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We anticipate noise from the Laser Interferometer Space Antenna (LISA) will exhibit nonstationarities
throughout the duration of its mission due to factors such as antenna repointing, cyclostationarities from
spacecraft motion, and glitches as highlighted by LISA Pathfinder. In this paper, we use a surrogate data
approach to test the stationarity of a time series which does not rely on the Gaussianity assumption. The
main goal is to identify noise nonstationarities in the future LISA mission. This will be necessary for
determining how often the LISA noise power spectral density (PSD) will need to be updated for parameter
estimation routines. We conduct a thorough simulation study illustrating the power/size of various versions
of the hypothesis tests and then apply these approaches to differential acceleration measurements from
LISA Pathfinder. We also develop a data analysis strategy for addressing nonstationarities in the LISA
PSD, where we update the noise PSD over time, while simultaneously conducting parameter estimation,
with a focus on planned data gaps.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is a
planned space-based gravitational wave (GW) mission with
an expected launch in 2034 led by the European Space
Agency (ESA) [1]. The aim of this mission is to observe
GW signals in the millihertz band, which, among others,
include astrophysical objects such as galactic white dwarf
binaries [2], massive and supermassive black hole binaries
[3], and extreme mass ratio inspirals [4]. LISAwill consist
of a set of three spacecraft arranged into an “equilateral”
triangle, each separated by L ¼ 2.5 × 106 km, connected
with a laser link. The LISA constellation will cartwheel in
an Earth-trailing heliocentric orbit around the Sun at an
angle of 20 deg between the Sun and Earth.
We expect LISA noise will be nonstationary in numerous

ways. For example, as the spacecraft will not always be
able to point in the same direction toward Earth for us to
receive data, there will be planned communication inter-
ruptions (or gaps), where the antennae will be repointed to
adjust the beam [2,5]. This means physically moving the
antennae, which will create noise. Another subtle effect of
the repointing is that the distribution of mass near the test
mass will change, which might affect the gravity gradient
noise, leading to a change in acceleration noise [6,7].
Controls may need to actively hold the proof mass using

electrostatic actuation, which may lead to charging of the
proof mass, and a change in the state of the noise [8–10].
Cyclostationarities are also expected in LISA, for exam-

ple, due to the cartwheeling motion and orbits of the
satellites. As LISA does not have uniform sensitivity in
the sky and is more sensitive in the direction perpendicular to
the plane of the constellation, there will be higher amplitude
confusion noise when pointing to the line of sight of the
Galactic Center as this is where a large amount of galactic
white-dwarf binaries are located [11]. In addition, LISA has
a periodic orbit around the Sun, and pseudoperiodic solar
activity can lead to cyclostationary noise [12,13].
LISA Pathfinder (LPF) was a ESA satellite whose goal

was to demonstrate the technology for the future LISA
mission [14]. Glitches in differential acceleration measure-
mentsΔg have been analyzed in previous studies, occurring
at a rate of one glitch per two days [14,15]. As LISA will
have a similar architecture to LPF, we expect glitches as
another form of nonstationarity in the future mission [16].
To understand exactly what it means to have nonsta-

tionary noise, first we must discuss precisely what a
stationary process is. A (weakly) stationary time series Y ¼
ðY1; Y2;…; YnÞ⊤ is a stochastic process that has constant
and finite mean and variance over time, i.e.,

E½Yt� ¼ μ < ∞;

Var½Yt� ¼ σ2 < ∞;*matt.edwards@auckland.ac.nz
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for all t, and an autocovariance function γð:Þ that depends
only on the time lag s [17]. That is, for a zero-mean weakly
stationary process, the autocovariance function has the
form

γðsÞ ¼ E½YtYtþs�; ∀ t;

where E½:� is the expected value operator and t represents
time. Note that the PSD function is the Fourier transform of
the autocovariance function.
Nonstationarities in a time series can therefore come in

the form of a trend, heteroskedasticity, or time-varying
autocorrelations (or PSDs). One can also consider ampli-
tude modulation (AM) and frequency modulation to be
forms of nonstationarity. In this paper, we are interested in a
time-varying PSD structure, where we want to identify and
handle this type of nonstationarity. To this end, we propose
two hypothesis tests to identify whether a time series is
stationary in terms of its PSD, which will be described in
Secs. II C and II D. Further, we have developed an analysis
strategy for dealing with nonstationary LISA noise, where
we update the estimate of the noise PSD over time, rather
than fixing it and assuming stationarity. It is worth noting
that in the context of Laser Interferometer Gravitational-
Wave Observatory (LIGO) data analysis, fluctuations in the
PSD can bias parameter estimates [18–20]. Here, we are
particularly interested in the gap problem [2,5], where we
believe satellite repointing could temporarily change the
noise structure of the LISA satellites.
Common approaches to testing the stationarity of a time

series are the so-called unit root tests, including the
Augmented Dickey-Fuller test [21], Phillips-Perron test
[22], and the Kwiatkowski-Phillips-Schmidt-Shin test [23]
for detecting a particular type of nonstationarity, namely a
unit root autoregressive process. The behavior of these unit
root tests strongly depends on the long-run variance
estimator used for rescaling the test statistic, and they
often fail to control the size, i.e., falsely reject stationarity
too often for stationary time series with strong autocorre-
lation Müller [24]. Unit root tests have been noted in the
GW literature by Romano and Cornish [25] to not be
of particular value as GW noise generally exhibits
high autocorrelation with roots close to the unit circle.
Moreover, these tests depend on the assumption of
Gaussianity which may not be appropriate for GW data
in the presence of glitches.
A purely visual test to check whether the periodograms

change over time is based on the spectrogram by dividing
the time series into smaller segments, and visualizing the
successive segment-based periodograms. These form the
starting point for formal spectral analysis tests that con-
sider evolutionary (or time-varying) spectral estimates
using time-frequency representations of the data. They
share the common principle of comparing statistics based
on adjacent segments. The most notable of these are the

wavelet tests of von Sachs and Neumann [26] and Nason
et al. [27], where the authors propose using Haar wavelets
of time-varying periodograms to test for covariance statio-
narity, and the Priestley–Subba Rao test [28], which tests
the uniformity of a set of evolutionary spectra at different
time intervals and is similar to a two-factor analysis of
variance (ANOVA). The wavelet test and Priestley–Subba
Rao test use the asymptotic distribution of their test statistic
under various assumptions on the local spectra, which
might be difficult to verify in any particular situation and
often rely on Gaussian distributions, thus failing to control
the size for heavy-tailed distributions. The Priestley–Subba
Rao test requires the independence of time-frequency bins,
which may lead to stationarity decision errors due to biased
estimations. In the context of GW data analysis for LIGO
and Virgo, Abbott et al. [19] visualized potential non-
stationarity of LIGO noise time series by a scalogram
showing the amplitudes of wavelet basis functions at each
discrete time and frequency. After prewhitening the data,
the sum of squares of wavelet amplitudes would have a chi-
squared distribution when applied to stationary Gaussian
noise. Then, an Anderson-Darling test [29] was applied to
test against deviations from this chi-squared distribution. Its
performance will depend critically on the assumption of
Gaussianity and the spectral density estimate used for
prewhitening. Therefore, the development of stationarity
tests against the alternative of a time-varying PSD that do
not rely on Gaussian assumptions is important for practical
analysis of GW data.
To avoid reliance on restrictive assumptions to derive the

asymptotic distribution of the test statistic under the null
hypothesis, various resampling approaches for testing the
stationarity of a time series have also been introduced. One
such approach by Swanepoel and Van Wyk [30] uses a
modification of the bootstrap of Efron [31] to test the
equality of two spectral densities from two independent
time series. This approach still depends on parametric
assumptions as autoregressive models are fitted to the data
in each segment and the bootstrap is based on the
independence assumption, which is not given for over-
lapping segments. The test is applicable only for two
independent time series and would suffer from the multiple
comparison problem for multiple segments. Dette and
Paparoditis [32] use a frequency-domain bootstrap based
on the L2 between two nonparametrically estimated PSDs
and pooled PSD. It does not make the assumption of
independence but requires the estimation of the spectral
density matrix, which would only be possible with con-
siderable computational time in the case of spectrograms.
In general, the power of bootstrap tests for stationarity
depends on the particular type of bootstrap, and though
asymptotically consistent under certain conditions, they do
not provide general finite-sample guarantees [33].
To avoid deficiencies of the bootstrap methods, our tests

fall into the lesser-known surrogate data tests, which were
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first introduced by Theiler et al. [34] for testing non-
linearities in time series and later adapted by Xiao et al.
[35] and Borgnat and Flandrin [36] for testing stationarity.
These tests are nonparametric in nature, where the original
data are resampled to create stationary surrogates with
the same periodogram. A version of the multitaper spectro-
gram of Thomson [37] with Hermite (rather than Slepian)
window functions (as discussed by Bayram and Baraniuk
[38]) is computed, where the estimated spectrum in each
time segment is compared to a time-averaged spectrum
using a distance measure, typically a combination of the
Kullback-Leibler divergence and the log spectral deviation.
The test statistic for these tests are the sample variance of
these distances, and a Gamma distribution is fitted to
describe the null distribution of test statistics.
In this paper, we propose two variants on the surrogate

data testing of Xiao et al. [35] and Borgnat and Flandrin
[36] that do not rely on the Gamma distribution to describe
the distribution of the test statistic under the null hypoth-
esis. We consider an autoregressive spectrogram where
each short-time segment uses a frequentist autoregressive
(AR) estimate of its spectrum, with order selected based on
the Akaike information criterion (AIC). In the first variant,
we can compute the Kolmogorov-Smirnov statistic, the
Kullback-Leibler distance, or the log spectral distance to
measure the distance between local spectra of short time
segments and the global spectrum. A test statistic is then
computed as the sample variance of these distances, and we
use surrogates to populate the sampling distribution of this
test statistic under the null hypothesis of stationarity. Large
variability in the distances of the original time series would
provide evidence against stationarity. As a novel alterna-
tive, we fit a least squares regression line to the cumulative
median of Euclidean distances between columns in the AR
spectrogram. The slope of this line is used as a test statistic,
and surrogates are again used to generate the null distri-
bution. Here, if a time series is stationary, we would expect
the PSD in neighboring segments of the spectrogram to be
similar over time, meaning the median of Euclidean
distances should fluctuate around a constant. A nonzero
slope would then provide evidence against the stationarity
hypothesis. In both variants, empirical percentiles are used
to create a critical value that is used as a rejection threshold.
We introduce these hypothesis tests to be used as a tool

for future LISA data analysis, with the overall goal of
determining how often we should update the noise PSD.
Once this is decided, parameter estimation routines can be
implemented. In this paper, we propose the use of a blocked
Metropolis-within-Gibbs sampler to simultaneously esti-
mate the parameters of a galactic white-dwarf binary
gravitational wave signal and estimating the noise PSDs
before and after a planned data gap. We show that the
stationarity tests based on the surrogate data approach can
be applied to the residuals to check the validity of model
assumptions.

The paper is structured as follows. In Sec. II, we
introduce the notion of surrogate data testing, defining
two specific hypothesis tests to be used in the future LISA
mission. We then conduct a simulation study to demon-
strate the power of these tests and then apply the tests to
differential acceleration measurements from LPF to high-
light nonstationarities in that data. In Sec. III, we introduce
our data analysis strategy for handling nonstationary LISA
noise. We inject a galactic white-dwarf binary GW signal in
piecewise stationary noise and implement a blocked
Metropolis-within-Gibbs sampler for posterior computa-
tion of both signal parameters and noise PSDs. We mimic
what we believe could happen to LISA noise when
repointing satellites during planned gaps and apply statio-
narity tests to residuals for model checking. We then give
concluding remarks in Sec. IV.

II. IDENTIFYING NONSTATIONARY NOISE

A. Stationary surrogates

Surrogate data testing was originally proposed by
Theiler et al. [34] for testing nonlinearities in time series
and later adapted by Xiao et al. [35] and Borgnat and
Flandrin [36] for testing stationarity. The main idea here is
that one can create stationary “surrogates” of a (potentially
nonstationary) time series by directly manipulating the data
in the frequency domain, preserving the second-order
statistics but randomizing higher-order statistics. In this
way, we can generate a stationary surrogate of a time series
that has the same empirical spectrum (periodogram) as the
original time series.
First, Fourier transform the time series YðtÞ, t ¼ 1;…; n

using

ỸðωjÞ ¼
Xn
t¼1

YðtÞe−itωj

to get a frequency-domain representationwhereωj¼2πj=n,
j ¼ 0;…; n − 1, are the Fourier frequencies. The Fourier
coefficients can be expressed in polar coordinates such that

ỸðωjÞ ¼ AðωjÞeiφðωjÞ;

where AðωjÞ ¼ jỸðωjÞj is the magnitude vector and
φðωjÞ ¼ arg ðỸðωjÞÞ is the phase vector.
Keeping the magnitude vector ðAðω0Þ;…; Aðωn−1ÞÞ

fixed, we replace the phase vector ðφðω1Þ;…;φðωn−1ÞÞ
by a new phase vector ðφ�ðω1Þ;…;φ�ðωn−1ÞÞ that is
populated by independent and identically distributed
Uniform½0; 2π� random variables. We now have a random-
ized frequency-domain representation of the surrogate
Ỹ�ðωjÞ ¼ AðωjÞeiφ�ðωjÞ, which is inverse Fourier trans-
formed to give a time-domain representation of the
surrogate:
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Y�ðtÞ ¼ 1

n

Xn−1
j¼0

Ỹ�ðωjÞeitωj :

Assume n is even, and let ðω0;ω1;…;ωn=2−1;ωn=2Þ be the
first Fourier frequencies. We only randomize the phase for
ω1;ω2;…;ωn=2−1 because ω0 and ωn=2 are always real
valued with zero phase, and the subsequent n=2 Fourier
coefficients are complex conjugates of the first Fourier
coefficients for the inverse Fourier transform to be real
valued, meaning φðωjÞ ¼ −φðωn−jÞ.
Surrogates are extremely useful for testing stationarity as

they not only have the same periodogram as the original
data (which may or may not be stationary), but they are
stationary themselves, meaning if one can compute a test
statistic that can distinguish the null hypothesis (stationary)
from the alternative hypothesis (nonstationary) it is
straightforward to generate the sampling distribution of
the test statistic by computing the test statistic on a large
number of surrogates. We now focus our attention on useful
test statistics based on the autoregressive spectrogram.

B. Autoregressive spectrogram

The spectrogram is the most fundamental tool used in
time-frequency analysis. It contains at each column an
approximation of the PSD function for consecutive time
intervals. Thus, it allows us to assess the evolution of this
function over time. It is computed as follows. First,
compute the short-time Fourier transform,

Ỹðω; TÞ ¼
Z

Wðt − TÞYðtÞe−itωdt;

whereWð:Þ is a window function of duration T. Then, take
the squared modulus of each segment. This amounts to
computing the periodogram of short windowed segments of
the data, which may or may not be overlapping in time.
It is well known in the time series literature that the

periodogram is an asymptotically unbiased estimator of the
spectral density function, but it is not a consistent estimator.
This has led to a large amount of literature on periodogram
smoothing to reduce the variance.
The most popular parametric approach is to fit an

autoregressive model where the order chosen by AIC.
In this paper, we use an AR estimate of the spectrum
for each segment of the spectrogram rather than using the
raw periodogram. Although there are more sophisticated
approaches to spectrum estimation that perhaps do not rely
on parametric assumptions (see for example Choudhuri
et al. [39], Edwards et al. [40], Kirch et al. [41], and
Maturana-Russel and Meyer [42] for novel Bayesian
approaches), we use the frequentist AR method for the
sake of computational speed and ease.
For the remainder of the paper, when computing the AR

spectrogram, we utilize the Tukey window with tapering

coefficient equal to ð1 − OverlapÞ=10, where Overlap is the
proportion of data that neighboring time segments coincide.

C. Variance of Local Contrast (VOCAL) Test

In this section, we describe the first of two surrogate
tests, which we call the Variance of Local Contrast
(VOCAL) Test. As with any hypothesis test, we need to
first define a test statistic that can distinguish between the
null hypothesis and alternative hypothesis.
First, consider the original time series and find its AR

spectrogram. We need to contrast local features in the
spectrogram with the global spectrum by computing a local
contrast for each time segment (column) in the spectro-
gram. This is computed as

cl ¼ κðf̂l; f̂Þ; l ¼ 1; 2;…; L;

where L is the number of time segments (columns) in the
spectrogram, f̂l is the estimated (local) PSD of the lth time
segment of the spectrogram, f̂ is the estimated (global)
PSD of the entire time series (estimated using the same AR
routine in the spectrogram), and κ is a suitable spectral
distance,
In this paper, we use three different distance or dissimi-

larity measures κ to specify the local contrasts. The first one
uses the Kolmogorov-Smirnov (KS) statistic

κð1Þðf1; f2Þ ¼ sup
ω
jF1ðωÞ − F2ðωÞj;

where F1 and F2 are standardized empirical cumulative
distribution functions computed by normalizing the esti-
mated PSDs f1 and f2 (such that they integrate to 1 and can
be considered to be probability density functions) and
taking their cumulative sums. The second one uses the
symmetric Kullback-Leibler (KL) divergence

κð2Þðf1; f2Þ ¼
1

2

Z
ðf1ðωÞ − f2ðωÞÞ log

f1ðωÞ
f2ðωÞ

dω;

where f1 and f2 are normalized PSDs. The third is the log
spectral distance (LSD), a dissimilarity measure defined
directly on the unnormalized spectral densities by

κð3Þðf1; f2Þ ¼
Z ���� log f1ðωÞf2ðωÞ

����dω:
Whereas the KS and KL distances are insensitive to any
changes in scale of the PSD because of the normalization,
the LSD is well suited to quantify differences in both shape
and scale such as amplitude modulations.
Fluctuations in the local contrasts can be used to

distinguish between stationarity and nonstationarity as
we would expect very little variability in the local contrasts
if a time series was stationary and more variability if the

MATTHEW C. EDWARDS et al. PHYS. REV. D 102, 084062 (2020)

084062-4



time series was nonstationary. To this end, we use the
sample Variance of Local Contrasts as the test statistic for
this test, i.e.,

V ¼ VarðcÞ;

where c ¼ ðc1; c2;…; cLÞ.
We can then generate the sampling distribution of this

test statistic under the null hypothesis by repeating this
same process on stationary surrogate data. That is, for each
surrogate (indexed by s ¼ 1; 2;…; S, for large S), compute
the AR spectrogram, the local contrasts cs, and finally the
test statistic to give us

V0ðsÞ ¼ VarðcsÞ; s ¼ 1; 2;…; S;

where cs ¼ ðcs;1; cs;2;…; cs;LÞ.
The hypothesis test can then be formalized by consid-

ering where V lies in the distribution of V0. Let

H0∶ V < γ ðstationaryÞ;
H1∶ V ≥ γ ðnonstationaryÞ;

where γ is the critical value chosen such that

pðV0 ≤ γÞ ¼ 1 − α;

where α is the rejection threshold. Thus, for an α ¼ 0.05
rejection threshold, γ is computed as the 95% percentile
of V0. Alternatively, an approximate p-value can be
computed by

1

S

XS
s¼1

IfV0ðsÞ≥Vg;

where I is an indicator function. Note that this is a one-
sided test.
The precision to which the p-value can be computed

depends on the number of surrogates generated. For
example, if S ¼ 1; 000, the p-value can be computed to
three decimal places, and if S ¼ 10; 000, the p-value can be
computed to four decimal places.
As an illustrative example of the test, consider the AR

model, defined as

Yt ¼
Xp
i¼1

φiYt−i þ εt;

where p is the order, ðφ1;…;φpÞ are the model parameters,
and εt ∼ Nð0; σ2Þ for all t is the white noise innovation
process.
Consider the case where we have a length n ¼ 213 time

series generated from an AR(2) with parameters (0.9,
−0.9), and we concatenate this with a length n ¼ 213 time

series generated from an AR(1) with parameter 0.9, each
with standard normal innovations, as illustrated in Fig. 1.
Setting the overlap to 75% and window length to 210, the

associatedAR spectrogram can be seen in Fig. 2. Notice how
the spectrum changes around halfway through the time
series.
We now generate 1000 surrogates. One example of a

surrogate of our original time series can be seen in Fig. 3
and its associated AR spectrogram can be seen in Fig. 4.
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FIG. 1. Time series containing 213 realizations from an AR(2)
with parameters ð0.9;−0.9Þ and 213 realizations from an AR(1)
with parameter 0.9. Each series uses N(0,1) innovations.
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FIG. 2. AR spectrogram from the time series presented in Fig. 1.
Notice the abrupt change in PSD structure at the halfway point.
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FIG. 3. One example of stationary surrogate data based on the
time series presented in Fig. 1.
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Using the KS statistic as the local contrast, we can
generate the test statistic V from the original data and the
empirical sampling distribution of the test statistic using
ðV0ð1Þ; V0ð2Þ;…; V0ðSÞÞ. Using a 5% rejection threshold,
we compute the 95% percentile of the empirical sampling
distribution. This is illustrated in Fig. 5. As the test statistic
V is greater than the 95% percentile of the empirical
sampling distribution, we reject the null hypothesis of
stationarity.

D. Slope of Median Euclidean Distance (SOMED) Test

For our second surrogate test, we compare the Euclidean
distances between the estimated PSD functions over time,
i.e., a comparison between the columns of the spectrogram.
If a time series is stationary, each column in the spectro-
gram should look approximately similar over time (see,
e.g., Fig. 4). Consequently, a sequence of consecutive
distances should fluctuate around a constant. We propose to
test stationarity by testing the significance of the slope in a
simple linear regression model fitted to these distances.

First, we calculate the AR spectrogram. This conforms a
matrix ðr ×mÞ where the rows and columns stand for the
energy or power at a particular frequency and the time
intervals, respectively. Then, we calculate the Euclidean
distance of each columnwith respect to the other ones, that is,

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXr
k¼1

ðYki − YkjÞ2
s

;

where Yi ¼ ðY1i;…; Yki;…; YriÞ⊤ is the ith column of the
spectrogram for i ¼ 1;…; m. The distances d compound a
symmetric matrix D, which has a vector of zeros in its
diagonal.
Since D is symmetric, we discard the upper triangular

part and calculate the median of each row, which generates
a sequence v ¼ ðv2;…; vmÞ, where vi is the median of the
Euclidean distances of the estimated PSD for the ith time
interval (column in the spectrogram matrix) with respect to
all the estimated PSD of the previous time intervals; i.e., it
is a cumulative median. Since the first vi values embody a
few comparisons that tend to generate low discrepancies,
these can be discarded, for instance, the first 10% of the
sequence.
If the time series is stationary, we would expect a similar

PSD across time. In other words, the cumulative median of
the Euclidean distances should fluctuate around a constant,
which can be tested evaluating the slope of a fitted simple
linear regression model. Thus, we fit a linear model
yi ¼ β0 þ β1xi þ εi, where the responses are the sequence
v and the explanatory variables points in time. We assume
that the errors εi are independent and identically distributed
with EðεiÞ ¼ 0 and VarðεiÞ ¼ σ2. If the estimated slope is
zero, it means that the time series is stationary; otherwise,
the time series is nonstationary. We assess this assumption
of the time series through the following hypotheses:

H0∶ β1 ¼ 0 ðstationaryÞ
H1∶ β1 ≠ 0 ðnonstationaryÞ:

The null hypothesis establishes that the sequence of
medians v does not change over time or equivalently the
PSD functions do not vary significantly over time, showing
the stationarity of the time series.
To test H0, we compare the slope estimated from the

original data β̂ with the empirical distribution of the slopes
estimated from surrogate datasets β̂S ¼ ðβ̂1;…; β̂SÞ, i.e.,
under the null hypothesis that assumes stationarity. Then,
the p-value is calculated by

1

S

XS
s¼1

ðIf−jβ̂j>β̂sg þ Ifjβ̂j<β̂sgÞ;

where I is an indicator function.
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FIG. 4. AR spectrogram from the stationary surrogate data
presented in Fig. 3.
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FIG. 5. Empirical sampling distribution of test statistic (Vari-
ance of Local Contrasts computed using the KS statistic). The
dotted black line is γ (the 95% percentile of this null distribution),
and the dashed pink line is the test statistic V from the original
time series.
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This test also has the potential of detecting glitches using
conventional statistical techniques used to detect outliers in
linear regression models. This can be assessed by analyzing
the cumulative median values of the original dataset.
Consider the AR spectrogram used in Sec. II C. The

nonstationary design of this process can be clearly noted in
the spectrogram displayed in Fig. 2. The two PSDs
corresponding to the AR(2) and AR(1) processes have
their peaks at different frequencies. This difference is also
clear in the comparison of the Euclidean distances dis-
played in Fig. 6. The discrepancy in the PSD estimates is
represented in the magnitude of the distances which con-
form a block in the lower-right part.
The medians of the Euclidean distances of a specific time

interval in Fig. 6 with respect to its previous intervals are
displayed in Fig. 7. The design of the process can be
noticed: the first half is centered below the second one. The
slope of the simple linear model is evidently nonzero. The
discrepancy of the PSD estimates does not seem to
fluctuate randomly around a constant, which is evidence
in favor of the nonstationary nature of the process.
Comparing this slope with the empirical distribution of
the slopes calculated from the surrogate datasets, we get a

p-value of 0.000. The Slope of the Mean Euclidean
Distance (SOMED) test rejects the null hypothesis, iden-
tifying successfully this dataset as nonstationary.

E. Testing simulated data

We now apply the surrogate tests to simulated AR data
(with standard white noise innovations) and compute power
or size for different scenarios. Consider a length n ¼ 212

time series Y that is split in half into two length n=2 ¼ 211

time series Y1 and Y2. For the following three scenarios, let
Y1 and Y2 have the following:
(1) same dependence structure,
(2) different dependence structure,
(3) similar dependence structure,

where “dependence structure” refers to the autocovariance
function of a time series, or equivalently the spectral
density function, which is its Fourier transform.
In scenario 1, we consider a time series with the same

dependence structure (and therefore same PSD) throughout
its duration. Let Y1 and Y2 be generated from an AR(1)
with parameter 0.9. In this scenario, we show that both tests
yield small type I errors, i.e., do not reject the null
hypothesis of stationarity the vast majority of times.
In scenario 2, we look at an extreme example, where Y1

and Y2 have vastly different dependence structures. Let Y1

be generated from an AR(2) with parameters (0.9, −0.9)
and Y2 be generated from an AR(1) with parameter 0.9.
Here, we demonstrate that both methods reject the null
hypothesis of stationarity, with high power.
In scenario 3, we let Y1 and Y2 have very similar (but not

equivalent) dependence structures. Let Y1 come from an
AR(1) with parameter 0.8 andY2 come from an AR(1) with
parameter 0.9.
Finally we add a fourth scenario:
(4) Time-varying dependence structure.

We use a time-varying autoregressive model), where
coefficients vary linearly from -0.6 to 0.6. Here, we
demonstrate that both approaches reject the stationarity
hypothesis when the spectrum is time varying, with
high power.
For each scenario, we generate a time series and compute

its AR spectrogram and test statistic. We then create 1000
stationary surrogates, compute their AR spectrograms and
test statistics, and compare the observed test statistic
against the sampling distribution of test statistics. If the
observed test statistic is in the tails of the distribution, this
gives us evidence against the stationarity hypothesis.
Specifically, we use the 95% percentile as the critical value
for the one-sided VOCAL tests (i.e., a p-value of < 0.05)
and p-value of <0.05 for the two-sided SOMED test.
The AR spectrograms are generated using a window

length of T ¼ 29 and overlap of 75%. We conduct both the
VOCAL and the SOMED hypothesis tests and consider the
KS, KL, and LSD variants on the VOCAL test.
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We replicate each simulation 1000 times and report the
size or power of each test, at the 5% significance level,
where the size of a test is the probability of falsely rejecting
the null hypothesis when it is true (or the probability of
making a type I error), and the power of a test is the
probability of correctly rejecting the null hypothesis when
it is false (or 1 minus the probability of making a type II
error). Type I and II errors are equivalent to false positives
and false negatives, respectively. Our results are presented
in Table I.
We see that when Y1 and Y2 have the same PSD, all tests

have a very small test size and there is less than a 5%
chance of making a type I error. For the extreme case where
Y1 and Y2 have very different PSDs, all tests give us power
1, which means there is zero chance of making a type II
error. In the case where we have similar but not equivalent
PSDs, all tests reject the null hypothesis the majority of the
time, and the SOMED test works particularly well, which is
remarkable considering how similar the Y1 and Y2 are. The
LSD test, though, has very low power in this scenario, as it
is less suited to discriminate between small changes in
distributional shapes than the KL and KS distance mea-
sures. When we have a time-varying PSD, we again have
high power. All of these results give us great confidence
that the surrogate tests are performing as required.

F. LISA Pathfinder

We now demonstrate that our surrogate tests can detect
nonstationarities in the clean (level 3) Δg data from the
noise runs of LPF. These data have been corrected for the
acceleration coming from centrifugal force, acceleration on
the x axis coming from the spacecraft motion along other
degrees of freedom, and spurious acceleration noise from
the digital to analog converter of the capacitive actuation
and Euler force. Details can be found in the technical note
on the LPF data archive [43].
We analyze segments from two separate noise runs.

These have the following starting times and lengths:
(1) 2016-04-03 14∶55∶00 Coordinated Universal Time

(UTC) for 12 days, 16 h, 29 min, 59.40 s. We refer to
this dataset as the glitch dataset.

(2) 2017-02-13 07∶55∶00 UTC for 18 days, 13 h,
59 min, 59.40 s. We refer to this data set as the
amplitude modulation (AM) dataset.

The LPF data are originally sampled at a rate of 10 Hz
(with sample intervalΔt ¼ 0.1 s). For the glitch dataset, we
downsampled the data to 0.2 Hz (Δt ¼ 5 s) to obtain a
Nyquist frequency of 0.1 Hz (but first Tukey windowing
with parameter 0.01, then applying a low-pass Butterworth
filter of order 4 and critical frequency 0.1 Hz to avoid
aliasing issues). The frequency range of interest for most
GW signals detectable by LISA is ½10−4; 10−1� Hz. To
resolve the lowest frequency in this band, the shortest (base
2) time series we can analyze is n ¼ 211. We therefore split
the data into nonoverlapping segments of length n ¼ 211 to
speed up computations.
It is important to note that in the mean sense of

stationarity, once filtered and downsampled, the glitch
dataset is nonstationary, as there is a trend. We therefore
remove this trend piecewise linearly for each nonoverlap-
ping segment, and we focus our attention on the question of
whether LPF noise is nonstationary in terms of its auto-
covariance function, or equivalently its PSD. The AR
spectrogram (with window length T ¼ 210 and 75% over-
lap) of the glitch dataset can be seen in Fig. 8.
For the AM Data Set, we take the level 3 data without

any additional preprocessing. We examine the first 4 h of
this data set. The AR spectrogram (with window length
T ¼ 210 and 75% overlap) of the AM Data Set can be seen
in Fig. 9.

1. Glitch dataset

Here, we analyze the glitch dataset for four different
cases. These are:
(1) the full time series (see Fig. 10),
(2) a segment with a large glitch at the end of the time

series (see Fig. 11),
(3) a segment with a large glitch not at the end of the

time series (see Fig. 12),
(4) a stationary segment with no glitches present

(see Fig. 13).
For the following surrogate tests, we compute an AR

spectrogram with no overlap and window length 29 for ease

TABLE I. Test size (probability of falsely rejecting H0 when it
is true) for scenario 1 and test power (probability of correctly
rejecting H0 when it is false) for scenarios 2, 3, and 4.

Scenario KS KL LSD SOMED

1 0.036 0.048 0.046 0.046
2 1.000 1.000 1.000 1.000
3 0.794 0.739 0.049 0.962
4 1.000 1.000 1.000 0.999
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FIG. 8. AR spectrogram of the glitch dataset.

MATTHEW C. EDWARDS et al. PHYS. REV. D 102, 084062 (2020)

084062-8



1 and 27 for cases 2–4. One thousand surrogates are then
used to generate the sampling distribution of the test
statistics.
The full downsampled, filtered, and piecewise linear

detrended data can be seen in Fig. 10. This dataset is full of
transient, high amplitude “glitches.”

When considering the full dataset, we report a p-value of
0.001 for the KS variant and 0.000 for the KL and LSD
variants of the VOCAL test and 0.001 for the SOMED test.
These results indicate that all of the surrogate tests provide
evidence against the notion of stationarity, which we
attribute to the glitches.
Now, consider the case where we look at a segment of the

dataset where the largest glitch is present. We can see in
Fig. 10 that the largest glitch in the time series is some-
where around 45 h into data collection (in the 15th segment
from preprocessing). We zoom on this segment (of length
n ¼ 211) and its neighboring earlier (14th) segment in
Fig. 11.
When analyzing the time series in Fig. 11, where the

glitch is at the end of the time series, we report a p-value of
0.001 for the KS variant of the VOCAL test, 0.000 for the
KL and LSD variants of the VOCAL test, and 0.002 for
the SOMED test, all providing very strong evidence against
the notion of stationarity. We attribute this nonstationarity
to the glitch present in the dataset.
The glitch at the end of the times series causes naturally a

large Euclidean distance for the last interval in comparison
to the previous ones in the SOMED test case. This is
reflected in the estimated simple regression model. The
glitch has a leverage effect in the estimated slope, which
results in the rejection of the null hypothesis.
When the large glitch is not at the end of the time series

as in Fig. 12, the KS, KL, and LSD variants of the VOCAL
test all yield p-values of 0.000, meaning we have very
strong evidence against stationarity. However, for the
SOMED test, we report a p-value of 0.701, which means
we are not rejecting the notion of stationarity here.
Unlike the previous case, the glitch is relatively in the

middle of the sequence, which results in a large value in one
of the central cumulative medians of the Euclidean dis-
tances in the SOMED test case. This large value has a null
effect on the estimated slope of the linear model due to its
position. Thus, the method fails wrongly to reject the null
hypothesis. However, this large value can be visualized via
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displayed time series.
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the Cook’s distance, a measure of the impact of a single
observation in the parameter estimates. In this case, the
interval that contains the glitch has a Cook’s distance value
of 0.39, which is extremely close to the cut point given by
the rule of thumb 0.4, and it is quite different from the rest
of the Cook’s distance values, which have a median of
0.014 and standard deviation of 0.070. Even though the
SOMED test fails to reject the stationary hypothesis in this
case, the glitch can be detected, and thus the validity of the
conclusions based on this test can be questioned. This
procedure can be applied to other similar situations.
For case 4 where the data look stationary, we report the

following p-values: 0.836, 0.198, and 0.361 for the KS,
KL, and LSD variants of the VOCAL test, respectively, and
0.702 for the SOMED test. All three do not reject the null
hypothesis, meaning we have no evidence against statio-
narity for this segment of data.

2. AM dataset

We see cyclostationary behavior in the LPF data. This is
highlighted in the AM dataset, which is illustrated in
Fig. 14.

For all of the surrogate tests, we compute an AR
spectrogram with no overlap and window length 29.
Using 1000 surrogates to generate the sampling distribution
of the test statistics, we report a p-value of 0.008 for the KS
variant of the VOCAL test, 0.000 for the KL and LSD
variants of the VOCAL test, and 0.000 for the SOMED test,
all providing very strong evidence against the notion of
stationarity.

III. ADDRESSING NONSTATIONARY NOISE

Using the hypothesis tests defined in Secs. II C and II D,
or similar, we can identify if LISA noise is nonstationary.
This will help us to determine where and how often to split
LISA data so that each time segment is locally stationary,
with its own noise PSD (to be independently estimated/
updated). Once we know where to segment the data, we can
develop a LISA data analysis strategy.
Here, we describe a parameter estimation routine for one

nonchirping galactic binary GW signal, where we simulta-
neously estimate signal parameters and the LISA noise
PSD over time to take into account the time-varying nature
of the noise. We include a planned gap in the data stream
and use different noise structures before and after the gap to
mimic what we expect to happen to LISA noise due to
antenna repointing.

A. Galactic white-dwarf binary gravitational
wave signal model

We assume the low frequency approximation to the
LISA response as described by Carré and Porter [2]. We
define the GW strain in one time-delay interferometry
(TDI) [44] channel as

hðtÞ ¼ hþðtÞFþðtÞ þ h×ðtÞF×ðtÞ;

where the GW polarizations are defined as

hþðtÞ ¼ A0ð1þ cos2 ιÞ cos ðΦðtÞ þ φ0Þ;
h×ðtÞ ¼ −2A0 cos ι sin ðΦðtÞ þ φ0Þ;

for a nonchirping galactic white-dwarf binary. Here, A0 is
the amplitude, ι is the inclination angle between the orbital
plane of the source and the observer, φ0 is the initial phase,
and ΦðtÞ is the time-dependent phase, which for a circular
orbit is defined as

ΦðtÞ ¼ 2πω0ðtþ R⊕ sin θ cos ð2πωmt − ϕÞÞ;

where ω0 is the monochromatic frequency, ωm is the LISA
modulation frequency (defined as the reciprocal of the
number of seconds in a year), R⊕ is the time light takes to
travel one astronomical unit, and ðθ;ϕÞ is the sky location
of the source.
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Using the definitions of Rubbo et al. [45], the antenna beam factors are

FþðtÞ ¼ 1

2
ðcos ð2ψÞDþðtÞ − sin ð2ψÞD×ðtÞÞ;

F×ðtÞ ¼ 1

2
ðsin ð2ψÞDþðtÞ þ cos ð2ψÞD×ðtÞÞ;

where

DþðtÞ ¼
ffiffiffi
3

p

64
ð−36sin2ðθÞ sin ð2αðtÞ − 2λÞ þ ð3þ cos ð2θÞÞðcos ð2ϕÞð9 sin ð2λÞ− sin ð4αðtÞ− 2λÞÞ

þ 2 sin ð2ϕÞðcos ð4αðtÞ− 2λÞ− 9 cos ð2λÞÞÞ− 4
ffiffiffi
3

p
sin ð2θÞðsin ð3αðtÞ− 2λ− ϕÞ− 3 sin ðαðtÞ − 2λþ ϕÞÞÞ;

D×ðtÞ ¼ 1

16
ð

ffiffiffi
3

p
cosðθÞð9 cos ð2λ− 2ϕÞ− cosð4αðtÞ− 2λ− 2ϕÞÞ− 6 sinðθÞðcosð3αðtÞ− 2λ− ϕÞ þ 3 cosðαðtÞ− 2λþ ϕÞÞÞ;

and αðtÞ ¼ 2π t
T þ κ is the orbital phase of the centre of

mass of the constellation, where T is the number of seconds
in a year (though in this study, we increase the orbital
modulation so that T is the number of seconds in a day for
computational reasons), and κ ¼ 0 is the initial ecliptic
longitude.
The parameters we are interested in estimating are

amplitude A0, monochromatic frequency ω0, initial phase
φ0, and inclination ι. All other parameters, e.g., sky location
(θ;ϕ), GW polarization angle ψ , and initial ecliptic
longitude κ, are fixed. To this end, we place the following
noninformative priors on the signal parameters:

A0 ∼ uniform½0;∞Þ;
cosφ0 ∼ uniform½−1; 1�;
cos ι ∼ uniform½−1; 1�;
ω0 ∼ uniform½0.0001; 0.0191�:

Although data will eventually be analyzed in the three
TDI channels A, E, and T [44] (where T is the noise-only
channel containing no signal information), for simplicity,
we will only consider the A channel, meaning we set TDI
channel angle λ ¼ 0.

B. Bayesian nonparametric noise model

To model the noise PSD, we use the Bayesian non-
parametric B-spline prior introduced by Edwards et al.
[40]. The B-spline prior has the following representation as
a mixture of B-spline densities,

srðx; k;wk; ξÞ ¼
Xk
j¼1

wj;kbj;rðx; ξÞ;

where bj;rð:Þ is the jth B-spline density of fixed degree
r, k is the number of B-spline densities in the mixture,

wk ¼ ðw1;k;…; wk;kÞ is the weight vector, and ξ is the
nondecreasing knot sequence.
The noise PSD fð:Þ is then modeled as follows,

fðπxÞ ¼ τ × srðx; k; G;HÞ; x ∈ ½0; 1�;

where the mixture weights and knot differences are induced
by cumulative distribution functions G andH, respectively,
each on [0, 1], and τ ¼ R

1
0 fðπxÞdx is the normalization

constant.
We place the following a priori independent priors on

the noise PSD model parameters ðk; G;H; τÞ,

pðkÞ ∝ expf−θk2g;
G ∼ DPðG0;MGÞ;
H ∼ DPðH0;MHÞ;
τ ∼ IGðα; βÞ;

where DP represents a Dirichlet process, IG is the inverse-
gamma distribution, θ is a smoothing coefficient, G0 and
H0 are base measures, and MG and MH are concentration
parameters.
Finally, the joint prior is updated by the commonly used

Whittle likelihood [46] to yield a pseudoposterior. For more
details, such as implementation, we refer the reader to
Edwards et al. [40].
This is in essence a blocked Metropolis-within-Gibbs

sampler similar to Edwards et al. [47], where we iteratively
sample the signal parameters given the noise parameters
and then the noise parameters given the signal parameters
and so on.
Ignoring galactic confusion noise, the LISA sensitivity

curve in the A TDI channel as defined by Babak and
Petiteau [48] and Karnesis et al. [49] is
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SAðxÞ ¼ 8sin2ðxÞ × ðPOMS × ð2þ cosðxÞÞ
þ 2 × PAcc × ð3þ 2cos2ðxÞ þ cosð2xÞÞÞ;

where x ¼ 2πfL=c, f is frequency in hertz, c is the speed
of light, L is the satellite arm length (2.5 × 109 m). POMS is
optical metrology noise, defined as

POMS ¼ ð1.5 × 10−11Þ2
�
1þ

�
2 × 10−3

f

�
4
��

2πf
c

�
2

:

Acceleration noise PAcc is defined as follows:

PAcc ¼ ð3 × 10−15Þ2
�
1þ

�
4 × 10−4

f

�
2
�

×

�
1þ

�
f

8 × 10−3

�
4
�
ð2πfcÞ−2:

These terms are constructed by Robson et al. [50]. We can
then easily simulate Gaussian noise, colored by SAð:Þ.

C. Example

Consider the simple case where we have 48 h of data
from the A TDI LISA channel, and there is one planned
outage at 22 h for a duration of 4 h due to antenna repointing.
Assume this antenna repointing changes the noise structure.
Whether this is realistic is yet to be determined.
We generate a (nonchirping) galactic white-dwarf binary

signal with the following parameters to be estimated:

A0 ¼ 1 × 10−21

ω0 ¼ 0.005

φ0 ¼ 3π=4

ι ¼ π=2:

We fix the sky location ðθ ¼ π=4;ψ ¼ π=4Þ and GW
polarization angle ϕ ¼ 0. Let TDI channel angle λ ¼ 0
as we only consider the A channel. We set the sample
interval to Δt ¼ 10 s, yielding a Nyquist frequency of
ω� ¼ 0.05 Hz.
The noise for this example is created as follows. Before

the gap, we generate Gaussian noise, colored by the LISA
sensitivity curve in the ATDI channel, SAð:Þ. After the gap,
we generate Gaussian noise, colored by an “optical
metrology noise modified” version of the LISA sensitivity
curve in the A channel. We adjust the scale and shape of the
of the optical component of the noise. Instead of using
POMS × cosð2þ xÞ, we use 2POMS × cosð2þ 2xÞ, thus
adjusting the scale and shape of the optical metrology
component. The increase in the variance of noise and the
change in the autocovariance structure during the second
half is our attempt at simulating a change in noise structure
due to the repointing of antennae. This noise setup yields an

overall signal-to-noise ratio of ϱ ≈ 50 (when considering
both noise segments).
We add this noise to the generated GW signal and

remove the middle 4 h of the data to create a gap. We then
multiply the data by a Tukey-type window, where we taper
off any data to zero where there is a gap, with a chosen taper
parameter of r ¼ 0.01. Note that this Tukey-type window
will be applied to all galactic white-dwarf binary signals
proposed during the Markov Chain Monte Carlo (MCMC)
algorithm to ensure gaps are in the correct place in the
signal model.
A realization of this data setup can be seen in Fig. 15.
We conduct parameter estimation with the assumption of

piecewise stationary noise. This allows us to model the
noise PSD before and after the gap differently if they are in
fact different (which they are in this example). Even if the
noise were stationary, there would be no harm conducting
analysis this way. A model that allows for a time-varying
noise PSD mitigates against possible parameter estimation
biases caused by assuming noise is stationary. We model
the two noise PSDs using two independent nonparametric
B-spline priors presented in Sec. III B.

D. Results and model checking

We run the MCMC algorithm for 100,000 iterations,
with a burn-in of 50,000 and thinning factor of 5. We also
use an adaptive proposal for each signal parameter
described by Roberts and Rosenthal [51]. That is, for each
parameter, we use a standard Metropolis step with Normal
proposal centred on the previous value and variance that is
automatically tuned to achieve a desired acceptance rate
of 0.44.
As illustrated in Fig. 16, we can accurately recover the

GW signal parameters in the presence of nonstationary
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FIG. 15. Nonchirping galactic white-dwarf binary GW signal
(black) and signal plus noise (gray). A 4 h gap is inserted in the
middle, multiplied by Tukey-type window (with r ¼ 0.01). The
first half of the noise series is generated using the LISA
sensitivity curve in the A TDI channel, and the second half is
generated using an optical metrology noise modified version
of this.
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noise due to a simulated planned gap that changes the
optical contribution to LISA noise.
Model checking, i.e., a careful investigation of the

correctness of any model assumptions, should be part of
all statistical inference procedures. To check whether it was
appropriate to assume that the individual time series before
and after the gap were in fact stationary, we can apply the
stationarity tests based on the surrogate data approach to
the time series of residuals before and after the gap.
Moreover, to check whether we could have safely assumed
that the full time series is stationary and thus potentially
enabled an analysis with one single B-spline prior for the
noise component instead of two different noise models, we
apply the stationarity test to the residuals of the full time
series. The residual time series can be thought of as the
“best guess” of underlying noise. We calculate the posterior
median GW signal and subtract this from the data to

compute the residual series and then concatenate the
residuals before and after the gap. The AR spectrogram
of these residuals is highlighted in Fig. 17. Running the
surrogate tests on the residuals, we report p-values (assum-
ing a window length of T ¼ 29 and overlap of 75%) in
Table II. For all variants of the surrogate test, we may reject
the notion of stationarity for the full residual time series.
We also do not reject the hypothesis of stationarity for the
first and second halves. This confirms that our stationarity
assumptions for each time series before and after the gap
were justified and that it was appropriate to assume two
different nonparametric noise models.

IV. CONCLUSION

In this paper, we have discussed methods to identify and
address nonstationary noise in the future LISA mission. We
demonstrated the usefulness of the lesser-known nonpara-
metric surrogate tests for assessing the stationarity of a time
series, introducing a novel variant in the form of the
SOMED test. We applied the surrogate tests to real LPF
data and showed that certain segments are nonstationary in
nature, due to glitches and amplitude modulations. As the
architecture of LISAwill share many similarities to LPF, we
see this as an important first step in understanding the
stationarity/nonstationarity of LISA data.
We introduced a Bayesian semiparametric framework for

conducting parameter estimation when there is nonsta-
tionary noise as a result of antenna repointing. Assuming
a stationary noise model in this situation may lead to
systematic biases in astrophysical parameter estimates, as
well as larger posterior variances as have been investigated
by Refs. [52–54].
An interesting alternative framework for modeling piece-

wise stationary noise could be to modify the time-varying
spectrum estimation regime of Rosen et al. [55], which
utilizes reversible jump MCMC [56] to determine the
number of locally stationary segments in a time series.
One could use a blocked Metropolis-within-Gibbs sampler
similar to the one introduced in this paper to model signal
parameters given noise parameters and vice versa. This is
one avenue we aim to explore in a future paper.
Another future initiative includes investigating the

impact of planned data gaps and nonstationary noise on
extreme mass ratio inspiral GW signals, particularly those
arising from near-extremal black holes.
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FIG. 16. Posterior densities for the galactic white-dwarf binary
parameters. The dashed vertical line is the true parameter.
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FIG. 17. AR spectrogram of residuals after removing the
posterior median signal from the data. There is a noticeable
change in power at the high frequencies in the second half of the
spectrogram.

TABLE II. p-values of the surrogate tests for the residual time
series using a window length of T ¼ 29 and overlap 75%.

Segment KS KL LSD SOMED

Full series 0.000 0.000 0.001 0.000
Before gap 0.189 0.492 0.597 0.580
After gap 0.488 0.445 0.934 0.367
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