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As part of the research on thermal noise reduction in gravitational-wave detectors, we experimentally
demonstrate the conversion of a fundamental TEM00 laser mode at 1064 nm to higher-order Hermite-
Gaussian modes (HG) of arbitrary order via a commercially available liquid crystal spatial light modulator.
We particularly studied the HG5;5=HG10;10=HG15;15 modes. A two-mirror plano-spherical cavity filters the
higher-order modes spatially. We analyze the cleaned modes via a three-mirror diagnosis cavity and
measure a mode purity of 96=93=78% and a conversion efficiency of 6.6%=3.7%=1.7%, respectively.
A full set of simulations and mathematical proofs are also presented which shows that (i) Hermite-Gauss
modes resonate in a two-mirror cavity provided mirrors are properly angled with respect to the impinging
mode, and (ii) Hermite-Gauss modes resonate in triangular cavities. Hence, higher-order Hermite-Gauss
modes are compatible with ground-based gravitational-wave detectors’ architecture and can be employed
for the mitigation of mirror thermal noise for the third generation Einstein Telescope or Cosmic Explorer.
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I. INTRODUCTION

Lasers used for high-precision experiments typically
generate an output beam in the fundamental TEM00 mode.
Their operation at higher-order Hermite-Gauss (HGm;n) or
axisymmetric Laguerre-Gaussian (ALGp;l) modes suffers
from low lasing efficiency due to diffraction losses and a
less stable output mode [1] (fm; ng and fp; lg represents
the HG and ALG modes orders, respectively, using the
notations of [1]). However, higher-order modes are ben-
eficial in metrology experiments using optical cavities or
laser interferometers that are fundamentally limited by
thermally induced mirror surface motions that reduce the
length sensing sensitivity [2]. More specifically, reference
cavities used for the frequency stabilization of the optical
oscillator in optical clocks are currently limited by thermal
noise of the highly reflective mirror coatings with a
fractional frequency instability of 4 × 10−17 in 1 s [3].
Second generation of gravitational waves (GW) detectors
(Advanced LIGO [4], Advanced Virgo [5], KAGRA [6])
are also limited by the coatings’ thermal noise in the
frequency band of 50–200 Hz with h¼3×10−24 ½1= ffiffiffiffiffiffi

Hz
p �

at 100 Hz for Advanced LIGO [7–9]. With the reduction of
quantum noise, third generation of GW detectors are
foreseen to be limited by mirrors thermal noise at a level
of 3 × 10−25 ½1= ffiffiffiffiffiffi

Hz
p � at 100 Hz for the high frequency

detector of the Einstein Telescope [9,10] and 3 ×
10−25 ½1= ffiffiffiffiffiffi

Hz
p � at 20 Hz for the Cosmic Explorer

[11,12]. One way to address this problem is with cryogeni-
cally cooled mirrors [13], and this is presently being tested
with KAGRA [14]. In addition, the negative effect of
thermal noise can be mitigated by using a spatially broader
intensity profile for the laser beam in comparison to the
fundamental TEM00 mode. This results in a higher averag-
ing over the mirror surface for the same cavity character-
istics [15–19]. This can be achieved by using higher-order
modes whose efficiency increases with the total mode order
NT (NT ¼ mþ n for HGm;n modes and NT ¼ 2lþ p for
ALGp;l modes) [20]. Higher-order Laguerre-Gauss modes
were the first to be suggested for ground based GW detectors
[8,21] and this idea was extended for reference cavities
related to optical clocks [22]. A reduction of thermal noise
was recently demonstrated in a 10-cm ULE glass reference
cavity using the HG0;2 mode [23].
For GW detection, the higher-order modes must be high

power (efficiently generated), pure, and robust with respect
to mirrors defects and aberrations. The ALG3;3 mode has
been the object of several experimental investigations in
this context [24–33] was demonstrated to be incompatible
with GW detectors due to mirror aberrations in the current
state of the art of mirror’s manufacturing techniques. In this
paper we investigate the conversion of the fundamental
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HG00 mode at 1064 nm into highly pure HGm;n modes with
orders never reached up to now and demonstrate their
compatibility with both linear and triangular cavities used
in GW detectors. HG modes are likely to represent intra-
cavity modes thanks to their insensitivity to mirrors’
astigmatism in certain conditions or to the cavity archi-
tecture itself. The application of these modes for thermal
noise reduction could be important for third generation GW
detectors, such as Einstein Telescope [9,10] and Cosmic
Explorer [11,12].
The remainder of this paper is organized as follows. In

Sec. II we compare the utility of HG modes in comparison
to ALG modes. Section II presents that results of simu-
lations of HG modes in Virgo-like cavities. The effects of
imperfect mirror orientations as discussed in Sec. IV. The
experimental generation of HG and measurements of their
characteristics are given in Sec. V. The concluding com-
ments are in Sec. VII, while an Appendix presents more
supporting theoretical material.

II. ALG VERSUS HG

Thermal noise at low frequencies in optical cavities
operating with axisymmetric ALG modes is computed in
[21,34] using the Bondu-Hello-Vinet (BHV) technique [35]
(extended in [36]). This calculation is based on Levin’s
theory [37] and is applied on finite mirrors. HG modes’
related thermal noise was computed analytically in [20]
only for infinite mirrors. Based on the latter reference, we
compare in Table I the mitigation efficiency of thermal
noise for the ALG5;5 mode, a frequent example in theo-
retical computations [21,34,38], the ALG3;3 mode, and the
HG modes HG5;5, HG10;10. Coating Brownian thermal
noise is currently limiting both reference cavities and
GW detectors, whereas the thermoelastic noise limit,
which undergoes similar reduction factors, lies below
that and is not considered here. ALG modes are more
efficient to mitigate thermal noise for equivalent clipping
losses. However, it was found that the ALG modes pose
strong requirements on the mirror surface quality since
they exhibit a mode pseudodegeneracy [31] that greatly
decreases their coupling efficiency to linear cavities.

Residual astigmatism of the mirrors turns out to be the main
defect responsible for the intracavity mode degradation
[27,32] and its thermal compensation was demonstrated to
improve the mode quality [28]. Astigmatism also prevents
ALG modes from resonating in a four-mirror premode
cleaner unless they are in a nonplanar configuration [33].
Note that ALG modes do not resonate in triangular cavities
[26], which are largely used in GW detectors.
In a two-mirror cavity, the HG pseudodegeneracy is

strictly related to the coupling between HG modes of the
same total order during the reflection on mirrors, i.e.,
between HGm;n and HGmþq;n−q (the case of three-mirror
cavities will be described further in this paper). As stated in
[27,32], astigmatism represents the main contribution to the
mirrors distortions and, in the specific case of GW detector
mirrors, it mainly couples the impinging mode to the two
adjacent ones, i.e., q ¼ �1. Thanks to symmetry consid-
erations and whatever the astigmatism radial profile is, this
coupling is canceled when the astigmatism profile is
aligned on either one of the impinging two mode axes.
Hence, one just needs to angle the mirror around the beam
axis adequately to minimize the total coupling into HG
modes of equal total order NT. The ALG mode coupling
remains unaffected by mirror angling because of their
axisymmetry. The case of nonaxisymmetric ALG modes
needs to be carefully studied. To confirm these assertions,
FFT-based simulations using the software DarkF [39,40] on
a ≃1 km cavity using the measured map of an Advanced
Virgo mirror are described in the next section. Right after, a
mathematical proof is presented for the specific case of the
HG5;5 mode.

III. DARKF SIMULATIONS OF HG MODES
IN A VIRGO-LIKE CAVITY

We present here the DarkF [39,40] simulations of a
1021 m plano-concave cavity with a finesse F ¼ 1000.
The input mirror is plane and has a transmission
T¼3137ppm. Its diameter is 35 cm. The end mirror has
an identical transmission and has a radius of curvature
R ¼ 1179 m. Hence, the g factor of the cavity is g ≃ 0.13,
the cavity mode waist falls on the input mirror with a beam
radius w0 ≃ 1.17 cm and the beam radius on the end mirror
is w1 ≃ 3.19 cm for a laser wavelength λ ¼ 1064 nm. The
theoretical power enhancement factor (PEF) is F=π ≃ 318.
These features were chosen in order to keep identical
mirrors, similar clipping losses as a HG0;0 mode in a 3 km
cavity and the same stability, i.e., the same g factor, as for
Virgo. A 3 km cavity would have required the use of larger
mirrors for which aberration maps are unavailable.
The simulations presented below were conducted con-

sidering the input mirror with a perfect surface, whereas the
end mirror presents the distortions displayed on Fig. 1 that
represent a Virgo-like mirror surface residual when piston,
tilts, and curvature are subtracted for the Virgo intracavity
beam. The surface error considered here is 0.5 nm rms

TABLE I. Calculated thermal noise limit reduction factor for
higher-order modes with respect to the Gaussian mode for both
substrate and coatings. a represents the mirror radius and w
designates the beam radius. The ratio a=w considered here
corresponds to a clipping loss of 1 ppm. These calculations
are based on [20].

Order Substrate Coatings a=w

HG 5,5 0.576 0.493 4.379
10,10 0.491 0.392 5.513

ALG 3,3 0.559 0.378 3.313
5,5 0.496 0.310 4.968
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corresponding to the requirements of the Advanced Virgo
project.

DarkF is a software based on an FFTalgorithm to compute
the Fresnel propagation of the laser beam from one mirror
to the other. The injected beams used here are ALG3;3,
ALG5;5, HG5;5, and HG10;10, whose intensity distributions
are represented in Fig. 2.
The end mirror is angled around the optical axis in order

to maximize the mode matching into the cavity. Obviously,
this procedure has no effect on the ALG modes coupling
efficiency. The power enhancement factor (PEF), the mode
matching and the round trip losses (RTL) are given in
Table II for the optimum angles, and show ALG3;3 and
ALG5;5 mode coupling efficiencies do not exceed 70%. On
the other hand, the HG5;5 and HG10;10 mode coupling
increases from 77% to 99% and from 62% to 96%,
respectively, when one rotates the mirrors by the correct
angle. PEF also increases accordingly. Note that the
optimum angles for HG5;5 and HG10;10 are different since
the latter explores a wider surface of the mirror than the

former thus showing that aberration effects are mode
dependent. The simulated intensity profiles of the intra-
cavity modes are displayed in Fig. 3. A clear improvement
of the HG modes profiles appears between the 0° angle and
optimum angles for which distortions are no more
observed. This renders higher-order HG modes as prom-
ising candidates for applications in GW detectors although
they provide a slightly smaller mitigation effect of thermal
noise. A full explanation of these results is presented in the
next section.

IV. EFFECT OF THE IMPERFECT
MIRROR ORIENTATION

In this section, we describe how the mirror distortion
couples between HG modes of the same NT that is
responsible for the pseudodegeneracy effect. This is to
explain the results of the previous section. In the general
case, let ψ0ðx; yÞ be the mode impinging on the mirror,
ðx; yÞ being the transverse spatial coordinates. In the
paraxial approximation, the reflected beam is written as

ψ rðx; yÞ ¼ ei2kzðx;yÞψ0ðx; yÞ; ð1Þ

wherek ¼ 2π=λ represents thewavevector.When the incident
beamψ0 is aHGm;nmode,weare interested in the contribution
of each HGmþq;n−qð−maxðm;nÞ≤q≤minðm;nÞÞ to ψ r.
These contributions are given by the coefficient γq defined as

γq ¼
Z

ψ rðx; yÞHG�
mþq;n−qðx; yÞdxdy;

≃ δq;0 þ i2k

×
Z

HGm;nðx; yÞzðx; yÞHG�
mþq;n−qðx; yÞdxdy; ð2Þ

FIG. 1. Generated coated mirror map by the software OSCAR

[41,42] based on the mirror’s characteristics of the Advanced
Virgo project. The figure represent the mirror’s distortion when
piston, tilts and curvature are subtracted. The residual distortion is
0.5 nm rms. Courtesy of Jérôme Degallaix

FIG. 2. Simulated intensity distribution of the high order modes
which are injected into the cavity.
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where � designates the complex conjugate and the integral is
performed on the mirror surface. The last approximation is
valid for distortions much smaller than the laser wavelength,
i.e., z ≪ λ. Hence, γq represents the coupling of the injected
mode into other modes of the same total order NT. In the
following, we study the specific case of the HG5;5 mode and

the corresponding coupling coefficient γq when reflected on
the mirror as shown in Fig. 1. We also define Γq as the
contributionof theHG5þq;5−q to themodeof the cavity studied
in Sec. II defined by

Γq ¼
Z

ψ intðx; yÞHG�
mþq;n−qðx; yÞdxdy;

where ψ int designates the intracavity mode. In Table III, we
display both absolutevalues of γq andΓq, and twopoints stand
out: (i) the contributions of HG4;6 and HG6;4, i.e., q� 1, are
dominant; (ii) the orientation of the mirror by the optimum
angle 29° reduces both the contribution q� 1 while keeping
the other contributions jqj > 1 negligible. In the following,we
present an analysis based onZernicke polynomials formalism,
which explains the two former points.

A. The Zernike polynomials

Zernike polynomials [43] are a set of continuous and
orthogonal 2D functions over the unit circle. They are noted
by ZM

N . They are defined by two integer indices ðN;MÞ
satisfying the conditions N ≥ 0, jMj ≤ N, and ðN;MÞ,
which have the same parity. In polar coordinates ðr; θÞ,ZM

N
is written as

ZM
N ðr; θÞ ¼ ℛM

N ðrÞ cos ðMθÞ for M ≥ 0

ZM
N ðr; θÞ ¼ ℛM

N ðrÞ sin ðMθÞ for M < 0

Normalized Zernike polynomials satisfy the orthonormality
condition:

Z
1

0

rdr
Z

2π

0

dθZM
N ðr; θÞ ×ZM0

N0 ðr; θÞ ¼ δNN0δMM0 : ð3ÞFIG. 3. Simulated intensity profiles of intracavity modes for
different angles.

TABLE II. Coupling efficiency of considered HG and ALG
modes for different end mirrors angles. The coupling efficiency
of ALG modes does not depend on the angle.

Angle (°) PEF Matching (%) RTL (ppm)

ALG3;3 218 68 0.27
ALG5;5 207 65 0.3

HG5;5 0 246 77 0.3
29 315 99 0.56

HG10;10 0 197 62 1.4
50 305 96 3

TABLE III. Coupling coefficients between HG5;5 and
HG5þq;5−q for 0° and 29° orientation angles. γ corresponds to
coupling after a single reflection; Γ corresponds to the coupling
within the cavity. Couplings at q ¼ �1 are dominant at 0° and are
significantly reduced at 29°. The rest of the coupling coefficients
remain negligible.

q jγqj for 0° jγqj for 29° jΓqj for 0° jΓqj for 29°
−5 3.1 × 10−6 2.9 × 10−5 5.8 × 10−4 2.4 × 10−4

−4 5.4 × 10−5 6.1 × 10−6 4.1 × 10−4 7.7 × 10−4

−3 2.3 × 10−4 1.9 × 10−4 6.3 × 10−3 2.2 × 10−4

−2 4.6 × 10−4 3.7 × 10−5 2.5 × 10−2 6.3 × 10−4

−1 1.2 × 10−3 7.8 × 10−5 1.1 × 10−1 1.1 × 10−4

0 1 − 2.0 × 10−5 1 − 1.9 × 10−5 7.0 × 10−1 9.9 × 10−1

1 1.3 × 10−3 5.5 × 10−5 1.2 × 10−1 3.1 × 10−3

2 2.5 × 10−4 8.6 × 10−5 2.2 × 10−2 8.8 × 10−4

3 2.5 × 10−5 2.6 × 10−4 9.8 × 10−3 3.0 × 10−5

4 6.0 × 10−6 1.7 × 10−5 2.5 × 10−3 3.3 × 10−5

5 6.1 × 10−5 1.3 × 10−5 6.7 × 10−4 8.1 × 10−5
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For a mirror of radius R, we infer a set of orthonormal
functions based on the Zernike polynomials defined by

ZM
N ðr; θÞ ¼ ZM

N

�
r
R
; θ

�
: ð4Þ

The mirror distortions zðr; θÞ displayed in Fig. 1 are then
decomposed in ðZM

N ðr; θÞÞN;M under

zðr; θÞ ¼
X
N;M

cN;M × ZM
N ðr; θÞ ð5Þ

with,

cN;M ¼ 1

R2

Z
mirror

zðr; θÞZM
N ðr; θÞrdrdθ: ð6Þ

Figure 4 shows the result of the decomposition on the
Zernike polynomials set up to the order Nmax ¼ 20, which
is to be compared with Fig. 1. The mirror distortion rms
value is reproduced with an accuracy better than 2%. The
following analysis is based on this decomposition.

B. Lemmas on the HG coupling
with Zernike polynomials

In this subsection we address the coupling between the
two degenerate modes HG5;5 and HG5þq;5−qðq ≠ 0Þ thanks
to a single Zernike polynomial ZM

N . For q ≠ 0, this coupling
is given by the following coefficient:

γN;M
q ¼ i2k

Z
HG5;5ðx; yÞZM

N ðx; yÞHG�
5þq;5−qðx; yÞdxdy:

ð7Þ

The following lemmas will be used in the next sections.
Proofs can be found in Appendix A.

(i) Lemma 1: for N ¼ 0, γ0;0q ¼ 0.
(ii) Lemma 2: for N odd, γN;M

q ¼ 0.
(iii) Lemma 3: for N even, γN;M≥0

q¼odd ¼ 0 and γN;M<0
q¼even ¼ 0.

(iv) Lemma 4: for N even, γN;M
−q ¼ ð−1Þ1þM=2 × γN;M

q for
q odd and M < 0 and γN;M

−q ¼ ð−1ÞM=2 × γN;M
q for q

even and M < 0.
(v) Lemma 5: for N even and N < j2qj, γN;M

q ¼ 0.

C. Mirror power spectral density contributions
to HG mode coupling

In this subsection, we show that on average, the
HG5;5 mainly couples to HG5þq;5−q modes for q ¼ �1.
The proofs below combine the mirrors 2D isotropic power
spectral density (PSD) [44] and the Zernike polynomial
formalism at the same time. In polar coordinates, the mirror
PSD is defined as [44,45]

PSDðκ;ϕÞ ≃ 1

πR2

�����
Z

R

0

Z
2π

0

ei2κr cos ðθ−ϕÞzðr; θÞrdrθ
����
2
�
;

ð8Þ

where hi stands for an average over an important number of
mirrors. In practice, the PSD is not accessible due to the
difficulty to compute this average. The 2D isotropic PSD
defined by

PSD2-DðκÞ ¼
1

2π

Z
2π

0

PSDðκ;ϕÞdϕ ð9Þ

represents the average over the angle ϕ and thus is more
accessible since a single mirror offers enough data to
compute the average. Now, we address the contribution
of each Zernike polynomial to the 2D isotropic PSD.
To that aim, we inject the decomposition of the mirror
distortions on the set of Zernike polynomials and we
obtain this:

FIG. 4. Mirror map reconstitution with Zernike polynomials up
to N ¼ 20, to be compared with the map measurement in Fig. 1.
The resulting rms value is equal to the original value within 2%.
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PSD2-DðκÞ

≃
1

πR2

X
N;M

�����cN;M

Z
R

0

Z
2π

0

ei2κr cos ðθ−ϕÞZM
N ðr;θÞrdrθ

����
2
�
;

ð10Þ

where henceforth hi also includes an average over the angle
ϕ. The last equation involves the 2D Fourier transform Z̃M

N
of Zernike polynomials, which is given by

M ≥ 0 Z̃M
N ðκ;ϕÞ ¼ 2πR2iN

JNþ1ð2πκRÞ
2πκR

cos ðMϕÞ;

M < 0 Z̃M
N ðκ;ϕÞ ¼ 2πR2iN

JNþ1ð2πκRÞ
2πκR

sin ðMϕÞ:

Because of the averaging over ϕ, Eq. (10) simplifies to

PSD2-DðκÞ ≃ 2πR2
X
N

ζNð2πκRÞ
X
M

hjcN;Mj2i; ð11Þ

where

ζNðξÞ¼
�
JNþ1ðξÞ

ξ

�
2

Jl∶Bessel function of order1: ð12Þ

The function ζlðξÞ admits its maximum value around
μl ≃ 1.1lþ 1.6, and decreases rapidly around the corre-
sponding peak. With a rough approximation, we simu-
late ζlðξÞ as a gate function of height μl and a width
Δl ≃ 2.810−3l2 þ 0.14lþ 2.4. Hence, PSD2D can be
considered as a histogram defined by its values at
κN ¼ μN=2πR. Defining

CN ¼
XN

M¼−N
hjcN;Mj2i; ð13Þ

whereM and N have the same parity, the 2D isotropic PSD
becomes

PSD2-DðκNÞ ≃ 2πR2CNΔN

�
JNþ1ðμNÞ

μN

�
2

: ð14Þ

Two points are to be brought into attention here:
(i) For a given N all polynomials ZM

N are characterized
by the same spatial frequency κN and have the same
weight in the 2D isotropic PSD of the mirrors.
Therefore, hjcN;Mj2i ¼ hjcN j2i does not depend on
M and we get

CN ¼ ðN þ 1ÞhjcN j2i: ð15Þ

(ii) The factor CN characterizes the 2D isotropic PSD
with respect to the spatial frequency κN.

In the literature 1D PSD are available and simply related to
corresponding 2D isotropic PSD by [44]:

PSD2DðκÞ ¼
PSD1DðκÞ

κ
ð16Þ

For gravitational-wave detectors mirrors, PSD1D has a
specific behavior of 1=κ2.3 [46]. Hence, Eq. (14) gives

hjcN j2i ∝
1

μ2.3N ðN þ 1ÞΔN

�
μN

JNþ1ðμNÞ
�

2

: ð17Þ

Now, the global coupling coefficient γq defined for q ≠ 0

by Eq. (2) is written as

γq ¼
XM
N

cN;Mγ
N;M
q : ð18Þ

The effect of the pseudodegeneracy within the cavity is
proportional to jγqj2 [27]. Since for a given N, all M
contributions are equally probable with both positive and
negative values, the average effect reduces to

hjγqj2i ∝
X
N

X
M

jγN;M
q j2hjcN;Mj2i;

∝
X
N

hjcN j2i
X
M

jγN;M
q j2; ð19Þ

and using Eq. (17), one gets

hjγqj2i ∝
X
N

PSD1Dð μN
2πRÞ

P
MjγN;M

q j2
μNðN þ 1ÞΔN

�
μN

JNþ1ðμNÞ
�

2

: ð20Þ

Interestingly, Eq. (20) links the average coupling hjγqj2i to
PSD1D, which is a measurable quantity characterizing the
considered mirror. For the specific case of gravitational-
wave detector mirrors, one gets

hjγqj2i ∝
X
N

P
MjγN;M

q j2
μ3.3N ðN þ 1ÞΔN

�
μN

JNþ1ðμNÞ
�

2

: ð21Þ

As stated by Lemmas 1 and 2, only nonzero even N are to
be taken into account. Also, for a given q only N > 2jqj
are to be computed as shown by Lemma 5. According
to Lemma 4, hjγqj2i ¼ hjγ−qj2i. So, in Fig. 5, hjγqj2i is
represented for jqj ¼ 1 to 5 and its evolution with respect to
Nmax limit of the sum over N in the case of GW detectors
mirrors. It appears that (i) the series over N converges and
Nmax ¼ 20 gives a satisfactory estimation of the coupling.
(ii) the coupling into HG6;4 and HG4;6 is dominant with
respect to other HG modes. This is in agreement with the
numerical values reported in Table III. In the following
section, we focus on the coupling into HG6;4 and HG4;6

modes and neglect the rest.
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D. Cancellation of HG6;4 and HG4;6 couplings
by mirror rotation

In this section, we show that the coupling of HG6;4 and
HG4;6 can be severely reduced by rotating the mirror
around the optical axis. With respect to the mirror ori-
entation of Fig. 1 for which γq and CN;M were used up to
now, we consider the rotation angle θ0 and we define the
corresponding coupling coefficient for q ¼ �1:

γqðθ0Þ

¼ i2k
Z

HGm;nðr; θÞzðr; θ − θ0ÞHG�
mþq;n−qðr; θÞrdrdθ;

ð22Þ

so γq ¼ γqð0Þ. According to Lemmas 2 and 3, we are only
interested in orders N even and M even and strictly
negative. With some algebra, we can show that

γ1ðθ0Þ ¼ i
X∞

M=2¼1

½TM cos ðMθ0Þ þ SM sin ðMθ0Þ�; ð23Þ

where

TM ¼ −i
X∞

N=2¼M=2

γN;−M
1 cN;−M ð24Þ

and

SM ¼ −i
X∞

N=2¼M=2

γN;−M
1 cN;M: ð25Þ

According to Lemma 4, likewise we have

γ−1ðθ0Þ

¼ i
X∞

M=2¼1

ð−1Þ−M=2½TM cosðMθ0ÞþSM sinðMθ0Þ�: ð26Þ

Hence, the power coupling into q ¼ �1 modes is
βðθ0Þ ¼ jγ1j2 þ jγ−1j2, which is given by

βðθ0Þ ¼
X∞
M
2
¼1

X∞
M0
2
¼1

ð1þ ð−1ÞMþM0
2 Þ

× ½TM cos ðMθ0Þ þ SM sin ðMθ0Þ�
× ½TM0 cos ðM0θ0Þ þ SM0 sin ðM0θ0Þ�: ð27Þ

In Fig. 6, the values of jTMj and jSMj are computed. We
infer that (M ¼ 2;M0 ¼ 2) have the main contribution,
ðM ¼ 2;M0 ¼ 4Þ and ðM ¼ 2;M0 ¼ 4Þ have zero contri-
bution according to Eq. (27), ðM¼2;M0 ¼6Þ and ðM ¼ 6;
M0 ¼ 2Þ contributions are one order of magnitude lower,
ðM ¼ 4;M0 ¼ 4Þ contributions are two orders of magni-
tude lower, and so on. Therefore, we can write with 10%
accuracy that

βðθ0Þ ≃ 2½TM cos ðMθ0Þ þ SM sin ðMθ0Þ�2 ð28Þ

and

FIG. 5. The calculated evolution of the mean energetic coupling
hjγqj2i between HG5;5 and HG5þq;5−q average as a function of the
limit Nmax of the corresponding sum over N for 1 < jqj ≤ 5.
hjγqj2i converges towards an asymptotic value. hjγjqj¼1j2i are
dominant.

FIG. 6. jSMj, jTMj, and jSMj þ jTMj as a function of M. jSMj,
jTMj, and jSMj þ jTMj give an order of magnitude of the
contribution of the Zernike polynomials for a given M. This
figure shows that the contribution ðT; SÞM¼2 is at least an order of
magnitude higher. Note that the contribution to jγ1j2 are of the
form ðT; SÞM × ðT; SÞM0 making the contribution of ðT; SÞ2M
dominant by at least one order of magnitude.
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jγ−1ðθ0Þj ¼ jγ1ðθ0Þj ¼ jT2 cos ð2θ0Þ þ S2 sin ð2θ0Þj: ð29Þ

Note that for θ ¼ 0, jγ−1j ¼ jγ1j ¼ jT2j ≃ 1.3 × 10−3,
which is in agreement with Table III within 10%
accuracy. Interestingly, for θ0 ¼ Θ0 ¼ − 1

2
arctan ðT2=S2Þ

this approximate coupling γ1 between HG5;5 and both
HG6;4 and HG4;6 cancels out. The order of magnitude of
γjqj>1 remains unchanged. Θ0 was computed for different
Nmax and the result is displayed in Fig. 7. Θ0 clearly
converge towards 27.5°, which is in a good agreement with
the value 29° we have reached using DarkF simulations (see
Sec. II). Let us recall that the value 29° was obtained while
maximizing the coupling of the HG55 mode into the cavity.
Moreover, these results clearly show that this analysis
cannot be reduced to first order astigmatism, i.e., Zernike
polynomial Z�2

2 . Further orders Z−2
N are responsible for

the coupling between HG5;5 and HG6;4 or HG4;6. In the
following section, we give a physical interpretation of the
canceling of the coupling coefficients γ�1.

E. Physical interpretation

In the frame of the previous approximations, the cou-
pling γ1ðθ0Þ ¼ γ−1ðθ0Þ is of the form

γ1ðθ0Þ ¼
� X∞
N=2¼1

γN;−2
1 cN;2

	
sin ð2θ0Þ

þ
� X∞
N=2¼1

γN;−2
1 cN;−2

	
cos ð2θ0Þ: ð30Þ

We define the “HG-coupling astigmatism Zernike poly-
nomials” as

ΞM¼�2ðr; θÞ ¼ PðrÞ ×


cos ð2θÞ if M ¼ 2

sin ð2θÞ if M ¼ −2
; ð31Þ

where

PðrÞ ¼
P∞

N=2¼1 γ
N;−2
1 ℛ2

Nðr=RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP∞
N=2¼1 ðγN;−2

1 Þ2
q : ð32Þ

In Fig. 8, Ξ2ðr; θÞ, Ξ−2ðr; θÞ, and PðrÞ are represented.
Being linear combinations of Zernike polynomials
Z�2
N ðr; θÞ, to Ξ�2 correspond to
(i) The rotated mirror zðr; θ − θ0Þ projection compo-

nent:

CΞ;�2ðθ0Þ¼
Z
mirror

zðr;θ−θ0ÞΞ�2ðr;θÞrdrdθ; ð33Þ

FIG. 7. The rotation angle Θ0 at which the coupling jγ�1j is
minimized as a function of Nmax. The asymptotic value is 27.5° is
in agreement with the value 29° computed by FFT simulations.
Note that this analysis cannot be reduced to first-order astigma-
tism Nmax ¼ 2.

FIG. 8. Top: 2D and 3D representations of the Zernike poly-
nomials Ξ�2. Bottom: representation of the polynomial PðrÞ for
0 ≤ r ≤ R.

STEFAN AST et al. PHYS. REV. D 103, 042008 (2021)

042008-8



and we have

CΞ;2ðθ0Þ ¼ CΞ;2ð0Þ cos ð2θ0Þ − CΞ;−2ð0Þ sin ð2θ0Þ;
CΞ;−2ðθ0Þ ¼ CΞ;−2ð0Þ cos ð2θ0Þ þ CΞ;2ð0Þ sin ð2θ0Þ:

Obviously this gives CΞ;2ðθ0Þ2 þ CΞ;−2ðθ0Þ2 as a
constant of θ0.

(ii) The coupling coefficients between HG5;5 and HG6;4
(and equally HG4;6):

γΞ;�2
1 ¼γΞ;�2

−1

¼ i2k
Z

HG5;5ðr;θÞΞ�2ðr;θÞHG�
6;4ðr;θÞrdrdθ;

ð34Þ

and obviously we have γΞ;21 ¼ γΞ;2−1 ¼ 0.
With some algebra, one can demonstrate that

γ1ðθ0Þ ¼ γΞ;−21 × CΞ;−2ðθ0Þ: ð35Þ

Since Θ0 corresponds to CΞ;−2ðΘ0Þ ¼ 0 and γΞ;21 ¼ 0, we
conclude that with a good approximation, the coupling
between HG5;5 and HG6;4 (and HG4;6) is minimized by
rotating the mirror around the optical axis by an angle Θ0,
which cancels its projection on Ξ−2 and maximizes its
projection on Ξ2, which does not couple the considered HG
modes. It clearly appears that these considerations closely
depend on the considered impinging mode through the
coefficients γ�1, which explains the difference between
optimum angles computed in Sec. II: 29° for HG5;5 and 50°
for HG10;10.

V. EXPERIMENTAL GENERATION
OF HG MODES

In our experiment we achieved the conversion of a
fundamental TEM00 mode to HG modes via the reflection
on a commercially available computer addressed liquid
crystal phase-only SLM by Hamamatsu Photonics. The
same technique was used to generate ALG beams [47–54].
The amplitude distribution of the reflected beam is then
conserved whereas the phase distribution is exclusively
defined by the phase map φSLMðx; yÞ. The HOMs are then
obtained out of the field distribution Eout in the image
focal plane of a Fourier lens. This field distribution is
related to the incident beam according to F ½EoutðX; YÞ� ¼
jTEM00ðx; yÞj exp ½iφSLMðx; yÞ� where F denotes the
Fourier transform. Since a HGm;n mode is invariant by
F , the last equation shows that a fundamental Gaussian
mode cannot be converted into an arbitrary HGm;n mode
with 100% efficiency. In [55,56] it is proposed to generate
the HGm;n mode in a limited area of the Fourier plane while
no condition is imposed on the rest of the plane. The
approach is inspired from the Gerchberg-Saxton algorithm

[57–59]. It consists of consecutive iterations between the
SLM and the Fourier planes using, respectively, the Fourier
and inverse Fourier transforms while imposing on each
iteration the fundamental mode amplitude on the SLM and
the HGm;n mode in the restricted area of the Fourier plane
(see Appendix B for further details). Twenty iterations
were sufficient to obtain an arbitrary order HGm;n mode
within less than 1% error and with a theoretical conversion
efficiency spreading up to 45%. The SLM diffraction
efficiency decreases with the spatial frequency of the phase
map, a nondiffracted light was superimposed to the HG
mode in the Fourier plane. A blazed grating was then added
to the SLM phase map in order to obtain a free diffraction
area. Unwanted light (nondiffracted and diffracted in the
free area) was spatially filtered with an iris placed in the
Fourier plane. The mode is then filtered by a mode-cleaner
cavity.
A simplified schematic picture of the experimental setup

is given in Fig. 9. The laser source is a continuous-wave
single frequency Nd:YAG nonplanar ring oscillator
(NPRO) at 1064 nm. The laser beam is spatially filtered
via a single-mode polarization maintaining fiber. A fiber-
based electro-optical modulator generates phase modulated
sidebands at 100 MHz for a Pound-Drever-Hall [60]
cavity stabilization scheme. The generated phase map is
then applied to a liquid crystal phase-only SLM type
LCOS-SLM X10468 by Hamamatsu Photonics having
792 × 600 pixels with a pixel pitch of 20 μm. We used
a laser power between 3 mW and 1 W on the SLM. The
HG5;5=HG10;10=HG15;15 modes are transmitted to a 15 cm
long two-mirror planospherical cavity acting as a mode

FIG. 9. Simplified scheme of the experimental setup. The
fundamental laser mode at 1064 nm is spatially filtered via a
single-mode polarization maintaining fiber. A computer gener-
ated phase map of the higher-order HGl;m mode is applied to the
liquid crystal spatial light modulator (SLM) (top right). An iris
separates the higher-order mode from the TEM00 mode via a
Fourier lens with a focal length f. The higher-order laser beams
(HG5;5=HG10;10=HG15;15) are spatially filtered via a two-mirror
cavity. The mode shape is detected with a beam camera and the
mode purity is analyzed with a three-mirror cavity (diagnosis
cavity). A custom-made photodetector measures the mode
matching of the diagnosis cavity in reflection.
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cleaner on which the laser is locked via the Pound-Drever-
Hall scheme. The mode cleaner cavity finesse is 457 with a
free spectral range of 997 MHz. We achieved a mode
matching of 62% for the HG5;5 mode, 47% for the HG10;10

mode and 28% for the HG15;15 mode, respectively. Note
that the mode cleaner mirrors had to be angled so to obtain
qualitatively pure modes at the cavity output.
For high spatial frequency diffraction as is present in

our experiment, the SLM expected efficiency from its
datasheet is limited to a maximal value of 40%. The
iterative algorithm calculated a projection efficiency from
the TEM00 mode to the HG5;5 of about 28% and to the
HG10;10=HG15;15 modes of about 25%. These values are
used to achieve a trade-off between a technically feasible
mode size and the SLM’s pixel size. Taking into account

the mode coupling into the mode cleaner cavity, the
total conversion efficiencies are expected to be 6.9% for
the HG5;5 mode, 4.7% for the HG10;10 mode and 2.8%
for the HG15;15. The experiment achieved a conversion
efficiency of, respectively, 6.6%/3.7% and 1.7% for
HG5;5=HG10;10=HG15;15. For these modes, the differences
between measured conversion efficiencies and correspond-
ing expected values are satisfactory. Figure 10(a) displays
the intensity profile measurements of the HG5;5, HG10;10,
and HG15;15 modes. In addition, we generated a HG25;25

mode to show the possibility of generating arbitrarily
HOMs. Its intensity profile right after the Fourier plane
is shown in Fig. 10(b).

VI. BEAM PURITY MEASUREMENT

As pointed out by Fulda et al. [26], one can inject the
considered optical mode into a nondegenerate diagnosis
cavity and measure its coupling efficiency in order to
quantify its purity. This method was identified to be non
ideal to test the purity of ALG modes because the cavity
modes themselves are not pure ALG modes. A partial
measurement of the ALG mode purity was made by fitting
the intensity profile with the corresponding analytical
function at some spatial location [24,26], which gives un
upper limit to the mode purity since the information on the
phase is lost. Unless the mirrors are angled with respect to
each other and to the incoming mode as described above,
testing HG modes faces the same difficulty. In the follow-
ing, we show that HG modes purity can be measured using
a triangular cavity.

A. HG modes coupling in a triangular cavity

We first consider a linear cavity in which the astigmatism
is high enough to lift the degeneracy between modes of
constant total order NT ¼ mþ n beyond the cavity band-
width: this cleans up the cavity mode [61–63] from
pseudodegeneracy. In order to confirm this assertion,
DarkF simulations were conducted on the same Virgo-like
cavity by artificially adding a curvature to the end mirror
either along the x or y axis. We then compute the mode
behavior while changing the radius of curvature independ-
ently along the HG mode axis, namely Rx and Ry in the
range [1172 m, 1185 m]. The results of the mode matching
are displayed on the top of Fig. 11. On the diagonal, where
only residual astigmatism exists, the matching remains
below 70% for both HG5;5 and HG10;10. When the addi-
tional astigmatism is important enough, the matching
exceeds 95%. On the bottom of Fig. 11, the intensity
profiles of intracavity modes are displayed for the maxi-
mum astigmatism considered here Rx=Ry ≃ 0.99.
The degeneracy lifting is even more efficient in the case

of a triangular cavity since adjacent modes (q ¼ �1) which
are dominantly coupled with the injected mode are of
opposite symmetry with respect to the latter. Hence, they

FIG. 10. (a) Intensity profile measurements of the HG5;5 (top),
HG10;10 (middle), and HG15;15 (bottom) modes. The mode purity
is given by the measurement of the coupling efficiency on the
reflection signal of the three-mirror diagnosis cavity. The red
resonance curves depict a low amplitude length scan over the
diagnosis cavity resonance. (b) Beam camera measurement
showing a HG25;25 mode. The picture was taken directly after
the generation of the mode without spatial filtering.
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are expelled by half the free spectral range. More generally,
this is the case for q odd. q ≥ 2 even modes for which the
coupling with the injected mode turned out to be negligible
are expelled by the q times the astigmatism degeneracy
lifting. The triangular cavity can then be considered as a
HG mode reference.

B. Results and discussion

We analyzed the mode purity via a length tunable three-
mirror triangular cavity whose finesse is about 709. Its
round trip length is 42.5 cm, resulting in a free spectral
range of 706 MHz. The beam impinges on the 50 cm radius
of curvature spherical back mirror with an angle of 4°.
This makes the astigmatism degeneracy lifting between
modes of constant total order NT and of the same
symmetry approximately q × 1.75 times the cavity pole
for q even. The mode was detected in transmission of the
diagnosis cavity via a Dataray WincamD beam camera
(512 × 512 pixels and a pixel size of 9.3 × 9.3 μm2) while
scanning the cavity length. In Fig. 12 the transmitted cavity
beams are displayed for different injected modes and they
appear to be qualitatively pure HG modes.
The mode matching of the fundamental mode is mea-

sured by observing the resonance peak on the reflected
signal while the cavity length is being scanned. Special
care is taken to collect the whole reflected power on the
photodiode. We first matched the fundamental HG0;0 to
have a reference for the achievable mode matching of the
HOMs and the coupling was better than 99%. The mode
matching of the HOMs required some slight additional
adjustments and revealed a coupling efficiencies of
96%/93%/78% for the HG5;5=HG10;10=HG15;15 modes, as
depicted in the right column of Fig. 10(a).

One may wonder what would the purity of these HG
modes be when partially measured by the intensity profile
method. This procedure was applied to all HG modes we
generated, and this purity upper limit ranged from 97% to

FIG. 11. Top: calculated matching as a function of mirror
curvature Rx and Ry. Yellow stars correspond to the astigmatism
maximum. Bottom: simulated intensity profiles of the intracavity
modes for the astigmatism maximum.

FIG. 12. From the experiment, the comparison between the
injected and transmitted beams through the triangular diagnosis
cavity for HG0;0, HG5;5, and HG10;10 modes showing that the
cavity mode is a true HG mode. Transmitted images are slightly
fuzzy because they were taken while the diagnosis cavity is being
scanned.

FIG. 13. From the experiment. (a) ALG modes generated from
corresponding HG modes. The HG mode shown here are imaged
after nontilted cylindrical lenses. (b) ALG modes generated from
pure HG5;5 and HG10;10 modes. The central peak is typical of
ALGp;0 modes.
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99%. Furthermore, in order to confirm the intensity fit
procedure with respect to the results of Refs. [24,26], we
converted these HG modes into ALG modes using a simple
combination of two cylindrical lenses [64–66]. In fact, HG
modes form a complete sets of solutions on which any
propagation mode can be decomposed. Interestingly, 45°
tilted HGm;n modes have the same decomposition on the
straight HG modes set as the ALGmin ðm;nÞ;m−n modes
except for a multiple of π=2 phase for each term [67].
When the 45° tilted mode crosses two identical cylindrical
lenses placed around its waist, with the conditions f ¼ffiffiffi
2

p
d and zR ¼ f þ d (f is the focal length of the lenses, d is

the distance separating them, and zR is the Rayleigh range
of the impinging mode), each term of the decomposition on
the straight modes set accumulates a Gouy phase shift
corresponding to the required multiple of π=2 allowing the
conversion of the 45° tilted HG mode to the corresponding
ALG mode [65]. In Fig. 13(a), we show different ALG
modes generated from a HG modes using this technique. In
Fig. 13(b), both ALG5;0 and ALG10;0 generated from pure
HG5;5 and HG10;10 modes are displayed. When the intensity
profile fit is applied to these ALG modes, similar results
(99% and 97%) were obtained. However, their actual purity
is expected not to be higher than the one of the corre-
sponding HG modes measured by the diagnosis cavity
which lies below 95%. Hence, the purity upper limit given
by the fit of the intensity profile appears to be irrelevant.

VII. CONCLUSION

We experimentally demonstrated the transformation of
the fundamental TEM00 mode to higher-order HG laser
modes as high as HG25;25 via a liquid crystal SLM.
The generated HG5;5=HG10;10=HG15;15 modes were filtered
via a two-mirror mode cleaner cavity. The measured
conversion efficiencies were 6.6%=3.7%=1.7% for the
HG5;5=HG10;10=HG15;15 modes. We also demonstrated that
HGm;n modes are compatible with triangular three-mirror
cavities used in GW detectors. We then used a triangular
cavity to analyze the generated HG modes and found mode
purity of 96%=93%=78%, respectively.
Whereas three-mirror cavities accommodate pure, rather

slightly astigmatic, HG eigenmodes, linear two-mirror
cavities suffer from mode pseudodegeneracy related to
mirror aberration. In comparison to ALG modes, HG
modes exhibit the advantage of being insensitive to the
mirrors’ astigmatism provided these are properly angled to
the impinging mode. This was verified by simulations as
well as theoretical calculations using realistic Virgo mirror
surface maps. Our results thus pave the way for further
investigations on HG modes for the reduction of thermal
noise in optical cavities. Such a thermal noise reduction
could be critical for the performance of third generation
GW detectors, such as the proposed Einstein Telescope
[9,10] or Cosmic Explorer [11,12].

Using a HG mode in GW detectors faces the problem of
its generation efficiency. Although there is a scope for it to
be improved up to few tens of %, this would require (i) a
higher laser power than initially planned for third gener-
ation GW detectors using the fundamental modes (ii) a
SLM able to stand such a high power (current record 200W
for computer controlled SLM [68]). Other methods such
as coherent amplifying network [69] shall definitely be
explored.
Also, angling the mirrors requires a prior accurate

measurement of their imperfection maps after being coated.
Since the mirror has a specific shape for monolithic
suspension purposes the manufacturing procedure (polish-
ing, coating, measurement) is to be reconsidered.
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APPENDIX A: LEMMAS’ PROOFS

Lemma 1.—Z0
0ðr; θÞ is constant and HG5;5 and

HG5þq;5−q (q ≠ 0) are orthogonal. γ0;0q is then equal to zero.
Lemma 2.—We switch to Cartesian coordinates ðx; yÞ.

We assign the index (þþ) to all spatial integrals limited
to the quadrant ðx > 0; y > 0Þ, (−þ) to the quadrant
ðx < 0; y > 0Þ, (þ−) to the quadrant ðx > 0; y < 0Þ, and
(−−) to the quadrant ðx < 0; y < 0Þ. Simple symmetry
considerations give

θð−x; yÞ ¼ π − θðx; yÞ;
θðx;−yÞ ¼ −θðx; yÞ;

cos ðð2lþ 1Þθð−x; yÞÞ ¼ − cos ðð2lþ 1Þθðx; yÞÞ;
cos ðð2lþ 1Þθðx;−yÞÞ ¼ cos ðð2lþ 1Þθðx; yÞÞ;
sin ðð2lþ 1Þθð−x; yÞÞ ¼ sin ðð2lþ 1Þθðx; yÞÞ;
sin ðð2lþ 1Þθðx;−yÞÞ ¼ − sin ðð2lþ 1Þθðx; yÞÞ:

Equivalently, for q odd,

HG5þq;5−qð−x; yÞ ¼ HG5þq;5−qðx; yÞ;
HG5þq;5−qðx;−yÞ ¼ HG5þq;5−qðx; yÞ; ðA1Þ

and for q ¼ 0 and q even,

HG5þq;5−qð−x; yÞ ¼ −HG5þq;5−qðx; yÞ;
HG5þq;5−qðx;−yÞ ¼ −HG5þq;5−qðx; yÞ: ðA2Þ

We then infer for q odd, N odd, M odd, and M ≥ 0
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γN;M
q;−þ ¼ γN;M

q;þþ γN;M
q;þ− ¼ −γN;M

q;þþ γN;M
q;−− ¼ −γN;M

q;þþ;

so

γN;M
q ¼ γN;M

q;þþ þ γN;M
q;−þ þ γN;M

q;þ− þ γN;M
q;−− ¼ 0: ðA3Þ

Likewise, for q odd, N odd, M odd, and M < 0:

γN;M
q;−þ ¼ −γN;M

q;þþ γN;M
q;þ− ¼ γN;M

q;þþ γN;M
q;−− ¼ −γN;M

q;þþ;

so γN;M
q ¼ 0. For q even, N odd, M odd, and M ≥ 0:

γN;M
q;−þ ¼ −γN;M

q;þ;þ γN;M
q;þ− ¼ γN;M

q;þþ γN;M
q;−− ¼ −γN;M

q;þþ;

so γN;M
q ¼ 0. Finally, for q even,N odd,M odd, andM < 0:

γN;M
q;−þ ¼ γN;M

q;þ;þ γN;M
q;þ− ¼ −γN;M

q;þþ γN;M
q;−− ¼ −γN;M

q;þþ;

and γN;M
q ¼ 0. We conclude that for N odd, γN;M

q ¼ 0.
Lemma 3.—With the same kind of symmetry consid-

erations, we obtain the following:

cos ð2lθð−x; yÞÞ ¼ cos ð2lθðx; yÞÞ;
cos ð2lθðx;−yÞÞ ¼ cos ð2lθðx; yÞÞ;

sin ð2lθð−x; yÞÞ ¼ − sin ð2lθðx; yÞÞ;
sin ð2lθðx;−yÞÞ ¼ − sin ð2lθðx; yÞÞ:

Using Eqs. (A1) and (A2), we get for q odd and M ≥ 0:

γN;M
q;−þ ¼ −γN;M

q;þ;þ γN;M
q;þ− ¼ −γN;M

q;þþ γN;M
q;−− ¼ γN;M

q;þþ

so γN;M
q ¼ 0. Likewise, for q even and M < 0:

γN;M
q;−þ ¼ −γN;M

q;þ;þ; γN;M
q;þ− ¼ −γN;M

q;þþ; γN;M
q;−− ¼ γN;M

q;þþ;

and γN;M
q ¼ 0.

Lemma 4.—Wedefine theπ=2 rotation symmetryRwhich
givesR½ðx;yÞ�¼ð−y;xÞ and θðR½ðx;yÞ�Þ¼θðx;yÞþπ=2. We
then have

cos ð2lθðR½x; y�ÞÞ ¼ ð−1Þl cos ð2lθðx; yÞÞ;
sin ð2lθðR½x; y�ÞÞ ¼ ð−1Þl sin ð2lθðx; yÞÞ:

For q even we have:

HG5þq;5−qðR½ðx; yÞ�Þ ¼ −HG5−q;5þqðR½ðx; yÞ�Þ;

and for q odd:

HG5þq;5−qðR½ðx; yÞ�Þ ¼ HG5−q;5þqðR½ðx; yÞ�Þ:

Applying these identities to the integral (7) for l ¼ M=2
proves the lemma statement.

Lemma 5.—For −5 ≤ q ≤ 5, the HG5þq;5−qðx; yÞ mode
is given by

HG5þq;5−qðx; yÞ ¼ C5þq;5−qH5þq

� ffiffiffi
2

p x
w

�

×H5−q

� ffiffiffi
2

p y
w

�
e−

x2þy2

w2 ; ðA4Þ

whereHl is the Hermite polynomial of order l andC5þq;5−q

is a constant. By substituting the variables X ¼ ffiffiffi
2

p
x=w and

Y ¼ ffiffiffi
2

p
y=w, the coupling coefficient γN;M

q becomes

γN;M
q ∝

ZZ
X2þY2≤2R2

w2

dXdY×ZM
N ðX;YÞ

×H5ðXÞH5þqðXÞe−X2

×H5ðYÞH5−qðYÞe−Y2

: ðA5Þ

Given the cavity conditions considered above
ffiffiffi
2

p
R=w ≃

7.8 so the integrals can be extended to infinity thanks to the
Gaussian term. Keeping the Cartesian coordinates, Zernike
polynomials can be written as [70,71]

ZM
N ðX; YÞ ¼

XJmax

J¼0

XN−2J

I¼0

AN;M × XI × YN−2J−I ðA6Þ

The last expression injected into the integral in Eq. (A5)
gives

γN;M
q ∝

XJmax

J¼0

XN−2J

I¼0

AN;M

Z þ∞

−∞
dXH5ðXÞH5þqðXÞXIe−X

2

×
Z þ∞

−∞
dY H5ðYÞH5−qðYÞYN−2J−Ie−Y

2

: ðA7Þ

Hermite polynomials admit the recursive relation [72]:

Hlþ1ðξÞ ¼ 2ξHlðξÞ − 2lHl−1ðξÞ ðA8Þ

from which one infers that ξjHlðξÞ can be decomposed
on a set of Hermite polynomials Hl0 ðξÞ with l0 ≤ lþ j.
Therefore, using the Hermite polynomials orthogonality

Z þ∞

−∞
dξHlðξÞHl0 ðξÞe−ξ2 ¼

ffiffiffi
π

p
2ll!δl;l0 ; ðA9Þ

the only nonzero terms of the discrete sum in Eq. (A7)
corresponds to both conditions 5þ I ≥ 5þ q and
5−qþN−2J−I≥5, or q ≤ I ≤ N − 2J − q. This implies
that q must satisfy 2q≤N−2J. Since minðJÞ ¼ 0, 2q ≤ N
in order to have at least a nonzero term in the sum of
Eq. (A7) (assuming the corresponding factor AN;M to be
nonzero). In other words, γN;M

q ¼ 0 for N < 2q.
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APPENDIX B: GENERATION ALGORITHM
OF HG MODES

The Gerchberg-Saxton algorithm was initially designed
to reshape the phase of a wave in a given plane knowing
both its module and the module of its Fourier transform.
This algorithm is naturally applicable in Fourier optics
where the issue is to determine the phase that a diffractive
optical element, the SLM in this case, applies on an
incident beam with a known shape to obtain the required
image in the focal plane of the Fourier lens (the diffractive
optical element is placed in the object plane of the Fourier
lens in order to avoid an additional curved wave front). The
Gerchberg-Saxton algorithm goes iteratively back and forth
between the object plane where the intensity is imposed by
the reading beam and the image plane in which the intensity
must have the required distribution, by applying either a
Fourier or an inverse Fourier transform. On each iteration,
the obtained intensity profile is substituted by the imposed
or the required one depending on the considered plane. In
these conditions, the phase of the diffracted wave in the
Fourier plane is of no interest. This represents a mandatory
degree of freedom to determine the required phase map,
otherwise the corresponding mathematical problem is too
constrained and no solution exists in the general case.
When it comes to the generation of a HG propagation
mode, both phase and amplitude are defined. In order to
release the constraint in the image plane, the mode
definition is only applied in a restricted area (named HG
area) defined beforehand, whereas the rest of the plane

(named noise or free area) is left free. The purity of the HG
mode is guaranteed even in a restricted area since it has a
Gaussian tail. The algorithm is initialized by choosing a
random phase map and constructing the near field Einðx; yÞ
with the Gaussian amplitude jTEM00ðx; yÞj. Then, each
iteration is based on the following procedure which is
summarized in Fig 14:

(i) The wave field in the image plane is computed using
an FFT algorithm:

EoutðX; YÞ ¼ F ½Einðx; yÞ�:
(ii) In the HG area, the field is replaced by the HG mode

while keeping the same energy

E0
out ¼ αHGarea × HGnormðX; YÞ; ðA10Þ

where αHGarea is the energy of Eout in the HG area
and HGnormðX; YÞ is the normalized HG mode field
restricted to the same area. The field in the noise area
remains the same.

(iii) The wave in the object plane is computed using an
inverse FFT algorithm.

E’inðx; yÞ ¼ F−1½E’outðX; YÞ�: ðA11Þ
(iv) The amplitude of the near field is replaced by

TEM00. The SLM phase map is given by the
complex argument of E’in:

φSLMðx; yÞ ¼ Arg½E’inðx; yÞ�: ðA12Þ

FIG. 14. Graphical illustration of the modified Gerchberg-Saxton algorithm for the generation of HG modes.
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For each iteration k, the error is defined as the sum of the
fraction of energy in the HG area that is not in the HGmode
and the standard deviation of the normalized intensity in the
object plane:

Ek ¼
�
1 −

�RR
HG area HGnorm × E�

out;k

�
2

αHGarea;k

	
ðA13Þ

þ
�Z Z

ðjE0
in;kj2 − jTEM00j2Þ2

�
1=2

: ðA14Þ

It decreases with each iteration. In iterative Fourier trans-
form algorithms, vortex stagnation issues might occur that
correspond to a very slow convergence or its absence.
Relaxation parameters can be introduced to the algorithm
to speed up its convergence. However, 20 iterations are
sufficient to bring the error below 1% which is satisfactory
since the HG mode is targeted to be injected into the mode
cleaner cavity. Thus, no study on the vortex stagnation
effect upon the algorithm convergence [73] with respect to

the initial phase map was conducted. Nevertheless, relax-
ation parameters were tested but no improvement was
observed [74]. The energy conversion efficiency defined as
the ratio of the energy of the field energy in the HG area to
the energy of the impinging TEM00 was also computed. It
spreads from 45% for the HG5;5 mode to 20% for the
HG15;15 mode. We used a MATLAB program for the iterative
calculation of the phase map. Several parameters for the
input mode and the output mode had to be defined in
the program. The input parameters were the beam width
impinging on the SLM surface and the ellipticity of the
mode. The output parameters included the values for the
mode orders l and m, the ellipticity as well as the waist size
of the generated HG mode and the two waists (for the x and
y axes) position along the beam propagation direction.
The size of the HG mode as well as the size of the HG area
were chosen as a trade-off between the purity of the
mode, its energy, and the finite size of the SLM pixels.
Finally, a blazed grating was added in order to obtain a free
diffraction area from unwanted light (undiffracted and
diffracted in the free area).
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[44] A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert,
and J. M. Bennett, Surface characterization techniques for
determining the root-mean-square roughness and power
spectral densities of optical components, Appl. Opt. 41,
154 (2002).

[45] T. Pertermann, J. Hartung, M. Beier, M. Trost, S. Schröder,
S. Risse, R. Eberhardt, A. Tünnermann, and H. Gross,
Angular resolved power spectral density analysis for
improving mirror manufacturing, Appl. Opt. 57, 8692
(2018).

[46] R. Bonnand, The Advanced Virgo gravitational wave
detector: Study of the optical design and development of
the mirrors, Theses, Université Claude Bernard—Lyon I,
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