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Potential multiparticle entanglement measure
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In this Brief Report we discuss entanglement of multiparticle quantum systems. We propose a potential
measure of a type of entanglement of pure states ofn qubits, then-tangle. For a system of two qubits the
n-tangle is equal to the square of the concurrence, and for systems of three qubits it is equal to the ‘‘residual
entanglement.’’ We show that then -tangle is also equal to a generalization of the concurrence squared for
evenn, and use this fact to prove that then-tangle is an entanglement monotone. However, then-tangle is
undefined for oddn.3. Finally, we propose a measure related to then-tangle for mixed-state systems ofn
qubits, and find an analytical formula for this measure for evenn.
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I. INTRODUCTION

The quantum phenomenon of entanglement is prese
the subject of much active research and discussion. T
comes from the fundamental interest in quantum phenom
and is also due to recent proposals for quantum computa
@1,2#. Entanglement is the property that provides a quant
computer with advantages over its classical counterpar
one is designing a quantum computer, then quantifying
entanglement of a large number of qubits is likely to
valuable. Quantum entanglement allows correlations
tween separated quantum particles that are not possib
classical systems@3#. Hence entanglement measures sho
also prove valuable in the quantum applications of cloni
communication, and encryption.

A method for classifying and quantifying the entang
ment in a particular state would greatly increase our und
standing of this phenomenon: There have been nume
studies of quantum entanglement, with equally numerous
tanglement measures proposed@4–14#. There remain many
open questions regarding the quantification of entanglem
In particular, states with more than one subsystem have
just begun to be considered. While entanglement measur
pure states are essential, so is their applicability to mi
states. The presence of noise in a quantum channel@15#, or
the decoherence effects of qubits interacting with an envir
ment@16#, will transform an idealized pure state into a mixe
one.

One type of multipartide entanglement isn-way orn-party
entanglement, entanglement that critically involves alln par-
ticles. For example, a three-qubit state with only three-w
~or three-party! entanglement has the property that traci
out one of the qubits leaves the other two particles un
tangled @7#. It was recently proven that states withn-way
entanglement (n.2) cannot be reversibly distilled from
two-way entanglement@9#. An example of a state with only
three-way entanglement is the Greenberger-Horne-Zeilin
~GHZ! state: uGHZ&5(u000&1u111&)/A2, for which case
tABC(uGHZ&)51. The W state, uW&5(u001&1u010&
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1u100&)/A3, with tABC(uW&)50, is an example of a stat
with two-way entanglement but no three-way entangleme
tracing out one of the particles leaves a partially entang
pair of qubits. In general, three-qubit states have both ki
of entanglement.

Theconcurrencehas been shown to be a useful entang
ment measure for pure and mixed states with two qubits,
can be related to theentanglement of formation@5#. A recent
paper by Coffman, Kundu, and Wootters@4# using concur-
rence to examine three-qubit quantum systems, introdu
the concept of ‘‘residual entanglement,’’ or the 3-tang
tABC . tABC(uc&) is a potential way to quantify the amoun
of three-way entanglement in systemABC.

In this Brief Report we will show that a generalization
the 3-tangle forn qubits, then-tanglet, is related to a gen-
eralization of pure-state concurrence for states with an e
number of qubits. This allows us to prove that then-tangle is
an entanglement monotone for states with three or an e
number of qubits. We also show that then-tangle is equal to
1 for ann-qubit generalization of the GHZ state@17#, and 0
for an n-qubit generalization of theW state@7#. Finally, we
introduce a mixed-state measure of entanglement relate
the n-tangle that is analogous to the entanglement of form
tion, and find an analytical formula for this measure f
states with an even number of qubits.

The Brief Report is organized as follows. In Sec. II w
define then-tangle, and show that for states with evenn,
t1 . . .n is equal to the square of a natural generalization
pure-state concurrence. Since two-qubit concurrence is
lated to entanglement and entanglement of formation@5#, this
suggests that then-tangle may have a physical interpretatio
We prove thatt1 . . .n is an entanglement monotone@6#,
which gives further evidence that then-tangle measures a
type of entanglement. We also consider the value of
n-tangle for generalizations of the GHZ andW states and
another example state. The extension of our pure-state re
to mixed-states is shown in Sec. III. A mixed-state version
the n-tangle,tmin, is introduced, and an analytical formu
for t1 . . .n

min for evenn is presented. In Sec. IV we conclud
with a discussion of our results.

II. n-TANGLE

For three qubits the ‘‘residual entanglement,’’ ortABC , is
given by
©2001 The American Physical Society01-1
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tABC~ uc&)52U( aa1a2a3
ab1b2b3

ag1g2g3
ad1d2d3

3ea1b1
ea2b2

eg1d1
eg2d2

ea3g3
eb3d3

U, ~1!

where thea terms are the coefficients in the standard ba
defined byuc&5( i 1 . . . i n

ai 1 . . . i n
u i 1i 2 . . . i n&, ande0152e10

51 ande0052e1150 @4#. We define then-tangle by

t1 . . .n52U( aa1 . . . an
ab1 . . . bn

ag1 . . . gn
ad1 . . . dn

3ea1b1
ea2b2

. . . ean21bn21
eg1d1

eg2d2
. . .

3egn21dn21
eangn

ebndn
U ~2!

for all evenn andn53. By reasoning similar to that used fo
n53 @7#, then-tangle is invariant under local unitarities. W
show below that then-tangle is invariant under permutation
of the qubits. However, the above formula isnot invariant
under permutations of qubits for general oddn over 3, and
hence is not a viable measure of odd-way entanglem
~aside fromn53).
rs
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in
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There is a relationship that can be shown betweent and
pure-state concurrence. Pure-state concurrence was de

for states of two qubits in Ref.@5# by C(c)5 z^cuc̃& z2, where

uc̃&5sy
^ nuc* & is the ‘‘spin flip’’ of uc& in terms of the Pauli

spin matrixsy5( i
0

0
21). C is defined only for states of two

qubits, but the obvious generalization uses the same e

tion, C1 . . .n(c)5 z^cuc̃& z2, where uc̃& now stands for an
n-qubit state. Note that for the two-qubit case,t125C2. We
will prove that the analogous equation,t1 . . .n5C1 . . .n

2 , is
true for all evenn.

We shall find an expression forC1 . . .n
2 in terms of the

coefficients in the standard basis. One can express ann-qubit
state uc& as a vector in the standard basis indexed
uc& i 1 . . . i n

, where eachi indexes one of the qubits. The

uc& i 1 . . . i n
5ai 1 . . . i n

.

Note thatsyi 1 . . . i n , j 1 . . . j n

^ n 5e i 1 j 1
. . . e i nj n

eiu for some realu

becausesyi , j
52 i e i j . Therefore, uc̃&5sy

^ nuc* & implies

uc̃& i 1 . . . i n
5(b1 . . . bn

1 ab1 . . . bn
* e i 1b1

e i 2b2
. . . e i nbn

eiu, so

^cu c̃ & 5 (all a,b aa1 . . . an
* ab1 . . . bn

* ea1b1
ea2b2

. . . eanbn
eiu.

Thus,
z^cuc̃& z25U( aa1 . . . an
ab1 . . . bn

ag1 . . . gn
ad1 . . . dn

ea1b1
ea2b2

. . . eanbn
eg1d1

eg2d2
. . . egndn

U, ~3!

where the sum is over all indices. Expanding the last index of eacha and using the fact thate i , j52e j ,i for evenn, one obtains

z^cuc̃& z252U2( aa1 . . . an210 ab1 . . . bn211 ag1 . . . gn211 ad1 . . . dn210ea1b1
ea2b2

. . . ean21bn21
eg1d1

eg2d2
. . . egn21dn21

2( aa1 . . . an211 ab1 . . . bn210 ag1 . . . gn210 ad1 . . . dn211ea1b1
ea2b2

. . . ean21bn21
eg1d1

eg2d2
. . . egn21dn21

U. ~4!

Now we turn our attention to the expression fort. Equation~2! can be expanded to

t1 . . .n5U( aa1 . . . an210 ab1 . . . bn210 ag1 . . . gn211 ad1 . . . dn211ea1b1
ea2b2

. . . ean21bn21
eg1d1

eg2d2
. . . egn21dn21

1( aa1 . . . an211 ab1 . . . bn211 ag1 . . . gn210 ad1 . . . dn210ea1b1
ea2b2

. . . ean21bn21
eg1d1

eg2d2
. . . egn21dn21

2( aa1 . . . an210 ab1 . . . bn211 ag1 . . . gn211 ad1 . . . dn210ea1b1
ea2b2

. . . ean21bn21
eg1d1

eg2d2
. . . egn21dn21

2( aa1 . . . an211 ab1 . . . bn210 ag1 . . . gn210 ad1 . . . dn211ea1b1
ea2b2

. . . ean21bn21
eg1d1

eg2d2
. . . egn21dn21

U. ~5!
n

ro,
Consider some term in the fully expanded version of the fi
line of the above equation,am1 . . . mn210 am̄1 . . . m̄n210

an1 . . . nn211 an̄1 . . . n̄n211, where m̄51 if m50 and m̄

50 if m51. This term can be positive or negative. T
expansion of the first line of the above equation also conta
t

s

the termam̄1 . . . m̄n210 am1 . . . mn210 an1 . . . nn211 an̄1 . . . n̄n211.

For evenn the sign of this term will be opposite to the sig
of the original term, since the signs of an odd number ofe ’s
have been flipped. So the two above terms will add to ze
as will all other terms in the first line of Eq.~5!. The second
1-2
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line of Eq.~5! also goes to zero by the same argument. T
t1 . . .n5 z^cuc̃& z2 for all evenn.

This equality indicates that then-tangle is a more natura
measure of entanglement than concurrence because, fo
n, C1 . . .n50, while the meaning of then-tangle is already
established forn53 @4#. From Eq. ~3! one can determine
that the quantityC1 . . .n

2 5t1 . . .n for evenn is invariant under
permutations of the qubits, since changing the order of
indices~i.e., the numbering of the Greek letters! is only re-
naming the indices. This allows us to apply the method u
in Ref. @7# to prove thattABC is an entanglement monoton
to prove that then-tangle is an entanglement monotone
property that good measures of entanglement must sa
@6#. As in Ref.@7# ~we explicitly follow their form and proof
outline!, the invariance of then-tangle under permutations o
the parties lets us consider local positive operator val
measures~POVM’s! for one party only. LetA1 and A2 be
two POVM elements such thatA1

†A11A2
†A25I , then Ai

5UiDiV, with Ui andV being unitary matrices, andDi be-
ing diagonal matrices with entries (a,b) and
(A12a2,A12b2), respectively. For some initial stateuc& let
uf̂ i&5Ai uc& be the subnormalized states obtained after
plication of the POVM. Letuf i&5uf̂ i&/Api , pi5^f̂ i uf̂ i&.
Then

^t&5p1t~f1!1p2t~f2!. ~6!

Since then-tangle is invariant under local unitarities@7#
t(UiDiVc)5t(DiVc). Now, noting that every term of Eq
~2! contains twoa’s with subscripts starting with zeros an
two a’s with subscripts starting with 1’s, and that every ter
is quartic with respect to thea’s, it can be shown that

t~f1!5
a2b2

p1
2

t~c!, t~f2!5
~12a2!2~12b2!2

p2
2

t~c!. ~7!

Defining P0 to be the sum of the squared magnitudes of
first 2n21 components ofuc& in the standard basis, andP1 to
be the sum of the squared magnitudes of the last 2n21 com-
ponents ofuc&, we can say that

p15a2P01b2P1 and p25~12a2!P01~12b2!P1 . ~8!

Combining Eqs.~6!–~8! with the fact thatP01P151, some
algebra shows that̂ t&/t(c)<1, thus proving that the
n-tangle is an entanglement monotone.

Some examples provide further support for then-tangle
being a measure of some type ofn-party entanglement. An
n-qubit ~Schrödinger! CAT state, (u0^ n&1u1^ n&)/A2, is a
state with entirelyn-way entanglement; measuring any o
of the qubits in the standard basis determines the value o
of the other qubits; however, if one of the qubits is trac
out, the remaining qubits are unentangled. For these st
then-tangle is 1; all terms in Eq.~2! are 0 for ann-CAT state
except for whena i50, b i51, g i51, and d i50, or a i
51, b i50, g i50, andd i51, so t1 . . .n(uCAT&)52u21/4
121/4u51. Another interesting set of states are then-qubit
04430
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W states@7# (u0 . . . 01&1u0 . . . 010&1•••1u10 . . .&)/An.
For these states, the equality@4#

C12
2 1C13

2 1•••1C1n
2 5C1(23 . . .n)

2 ~9!

holds; thus tracing out all but two of the qubits leaves t
two remaining qubits partially entangled. Note th
C1(23 . . .n)

2 Þ0, and that theW states are symmetric. Note tha
thee ’s assure that all terms in Eq.~2! are 0 forW states, and
hence then-tangle is zero forW states~except forn52,
wheret51, sincet measures two-way entanglement in th
case!. From the above examples, it is tempting to hypo
esize that then-tangle is a measure ofn-way entanglement,
but a counterexample shows otherwise: Consider the fo
qubit pure state that is the tensor product of two sing
states. A simple calculation shows that the 4-tangle ha
value of 1 for this state. If the 4-tangle measured four-w
entanglement, its value should have been 0, since this s
has no entanglement between the pairs of entangled qu
Thus, while then-tangle appears to be related to some ki
of multipartide entanglement, it is not by itself a measure
n-way entanglement.

III. MIXED-STATE GENERALIZATION OF n-TANGLE

We would like to have a mixed-state generalization of t
n-tangle. Such a quantity would enable us to classify a
quantify even more types of entanglement. For example
four-qubit pure state would have six values of the mixe
state 2-tangle between each of the pairs of qubits, four va
for the mixed-state 3-tangle between each set of three qu
and a value for the 4-tangle. We suggest defining, for
n-qubit mixed stater, tmin(r) to be the minimum of
( i pit(c i) for all pure-state decompositions ofr, given by
r5( i pi uc&^cu. This is analogous to the entanglement
formation@8#, and in fact the entanglement of formation is
function of tmin(r12) for states of two qubits@5#. This defi-
nition is also justified by the fact that Eq.~24! of Ref. @4# can
now be rewritten as

CA(BC)
2 5tAB

min1tAC
min1tABC . ~10!

That is, for two qubits,t12
min(r) already has physical signifi

cance, so it appears to be a natural way to define a m
statet. Now, in Ref. @5#, Wootters presented a proof tha
Cmin(r)5max$0,l12l22l32l4% where l i is the square
root of the i th eigenvalue, in decreasing order, ofrr̃. This
proof is generalizable to show thatCmin(r)5max$0,l1
2l2 . . . 2ln% for an n-qubit system, and therefor
tmin(r)5Cmin

2 (r)5@max$0,l12l2 . . . 2ln%#2. This result
is also a subset of a more general proof by Uhlmann@18#.

A large number of doubts remain about the meaning
then-tangle. In particular, we would like to have a physica
meaningful definition ofn -way entanglement, so that w
could compare then-tangle and other multipartide entangl
ment measures with meaningful values. It seems likely t
the n-tangle, in combination with other multipartide en
tanglement measures~most likely then-tangles of smaller
1-3
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BRIEF REPORTS PHYSICAL REVIEW A 63 044301
subsystems within a given state!, will be related to a multi-
partide generalization of the two-qubit entanglementE re-
lated to the Shannon entropy. Unfortunately, no such ge
alization of entanglement is obvious. If a formula fort1 . . .n

min

for n53 could be found, it might be possible to prove sta
ments analogous to Eq.~10! which would lend more legiti-
macy to then-tangle. We would also like to have a genera
zation of then-tangle for states with subsystems larger th
qubits.

IV. DISCUSSION

In summary, we have proposed a potential measure
type of n-partide entanglement of pure and mixed states:
pure states then-tangle, and for mixed states the relat
t1 . . .n

min . These measures show many signs of being us
ways to quantify a type of multipartide entanglement. F
.
t-

an

04430
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evenn, the n-tangle andt1 . . .n
min are equal to the square of

generalization of pure- and mixed-state concurrence, and
n-tangle is also an entanglement monotone. Then-tangle has
values of 1 forn-CAT states and values of 0 forW states
wheren.2, but has a value of 1 for a product state of tw
singlets. Hopefully these measures will further our und
standing of multipartide entanglement. In particular, furth
exploration of their mixed-state forms may lead to the d
covery of relationships between different types of entang
ment within a particular system.
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