different response functions for the MLDC
data: one system of equations for the noiseless data
Eq. (28), and one for the noisy data Eq. (30)

{ RA(f) = Raa(F) 92 (£) 'sin(£/1.),
Re(f) = Rex() 2 (£) 'sin2(7/1.)

with Ry given in Ref. [48], f, =

(28)

27zL’ and

RAA(f) = REE(f)

= () [+ e ()
85 [f\* 178273 [f\©
+M<ﬁ> 15667200 (?)
19121 [ £\8
T 5476656000 (7) ] 29)

Su(f)L [36 /o

i) = 3¢S, 107,

(f/f*)] (30)

where Sy (f) —SSlnz(f)[4S (l—l—cos( ) + cos” (ff))—l—
Sp(2+cos( ))] was defined in Ref. [18] with S, =

B4 (), S, =410 B and . =

27rL
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The energy spectral density of the astrophysical back-
ground from the MLDC is a power law according to the
documentation of the LISA Data Challenge Manual [53]

given by Qaw(f) = 3.55 x 107 (554>, Figures 6 and 7

. A 2 I,
show the energy periodogram Qgw ;(f) = 3275 73 Rz(({‘)) for
channel A in blue and for channel E in orange. The green
curve is the power-law model with the parameters
(Qu» fret» @) With Qg = Q4(75)* from the MLDC docu-

mentation. The data at high frequency cannot be used
because the transformations of Eqgs. (28) and (30) are
valid for low frequency. We use the frequency band
[2.15 % 1075,9.98 x 10~3] Hz.

B. Uncertainty of the cosmological component €2,
from the A-MCMC
According to Sec. II B, one can calculate the uncertainty
of the estimation of the parameter €, (the cosmological
amplitude of the spectral energy density), namely AQ—g(z)". To
estimate this quantity from the Fisher information, we use

SGWB noiseless Q(f) AE

— A

—— model :Q(f) = 3.55 107%(% )23

1077 10°° 10°° 107* 1073 1072 107!
Frequency in Hz

(a)

the formulas given in Sec. II and the inverse matrix of the
Fisher information (blue line in Fig. 11).

Not surprisingly we can predict a better separability
(uncertainty is less) for high values of the cosmological
background. The uncertainty can be calculated independ-
ently with the A-MCMC calculation:

AQy oo (31)
Q
This ratio is calculated and represented as the scatter points
in Fig. 11. We can also estimate the error of the uncertainty
estimation [see Eq. (32)] from the estimation of the full
width at half maximum of the posterior distributions. The
uncertainties (from the A-MCMC) are given by

0Q

Error, ; = =—2—
LT [Q—0q,
p (32)
Error_; = =2
=L 7 Qg +oq,[ *
SGWB noiseless Q(f) AE
— A
10—10 E =

—— model :Q(f) = 3.55 107°(5 )3

10°° 10°° 1074 1073 1072 107t
Frequency in Hz

(b)

FIG. 6. Observations in channels [A, E] of the spectral energy density of the SGWB from astrophysical background Qg (f) of the
MLDC for the noiseless channel, Eq. (28). (a) Total frequency band of Channels A and E. (b) Reduced frequency band 2.15 x 107 to

9.98 x 103 Hz of Channels A and E.

SGWB Q(f) AE

— A
E
—— model :Q(f) = 3.55 107°(5 )"

1077 10°¢ 10°° 1074 1073 1072 107!
Frequency in Hz

(a)

FIG. 7.

SGWB Q(f) AE

— A
10-10 E

model :Q(f) = 3.55 107%(£ )3

10743

10°° 10°° 1074 1073 1072 107!
Frequency in Hz

(b)

Observations in channels [A, E] of the spectral energy density of the SGWB from astrophysical background Qg (f)of the

MLDC for the noisy channel, Eq. (30). (a) Total frequency band of Channels A and E. (b) Reduced frequency band 2.15 x 107 to

9.98 x 10~ Hz of Channels A and E.
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V. STOCHASTIC GRAVITATIONAL-WAVE
BACKGROUND FITTING WITH
ADAPTIVE MARKOV CHAIN
MONTE CARLO USING THE
CHANNEL T AND THE TWO
SCIENCE CHANNELS A AND E

In this section we consider the null channel 7 and
the science channels A and E. We assume that the
observation of the noise in channel 7' informs us of the
noise in channels A and E. We follow the formalism of
Smith and Caldwell [55].

We can simulate the noise and SGWB in the frequency
domain:

PSDA == SA +NA9
PSDT - NT'

3H Qiw.al fm

With S,(f) = Sg(f) =32

noise components N, (f) =
written as

. fug =25 Hz, the
NE(f) and Nz(f) can be

{NA=N1—N27 (34)

NT:NI ‘|‘2N2,

with

dPSD;= |:N1 (O’dNacwf)z +N1<deos70’f>2 +SI<Qz/37052/3,90,050’]0)2(‘152

dPSD7=[N7(0,dN cc.f)?+ N1 (dNpos.0.)?] />

with {dNaccv deos’ anstrov daastro’ d'Q'cosmo’ dacosmo} being
the positive error estimations of the parameters; I = A, E.
We take 1o for the posterior distributions. We can also
estimate the error of the power spectral density fit using the
MCMC chains to produce the error. With the MCMC
chains we can calculate a histogram of PSD;(f) at each
frequency. For each histogram we compute the 68%
credible band. This method is similar to that of BayesWave;
see Fig. 7 of Ref. [56]. The two methods produce the same
error bands, but we need to assume that the posterior
distributions are Gaussian. The quadratic sum of the partial
errors calculation yields a good estimation of error from
MCMC chains if the posterior distributions of the chains
are Gaussian.

Ni(f) = (4S,(7) +8(1 +cos? (£) ) UMW NP,

Na(f) = =(25,(f) + 884(f)) cos (£) W(N)P
(35)

where W(f) =1 - ¢7 and

= Npos,
Sa(f) = gz (1 i <%)2> (36)

The LISA noise budget is given from the LISA Science
Requirements Document [54]. To create the data for
our example, we use an acceleration noise of N, =
1.44 x 107%® s Hz™! and the optical path-length fluc-
tuation Np,, = 3.6 x 107! Hz~!. We can estimate the
magnitude of the noise from the channel 7. One should
note the importance of using the channel 7T to estimate the
noise in the channels A and E, as it is then possible to
parametrize an A-MCMC of six parameters, 6 =
(Nace> Npos: /3. @273, L9, ap). We can also calculate the
propagation of uncertainties for the power spectral densities
with the partial derivative method. As such, we can estimate
the error on the measurement realized by a fit of the

parameters 0, dPSD; = />, (dPSD‘) d®>. We then obtain

for two SGWBs Qastro (f) QZ/?( )2/3’ Qcosmo (f) =
£ (fj:er)o’

: 12
%+dQ%/3+ln(f%> (@) 3da5 3 +Q5do o))}

(37)

We can calculate the covariance matrix:

(PSDy(f), PSD, (f)) = C1,(6. f) (38)

with I,J =[A,E,T]. As such, it is possible to para-

metrize an A-MCMC with six parameters: 6 =
(Nace> Npos> Qgwas @). We can calculate the covariance

matrix of (d,(f).dg(f).dr(f))

Sy + Ny 0 0
ce.nN=| 0  SgtNg 0 |. (39
0 0 Ny
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FIG. 8.

10-10
Qo

1078

Evolution of the relative uncertainties for the estimation

of the parameters [Qo,ao,92/3,a2/3} versus the cosmological
background amplitude €. The precision for estimating the
parameters is affected by the value of the cosmological amplitude

Qo. We use Q3 = 3.55 x 1079,

~1(0.f)=

and K(f;) = det(C) =

02/3 = % and ay = 0.

(Sy+Ny)™! 0 0
0 (Sg+Ng)™ 0
0 0 N7!

1
(SA+Na)(Se+Ng)Nz*

(40)

+1n (873 (S, + NA)(Sg + NE)NT)] ;

Fap

B

1

+

0,

ac ., ac
1 Y~ 1
b7 (C 00, ¢ aeb)

(SA+NA) O(Sa+N4)

c@o) ==3>"| > (Vame,
k=0 L1 J=[A.E.T)
+ln(2ﬂK(fk))]
@
B 2Z{SA+NA SE+NE+_

o0,

SA + Ny)?

O(Sg+Ng) O(Sp+Ng)
0,

dZ
Nr

ONy ON7.
a0, 0,

2(Sg + Ng)?

+

2N3.

d,;(f))

(41)

} . (42

If we have the channel T as zero and we consider the two
science channels A and E as independent, we obtain

. We use the defi-

nition of the Whittle likelihood from Ref. [18], and the log
likelihood is

TABLE L.

Fo, =

2 I=AE k=0

N 981(F)+N;(f) 981 (f)+N:(f)

0, 90,

(S:(f) + Ni(£))?

(43)

Results of the A-MCMC runs with six parameters (two for the LISA noise, two for the astrophysical background and two
for the cosmological background). We use the data from the A, E and T channels. The four columns of values correspond to the output of
13 A-MCMC runs. The study is conducted using four values for the amplitude of the astrophysical background after 4 years of
observation: 3.55 x 1078, 3.55 x 1079, 1.8 x 102 and 3.55 x 10719, and respectively, the same for the error columns. The error
estimations come from the posterior distributions.

Input

Values of the A-MCMC

Errors (o)

Q

Q Astro

3.55x 1078

3.55 x 107°

1.8x107°

3.55 x 10710

3.55x 1078

3.55x 107

1.8x107°

3.55 x 10710

1.x10°8
5.x107°
2.x107°
1.x107°
5.x10710
2.x 10710
1.x10710
5.x1071
2.x 1071
1.x1071
5.x10712
2.x 10712
1.x10712
1.x10713

1.011x 1078
5.014x 107
2.005% 107
9.972x 10710
4.965%x 10710
2.002x10-10
9.981x 10711
5.013x 1071
2.006% 1071
1.001x 107!
5.011x10712
2.196x 10712
1.019%x 10712

9.982x 107
4971x107°
1.984 % 107°
1.008 x 107°
4.975%10710
1.984x 10710
1.065x 10710
5.057x 107"
2.014x 107!
1.008 x 1071
4.959x 10712
1.952x 10712
1.064x 10712
9.891x 10714

9.987x 107
5.007x107°
2.007x107°
1.046x107°
5.076x 10710
1.976x 10710
9.941x 1071
5.058x 10711
1.989x 1071
1.002x 10711
5.001x 10712
1.948 x 1012
9.936x 10713
1.040x 10713

9.992x 107
4.960% 107
2.083x 107
1.046x 1079
4.956x 10710
1.976x 10710
1.003x 10710
5.163x 107"
2.016x 1071
1.026x 1071
5.024 % 10712
1.985%x 10712
1.013x 10712
9.936x 10714

3.395x 10710
1.754%x 10710
7.481x 107!
4.480x 101
2.529% 107!
1.394x 10711
9.228x 10712
7.078 x 10711
5.389x 10712
426910712
3.583x 10712
3.001x 10712
2.155%x 10712

3.057x 10710
1.464x 10710
5.600% 107!
2.828 x 10711
1.497 x 1071
6.647x 1011
5.322% 10712
5.171x 10712
2.558x 10712
1.406x 10712
9.843x 10713
7.460% 10713
5.119% 10713
2.002x 10713

3.106x 10710
1.506x 10710
6.588x 1071
3.196 x 10711
1.703x 1071
8.251x 10712
4.050x 10712
2.879x 10712
1.130x 10712
5.902x10713
4.526x10713
3.190x 10713
2.233x 10713
1.036x 10713

2.588x 10710
1.462x 10710
5.492x 107!
3.196x 1071
1.385x 107!
5.157x 1071
3.048 x 10712
1.706 x 1012
8.457x 1013
4.472x1071
2.556x 10713
1.433%x 10713
1.040x 10713
4.054x 10714
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We have a comparable result to that given in Ref. [55], and
the inverse of the Fisher information matrix on the diagonal
gives the uncertainties of the estimation of the parameters.
We see the importance to estimate the “noise” channel 7 for
the estimation of the SGWB.

In Fig. 8 we display the influence of the precision
on the fitted parameter versus the value of the cosmological
background €,. Obviously, we understand that if the
astrophysical background is large it will be harder
to measure the cosmological background with high
precision.

We have also conducted an A-MCMC study with six
parameters: two for the noise channel 7, two for the
astrophysical background, and two for the cosmological
background. We use the data from the two science
channels, A and E, along with channel 7. Given the
magnitude level of the LISA noise budget from the
LISA Science Requirements Document [54], we use
the acceleration noise N, = 1.44 x 107* s~ Hz~! and
the optical path-length fluctuation Npy,=3.6x 10" Hz"!.
We make the assumption that the data in channels A and T
are independent. The noises in both channels depend on the
two parameters Ny, and N,.. We aim to estimate the
SGWB and noise parameters simultaneously using data
from channels A, E and T via our A-MCMC algorithm.
Using the additional data from channel 7" will yield a more
efficient estimation procedure and a gain in precision of
parameter estimates than using the data from channels A, E
only. For four different magnitudes of the astrophysical
SGWB, we conduct A-MCMC runs with different values
for the amplitude of the cosmological background; see
Table I. The A-MCMC is characterized by f = 0.01, N =
4000000 (see Sec. IIIC) and we use 2000 samples to
estimate the covariance matrix. We use log-uniform priors
with ten magnitude intervals for the two noise channel
parameters [Ny, N ac] and for the two background ampli-
tudes [Qcosmos Lastro)» @ uniform prior for the slope between
—0.4 and 0.4 for the cosmological slope @ omo, and a
uniform prior between 0.27 and 1.07 for the astrophysical
slope ysyro-

We note for comparison purposes the results given in
Ref. [55] where the diagonal elements of the inverse of the
Fisher information F,, provide the uncertainties of the
respective parameter estimates. The Fisher information
matrix is a block matrix. Indeed, we have a 6 x 6 matrix,
assuming the parameters are independent. We can thus
distinguish two independent types. The first comes from
derivatives related to the noise of LISA which generates a
2 x 2 matrix, N,,,. The second type corresponds to a4 x 4
matrix giving the derivatives linked to the SGWB, Sy,4.
This second matrix is the same as the one calculated in
Sec. II A. So we have

—— DATA
10735 —— Sa(f +Na( from the Adaptive McMC
—— Model noise : SCiRDV1 from the Proposal

mm error for 1 o

=
o
|
2

IS
&

the channel A in Hz™*
=
o

107° 1074 1073 1072 107t
frequencies

10734 —— DATA

I —— Se(f) + Ne(f) from the Adaptive McMC
—— Model noise : SciRDV1 from the Proposal
w= errorfor 1o

PSD of the channel E in Hz™!
P T
o o o o o
O O
£ 85 &5 8 38

,_.

2
1
8

107° 1074 1073 1072 107t
frequencies

—— DATA
1040 Nr{f) from the Adaptive McMC

—— Model noise : SciRDv1 from the Proposal
wem errorforlo

,_.

2
L
8

1074

PSD of the channel T in Hz™!
=
<

,_.
o
4

107° 1074 1073 1072 107!
frequencies

FIG. 9. Power spectral density of the channels A, E and T from
the LISA noise model [55] and an astrophysical SGWB
(Q,/3 = 3.55 x 10™° at 25 Hz). The figures show the power
spectral densities: channel A (top), E (middle), and T (bottom).
The parameters are from the proposal [54]. The orange line is the
LISA noise model from Ref. [55], the green line is the values
from the A-MCMC, and the lo error is in grey.

Moo | O ] . (44)

F =
a |: 0 S4><4

In Fig. 9, the blue line is the data for 6 =
(Naces Npos» Qawar @) = (1.44 x 107% 57 Hz™!, 3.6 x
1004 Hz!, 3.55 x 1079, %) The data are simulated with
the LISA noise model of Eq. (33) with a SGWB of binary
origin. The green line is the LISA noise model from
Ref. [55]. The A-MCMC is characterized by f = 0.01, N =
1000000 (see Sec. IIIC) and we use 2000 samples to
estimate the covariance matrix. We use log-uniform priors
with ten magnitude intervals for the three first parameters
and a uniform prior for the slope between —3% and §. The
orange line in Fig. 9 displays the result of the A-MCMC,
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log1o(Nacc) = —47.821383

il

log10(Nopt) = —40.43+3:33

il

log10(Nopt)
Z)

log10(A) = —8.45%318

log10(A)

a=0.69%3%

i

5 . A ® @ ° > S o ©
MNORNT R ,m“'b ,b?‘h ,bp?’ » » N o° o
log10(Nacc) log10(Nopt) logi0(A) a

FIG. 10. Corner plot for the A-MCMC using the channels A, E
and T. The results are for the two magnitudes for the LISA noise
model from the proposal [54], and a single SGWB (amplitude and
spectral slope). The vertical dashed lines on the posterior
distribution represent from left to right the quantiles [16%,
50%, 84%]. The true values for the parameters are 6=
(N acer Npos: Qawa- @) = (1.44 x 1078 s~ Hz™!,3.6 x 1074 Hz™!,
3.55x% 10‘9,%).

and the 1o error is shown in grey. Figure 10 displays the
corner plot from the A-MCMC; the posterior distributions
are well approximated by Gaussian distributions. We have
evidence of good fits. The estimation of the noise level
magnitudes from the parametric estimation yields a positive
result because we have the possibility to fit the background
with the noise level throughout the frequency domain; it is
also possible to have a very efficient estimation of the
different noise components thanks to the signal 7 being
devoid of a science signal source.

The advantage of two science channels, A and E, as

opposed to one, A or E, is a factor of \/§ for the error
estimation, and hence the overall sensitivity. Indeed, the
error of the cosmological amplitude is given by the
coefficient (Qy, Qq) of the square root of the inverse of
the Fisher information matrix. We have for one channel (A

or E), AQyaorp) =/ F S_Z(l).QO(Ao,Ey For a combination of A

A1) because the two
\/E )

channels respond identically. If the models for the spectrum
of A and E were the same, then Fa,b(AundE) = 2Fa_b(m£).

Note that in the LISA observing band we have a ratio of
S — 529 at 1 mHz and 1.15 at 0.1 mHz. The impor-

‘Cosmo
tance in being able to distinguish between two backgrounds
is not the absolute amplitude of the background, but the

ratio between the two backgrounds’ magnitudes S?C‘A For

0smo

a smaller ratio we can fit the cosmological background with

and E, we have AQg(suap) =

Study of the Fisher information of Q, (52)

—_ %2_“ Fisher Study, Qastro = 3.55€-09

—_ % Fisher Study, Qastro = 3.55€-08
— % Fisher Study, Qasro = 3.55€-10
[ % Fisher Study, Qasr0 = 1.8e-09
100 - =05
. % =01
>< relative error of the A-McMC with Qs = 3.55€-09
X relative error of the A-McMC with Qustro = 3.55€-08
RS /
>< relative error of the A-McMC with Qustro = 3.55€-10
X relative error of the A-McMC with Qastro = 1.8-09
S S I Error bar for 1 0 ith Qazro = 3.55€-09
< I Error bar for 1 o with Quse = 3.55¢-08
Q\ i
1 3
10 7\&
) g\\.\\;g‘\“’g

=,
_—

10‘——13 10‘712 10‘—11

FIG. 11.

10-10 1079 1078
Qo

Uncertainty of the estimation of the parameter €, (the spectral energy density of the cosmological SGWB) from

the Fisher information study (displayed as lines), and the parametric estimation from the A-MCMC (displayed as scatter points)
for the channel A and E, with the noise channel 7. We conduct the study with different values for the astrophysical magnitude
Q.qro- There are error bars for the four sets of A-MCMC runs; see Eq. (32). The horizontal dashed line represents the error level
of 50%. This is the limit where it is possible to observe the cosmological SGWB. The dot-dashed line represents the

10% error.
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log10(Nacc) = —47.87+433

!
i

log10(Nopt) = —40.43+$:81

i

log10(Nopt)

log10(A1) = ~7.58%3.33

i

log10(A1)

L

- +0.06
o = 0.63%g4¢

i

o
c ILL
log1o(A;) = —11.007938
=
NS
] JHJ E\
[}
K]

B

= +0.09
a, = —0.051393

re

42
* ? ®
LA AU A

7 7 7

log10(Nopt)

IOQIO(Nacc)

L
R OGN
log10(A1) a1 log10(Az) az

FIG. 12. Corner plot giving the A-MCMC-generated posterior distributions for a run with six parameters with Qgw agwo =
3.55 x 1078 and Qgw cosmo = 1 X 1071, The vertical dashed lines on the posterior distributions represent from left to right the quantiles
[16%, 50%, 84%]. This is from a run of using the data from channels A, E and 7. These results are presented in

Table I and also in Fig. 11.

less uncertainty. From Fig. 11, we can separate the
cosmological background from the astrophysical back-
ground with a magnitude ratio of 4610 with Q, ,, = 3.55 x
10~ and a reference frequency of 25 Hz. Here we have a
fitting uncertainty of 50%, which is the limit for making a
measurement. In fact, we can consider making a measure-
ment of the cosmological background if the uncertainty is
less than 50%; note the dashed line in Fig. 11. This example
corresponds to a cosmological background of Qcyme =
7.7 x 10713 In Fig. 11 the same study is presented with
four values for the astrophysical background:

Qo =3.55x1078, 3.55x107°, 1.8x10™° and 3.55x
101°. The same ratio produces similar results for different
inputs of astrophysical amplitude. We obtain respectively
the limits to constrain the cosmological background:
Qcomo = 7.8 x 10712, 7.8 x 10713, 3.6 x 107"  and
7.6 x 10714, The values of these A-MCMC results are
given in the Table I. Figures 12 and 13 present respective
examples of corner plots and posterior distributions for a
run of a six-parameter A-MCMC with Qgw aswo = 3.55 X
1078 and Qgw cosmo = 1 X 10712, Qgw agro = 3.55 x 107
and Qgw cosmo = 5 X 10712,

103529-14



SPECTRAL SEPARATION OF THE STOCHASTIC ...

PHYS. REV. D 103, 103529 (2021)

log10(Nacc) = —47.83+433

L

log10(Nopt) = —40.45*391

FiIN

log10(Nopt)

log1o(A;) = —8.441932

rr”

log10(A1)

_
[S]
log10(A;) = =11.30%5:38
3 i
~ Q 1
2 &
e
= ]
~
a = 0.031384
Al
]
N
(<]
"

Ioglo(Nacc)

log10(Nopt)

log10(A1)

s

) Q Vv Q
/0‘ ;;1/. /Q' o
ay log10(A2) a;

FIG. 13.  Corner plot giving the A-MCMC-generated posterior distributions for a run of six parameters, with Qgw aswo = 3.55 X 10~°
and Qgw cosmo = 5 X 10712, The vertical dashed lines on the posterior distribution represent from left to right the quantiles [16%, 50%,
84%]. This is from a run using the data from channels A, E and 7. These results are presented in Table I, and also in Fig. 11.

VI. CONCLUSION

In this paper we presented the potential for separating the
spectral components of the two SGWBs with an adaptive
MCMC method. We also implemented a Fisher information
study, predicting the measurement uncertainty from the
A-MCMC analysis. The two independent studies produced
consistent results. We obtained an uncertainty around 1 for
the low level (Q, = 1 x 107'?) and around 0.03 for the
high level (Q, = 1 x 107®). For example, with an astro-

physical background of Qgw agro = 3.55 x 107 (555)*?

a cosmological background at Qgw cosmo = 7.6 x 10713

can be detected. This corresponds to an uncertainty AQ—SEO
of 0.5 (dashed line in Fig. 11). The study presented in
Sec. IV B displays the possibility to fit the parametric

components of the SGWB.

In Sec. V we discussed and demonstrated the possibility
to analyze the “noise” channel (the 7 channel) to fit the
noise parameters of the LISA noise budget. The advantage
of this method is that it increases the efficiency of the
parameter estimates and utilize the total frequency domain
[1 x 10~ Hz, 1 Hz]. We also applied a Fisher information
study to the LISA noise. According to Fig. 11 we showed
the possibility to separate the two SGWBs with a spectral
separation with a factor of 4610 (for f,.; = 25 Hz). Using a
realistic range for the predicted magnitude of the astro-
physically produced SGWB the methods demonstrated
in this paper show that it is possible for LISA to also
observe a cosmologically produced SGWB in the range of
QGw cosmo & 1 X 10712 to 1 x 10713,

We note some limitations in this study and give some
expectations for future work. In this paper we assumed no
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difference in the noise levels on each spacecraft. According
to Ref. [11] it is possible to include such a noise variation
for each spacecraft. We could also include small modifi-
cations of the transfer functions R;, and allow for some
modification of the spectral slopes of the noise compo-
nents. We can have a varying slope but with a narrow
Gaussian prior centered on the theoretical value. It will be
important to address more detailed models of both the
LISA noise and the astrophysical and cosmological con-
tributions to the stochastic background.
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APPENDIX: SIGNAL SEPARATION
LITERATURE SUMMARY

In this Appendix we present in tabular form a list of
various studies that have been conducted in order to
separate different SGWBs and detector noise sources.
Much has been published on this subject.

1. SGWB studies for LIGO/Virgo

Table II presents a summary of the literature addressing
SGWRB signal separation for LIGO and Virgo.

TABLE II. Methods to measure and to separate SGWBs for LIGO/Virgo.
Limitations and
Reference Goal Method Performance applications
Chen et al. [20] Astrophysical SGWB Estimation of the SGWB Q, 5= 4,4j§’_8 x 10712, The error on the local
from binary black from LIGO/Virgo frt = 3 mHz) merger rate is

holes and binary
neutrons stars
Astrophysical SGWB
from binary black
holes and binary
neutrons stars

Abbott et al. [19]

Abbott et al.
[27,28]

Three backgrounds
considered, power
laws a =0,%,3

Parida et al. [30]  Separate different
isotropic SGWBs for

LIGO

Ungarelli and
Vecchio [31]

Fit broken power-law
SGWB with data from
Earth-based detectors

Smith and Thrane
[33]

To detect astrophysical
SGWB with LIGO/
Virgo

observations; local
merger rate R

Estimation of the SGWB Q, ;3= ]‘1j§:97 x 10712 fp =

from LIGO/Virgo 25 Hz
observations with the
local merger rate R
estimation from
GW150914

Results from cross- Qy <58x107°%;
correlation analysis Q3 <3.4x 1079,
with Advanced LIGO frot =25 Hz

O3 combined O1 and
Ol results

Component separation of
power laws avoiding
use of MCMC
methods

Simulation demonstration for
Advanced LIGO target
sensitivity:

Qy = (1£0.676) x 1078;
Q3 = (1 £1.719) x 1078;
Q; = (143.284) x 1078%;

fret = 100 Hz.
Filters based on broken Achieved fitting factor greater
power-law spectra than 97%

Less data needed to observe
background, as opposed to
traditional correlation based
search

Bayesian parameter
estimation to detect
unresolved binary
black hole background

important

The error on the local
merge rate is important

No correlated noise due
to the magnetic
Schumann resonances

Requires a negligible
amount of
computation and
would be simple to
apply to real data

Small number of filters
needed to measure
SGWB in the first-
generation laser
interferometers

Gives a unified method
for a search for
resolvable signals and
a SGWB of
unresolvable signals
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TABLE 1I. (Continued)

Reference Goal Method Performance

Limitations and
applications

Measurement of a simulated
power law:
logQ, = —5.961 0%, a =
049131

Use method of [33];
individual short time
segments analyzed

To detect a primordial
SGWB in the presence
of unresoved binary
black holes in LIGO/
Virgo band

SGWB measurement in
the context of
correlated magnetic
noise in LIGO/Virgo
band.

P. M. Meyers et al. LIGO/Virgo SGWB
[41] measurement in the

context of correlated

magnetic noise

S. Biscoveanu
et al. [32]

E. Thrane et al.
[38] noise from the Schumann

resonances

detectors creates a
systematic error in
cross correlation study

Parameter estimation of Demonstration with
the correlated Q)3 =3 % 1079, frop =
magnetic noise and 25 Hz and realistic magnetic
SGWB coupling in LIGO/Virgo

Limitations from the

precision of the
compact binary signal
waveforms, and non-
Gaussian noise

Correlated noise between Measurement of the correlated Possibility to use Wiener

Filter to subtract the
correlation.

An alternative to Wiener

filtering

2. SGWB studies in the LISA band

Table III presents a summary of the literature addressing SGWB signal separation for LISA.

TABLE III. Methods to measure and to separate SGWBs for LISA.

Limitations and
Reference Goal Method Perfomance applications
Cornish and Observe cosmic SGWB  Strategies for individual, LISA could detect a cosmic The LISA sensibility is

SGWRB at the level of
Qaw(f)hd > 7 x 1072

or two LISA
interferometers using
cross-correlation
Principal component
analysis to model and
extract SGWBs

Larson [25] with astrophysical

foregrounds

LISA can measure a
cosmological SGWB of
Qy = 6 x 10713 with SNR =

Extraction of the
cosmological SGWB
and astrophysical

Pieroni and
Barauss [29]

foreground with LISA 31
noise

Caprini et al. [43] Observe SGWBs with ~ Reconstruction of Detects a power law of
LISA SGWB as a function of ~ Q,/3 =5.4x 10712,

frequency for simple
and broken power-
laws

Reconstruction of the
spectral shape of a
SGWB with the LISA
A, E, T channels

Testing the Radler
simulated data set from
the LISA Data
Challenge

fret = 0.001 Hz, with
SNR = 601.

Improvement of /2 over the
method of [43]

Observe SGWBs with
LISA, building on the
work of [43]

Flauger et al. [44]

Successful demonstration for

1 0—9 (ZSfHZ)Z/:;

Fast methodology to
assess LISA
detectability of a
stationary, Gaussian,
and isotropic SGWB

Karnesis et al. [45]

derived for LISA arm
length of L =5 x 10°

A robust technique that
can be extended to
different detectors

Signal and noise are
assumed to be
stationary for all times.

Will be expanded to
account for unequal
arm lengths for LISA
constellation.

Analysis done with
simple LISA noise
model
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3. SGWB studies for the future third-generation detectors

Table IV presents a summary of the literature addressing SGWB signal separation for third-generation gravitational-wave

detectors.

TABLE IV. Methods to measure and to separate SGWBs for the third-generation detectors.

Reference Goal

Method

Limitation and

Perfomance application

Regimbau et al. Observing a primordial
[34] SGWB below the
compact binary
produced background

Sharma and Harms Cosmological SGWB
[37] with third-generation
detectors in the
presence of an

astrophysical cosmological SGWB
foreground
Martinovic et al. ~ Astrophysical (compact Bayesian parameter
[42] binary coalescence) estimation for

and cosmological
SGWB (cosmic strings
and first order phase
transitions)

The data will be cleaned of Possible limit of Qgw =~
the direct observations of
binaries by the third-
generation detectors

Matched filtering and
residual study for the
astrophysical foreground
and cross-correlation for

simultaneous estimation
of astrophysical and
cosmological SGWB with
third-generation detectors

Potential limitation to
sensitivity comes from
other astrophysical

1013 after 5 years of
observation with third-
generation detectors gravitational-wave
[35,36] emission.
Cosmological SGWB (flat) Limitation for
Qaw =2 x 10712 cosmological SGWB
observed with SNR ~ 5.2 is instrumental noise
after 1.3 years and unremoved
astrophysical sources

Possible limit at 25 Hz of
Qaw = 2.2x 1071
(broken power-law model
for primordial SGWB)
and Qgy = 4.5. x 10713
for cosmic strings

Methods will be
applicable for LISA
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