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Potential multiparticle entanglement measure
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In this Brief Report we discuss entanglement of multiparticle quantum systems. We propose a potential
measure of a type of entanglement of pure states qiibits, then-tangle. For a system of two qubits the
n-tangle is equal to the square of the concurrence, and for systems of three qubits it is equal to the “residual
entanglement.” We show that the-tangle is also equal to a generalization of the concurrence squared for
evenn, and use this fact to prove that tietangle is an entanglement monotone. However,ritengle is
undefined for odch>3. Finally, we propose a measure related to rtleangle for mixed-state systems of
qubits, and find an analytical formula for this measure for ewen
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I. INTRODUCTION +]100)/4/3, with 7Agc(|W))=0, is an example of a state
with two-way entanglement but no three-way entanglement:
The quantum phenomenon of entanglement is presentliyacing out one of the particles leaves a partially entangled
the subject of much active research and discussion. Thigair of qubits. In general, three-qubit states have both kinds
comes from the fundamental interest in quantum phenomen&f entanglement.
and is also due to recent proposals for quantum computation Theconcurrencehas been shown to be a useful entangle-
[1,2]. Entanglement is the property that provides a quantunin€nt measure for pure and mixed states with two qubits, and
computer with advantages over its classical counterpart. 1§20 be related to thentanglement of formatiaib]. A recent
one is designing a quantum computer, then quantifying th@aPer by Coffman, Kundu, and Wootter$] using concur-

entanglement of a large number of qubits is likely to pefence to examine three-qubit quantum systems, introduced

valuable. Quantum entanglement allows correlations bet—he concept of _reS|duaI e_ntanglement, or the 3-tangle,
sc- Tasc(|¥)) is a potential way to quantify the amount

tween separated quantum particles that are not possible i threeway entanalement in SvstehB C

classical systemg3]. Hence entanglement measures should --way 9 n sy ' o

also prove valuable in the quantum aoplications of clonin In this Brief Report we will show that a generalization of
P 4 PP Ythe 3-tangle fomn qubits, then-tangle 7, is related to a gen-

corRmumﬁagofn, anld er.‘cfyp“ona . h | eralization of pure-state concurrence for states with an even
method for classifying and quantifying the entangle- e of qubits. This allows us to prove that theangle is

ment in a particular state would greatly increase our underyp, entanglement monotone for states with three or an even
standing of this phenomenon: There have been numeroygmper of qubits. We also show that theangle is equal to
studies of quantum entanglement, with equally numerous ent for ann-qubit generalization of the GHZ stafi#7], and 0
tanglement measures propog@d-14]. There remain many for an n-qubit generalization of th&V state[7]. Finally, we
open questions regarding the quantification of entanglemenfatroduce a mixed-state measure of entanglement related to
In particular, states with more than one subsystem have onljhe n-tangle that is analogous to the entanglement of forma-
just begun to be considered. While entanglement measures tibn, and find an analytical formula for this measure for
pure states are essential, so is their applicability to mixedtates with an even number of qubits.
states. The presence of noise in a quantum chdrl or The Brief Report is organized as follows. In Sec. Il we
the decoherence effects of qubits interacting with an environdefine then-tangle, and show that for states with even
ment[16], will transform an idealized pure state into a mixed 71 ., is equal to the square of a natural generalization of
one. pure-state concurrence. Since two-qubit concurrence is re-
One type of multipartide entanglementisvay orn-party  lated to entanglement and entanglement of formdtidnthis
entanglement, entanglement that critically involvesngdar- ~ Suggests that thetangle may have a physical interpretation.
ticles. For example, a three-qubit state with only three-wayVe prove thatr; ., is an entanglement monotorié],
(or three-party entanglement has the property that tracingWhich gives further evidence that thretangle measures a
out one of the qubits leaves the other two particles unenyP€ of entanglement. We also consider the value of the
tangled[7]. It was recently proven that states withway n-tangle for generalizations of thg GHZ amd states and
entanglement r{>2) cannot be reversibly distilled from another example state. The extension of our pure-state results
two-way entanglemeri©]. An example of a state with only to mlxed-staterfirl]s §h9wn in Sec. lll. A m|xed-st'c_1te version of
three-way entanglement is the Greenberger-Horne-ZeiIingeme njﬁngle” 1S |_ntroduced, and an analytical formula
(GH2) state: |GHZ)=(|000)+|111))/y2, for which case fo'r T1..n for evenn is presented. In Sec. IV we conclude
Tasc(|GHZ))=1. The W state, |W)=(|001)+|010) with a discussion of our results.

II. -TANGLE
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There is a relationship that can be shown betweemd
Tasc|¥))=2| 2 By ay @By By BBy, 7o 7525, 6,5, pure-state concurrence. Pure-state concurrence was defined
for states of two qubits in Ref5] by C(4) =|(¢|#)[?, where
[y=oy"|y*) is the “spm flip” of |¢) in terms of the Pauli
spin matrixoy = (I 1. Cis defined only for states of two
where thea terms are the coefficients in the standard basigjubits, but the ObVIous generalization uses the same equa-
defined by|y)=%; . ai . ilisiz...in), anden=—€10  tion, C; (¢)=|y|¥)?, where |§) now stands for an

X €a181€ayB, €16, €70, € agy;,€Bady) 1)

=1 andegy= — €1,=0 [4]. We define then-tangle by n-qubit state. Note that for the two-qubit casg,=C2. We
will prove that the analogous equation, —C2 e IS
T =22 Q.. .a B, 88y, ..y, R0, .. .5, true for all evemn.

We shall find an expression f@2 | in terms of the
coefficients in the standard basis. One can expresscbit

X € € - €y 5.€Ey 5, -
b1l “n-afno1TaoY2% state|¢) as a vector in the standard basis indexed by
|¢//>i o where eachi indexes one of the qubits. Then
X E'ynflﬁnfleanynfﬁnﬁn (2) | l//>
I In I1 .
®n — i6
for all evenn andn=3. By reasoning similar to that used for Note that"yil,,,in,jlmjn_filjl---Einjne for some reab

n=3 [7], then-tangle is invariant under local unitarities. We becausea

—iej. Therefore, [)=0y"y*) implies
show below that the-tangle is invariant under permutations

i6
of the qubits. However, the above formularist invariant  |#)i, ... 2/31 BB, .. B EiBi i, - € g€ S0
under permutations of qubits for general odaver 3, and WP 2 * i0
1l a a € € ... € e".
hence is not a viable measure of odd-way entanglement ¥ ) all wfZay . By - Ba” b1 o, “nn
(aside fromn=3). Thus,
TN2 —
|< wl ¢>| - 2 aal - 'anaB1 N 'ﬁnayl e Vna‘sl N .5n5alﬁlea232 e E0‘an6715167’2‘52 e 67n5n ! (3)
where the sum is over all indices. Expanding the last index of aaeid using the fact that ;= — ¢, ; for evenn, one obtains
~ 2|
Kl —2’ > Qay.iaq_40 88y 81l By yyql A58, 10€a B €anBy - €an_ 1B 1671016728, - Evn 1001
-2 Qay oo g1 BBy By 10 By 10 Aoy 5y 1€y 81 €agBy - Can 1By 1€710,6720, ¢ - vy 18y |- (4)

Now we turn our attention to the expression forEquation(2) can be expanded to
. -“:’2 Qay.oap 10 8By By 40 Bypyy g1 856, 1€y €anBy - - Can 1By 1 €1101€7,8, - €y 15y
+2 Qay..an_ql 8By By g1 Bypyy 10 Bop6, 1060181 €arBy  t Can 1By 1611016728, 1 €18,y
_2 Qay.oan_10 Apy. Byl Bypiy g1 Asp6, 1060 €anBy €y 1By 1€v10167p8, 1 €y 18y

-2 By .y gl BBy B 10 Byy ..y 10 B85, 11€aB€arBy - €y 1By 1€710,€ 720y Ey_10_q|s (D)

Consider some term in the fully expanded version of the firsthe terma,,

. ;n_lo aul...ﬂn_lo aVl"'Vn—ll ajl"':n—ll'
line of the above equr;mon,aﬂ1

10 Buy. Iu'nflo_ For evenn the sign of this term will be opposite to the sign
a, .. 1 8 .. 5 ;1. Where u=11if 4=0 andu  of the original term, since the signs of an odd numbee’sf
=0 if w=1. This term can be positive or negative. The have been flipped. So the two above terms will add to zero,
expansion of the first line of the above equation also contaings will all other terms in the first line of E@5). The second
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line of Eq.(5) also goes to zero by the same argument. ThusV states[7] (|0 ...0D+[0...010+---+]10...))/{n.

71 =N for all evenn. For these states, the equali#]
This equality indicates that thetangle is a more natural
measure of entanglement than concurrence because, for odd C§2+ C§3+ St Cin= Ci(zg, ) 9

n, C, _,=0, while the meaning of the-tangle is already

established fon=3 [4]. From Eq.(3) one can determine holds; thus tracing out all but two of the qubits leaves the
that the quantit)Cf ~ ,=71. nforevennisinvariantunder two remaining qubits partially entangled. Note that
permutations of the qubits, since changing the order of the:f(23_._n)¢0, and that th&V states are symmetric. Note that
indices(i.e., the numbering of the Greek letteis only re-  thee’s assure that all terms in E(R) are 0 forW states, and
naming the indices. This allows us to apply the method usetience then-tangle is zero forW states(except forn=2,

in Ref.[7] to prove thatragc iS an entanglement monotone wherer=1, sincer measures two-way entanglement in this
to prove that then-tangle is an entanglement monotone, acase. From the above examples, it is tempting to hypoth-
property that good measures of entanglement must satiskysize that ther-tangle is a measure oEway entanglement,

[6]. As in Ref.[7] (we explicitly follow their form and proof but a counterexample shows otherwise: Consider the four-
outline), the invariance of the-tangle under permutations of qubit pure state that is the tensor product of two singlet
the parties lets us consider local positive operator valuedtates. A simple calculation shows that the 4-tangle has a
measuresPOVM’s) for one party only. LetA; andA, be  value of 1 for this state. If the 4-tangle measured four-way
two POVM elements such tha@\IAﬁAgAzzl, then A, entanglement, its value should have been 0, since this state
=U;D;V, with U; andV being unitary matrices, and; be-  has no entanglement between the pairs of entangled qubits.
ing diagonal matrices with entries afp) and Thus, while then-tangle appears to be related to some kind
(V1—a?,J1-b?), respectively. For some initial staltgs) let ~ of multipartide entanglement, it is not by itself a measure of

|é:)=Ai|#) be the subnormalized states obtained after apf-Way entanglement.

plication of the POVM. Let|¢:)=|d)/\pi, pi={(didi).
Then Ill. MIXED-STATE GENERALIZATION OF  n-TANGLE

_ n 6 We would like to have a mixed-state generalization of the
(1) =pa7(b) +p27(¢p2). ®  htangle. Such a quantity would enable us to classify and
. L . L quantify even more types of entanglement. For example, a
Since then-tangle is invariant under local unitaritidS]  to,rqubit pure state would have six values of the mixed-
7(UiD;Vy) = 7(D;Vy). Now, noting that every term of EQ. giate 2._tangle between each of the pairs of qubits, four values

(2) contains twoa’s with subscripts starting with zeros and ¢, 1he mixed-state 3-tangle between each set of three qubits,
two a’s with subscripts starting with 1's, and that every term 5,4 4 value for the 4-tangle. We suggest defining, for an

is quartic with respect to tha's, it can be shown that n-qubit mixed statep, 7™"(p) to be the minimum of
>ipi7(y¢;) for all pure-state decompositions pf given by

a’h? (1-a%?(1-b?)? p==ipil#¥){|. This is analogous to the entanglement of
(1) = ’ (¥),  1(d2)= 02 (). @) formation[8], and in fact the entanglement of formation is a

function of 7""(p,,) for states of two qubit§5]. This defi-
é’lition is also justified by the fact that E(4) of Ref.[4] can

Defining P, to be the sum of the squared magnitudes of th ;
now be rewritten as

first 2"~ components ofy) in the standard basis, aiR} to
be the sum of the squared magnitudes of the 18st Zom- ) min . min
ponents of ), we can say that Caeo=7aB T 7ac T TaBc: (10
pi=a’Py+b?P; and p,=(1—a?)Py+(1-b?P,. (80 Thatis, for two qubitss7,"(p) already has physical signifi-
cance, so it appears to be a natural way to define a mixed
Combining Eqs(6)—(8) with the fact thatP,+P,;=1, some Stater. Now, in Ref.[5], Wootters presentgd a proof that
algebra shows that7)/7(#)<1, thus proving that the Cmin(P)=max0Xi1—N,—N3—N\4} where); is the square

n-tangle is an entanglement monotone. root of theith eigenvalue, in decreasing order, gf. This
Some examples provide further support for théangle proof is generalizable to show tha,;,(p)=max0\,
being a measure of some type mparty entanglement. An —\,...—\,} for an n-qubit system, and therefore

n-qubit (Schralingep CAT state, (0°™)+[1°"))/\2, is a  7™"(p)=CZ(p)=[MaxON;—\,...—\,}]% This result
state with entirelyn-way entanglement; measuring any oneis also a subset of a more general proof by Uhimgi8;.

of the qubits in the standard basis determines the value of all A large number of doubts remain about the meaning of
of the other qubits; however, if one of the qubits is tracedthen-tangle. In particular, we would like to have a physically
out, the remaining qubits are unentangled. For these statasieaningful definition ofn -way entanglement, so that we
then-tangle is 1; all terms in Eq2) are 0 for am-CAT state  could compare the-tangle and other multipartide entangle-
except for whena;=0, B;=1, y;=1, and 6;=0, or «; ment measures with meaningful values. It seems likely that
=1, 8i=0, y,=0, ands;=1, sor, ,(|CAT))=2|-1/4 the ntangle, in combination with other multipartide en-
+ —1/4/=1. Another interesting set of states are thgubit  tanglement measuresnost likely then-tangles of smaller
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subsystems within a given statevill be related to a multi-  evenn, the n-tangle and-]"" . are equal to the square of a
partide generalization of the two-qubit entanglemBnte-  generalization of pure- and mixed-state concurrence, and the
lated to the Shannon entropy. Unfortunately, no such genem-tangle is also an entanglement monotone. fiti@ngle has
alization of entanglement is obvious. If a formula f§f'" ,  values of 1 forn-CAT states and values of 0 foW states
for n=3 could be found, it might be possible to prove state-wheren>2, but has a value of 1 for a product state of two
ments analogous to EGL0) which would lend more legiti- singlets. Hopefully these measures will further our under-
macy to then-tangle. We would also like to have a generali- standing of multipartide entanglement. In particular, further
zation of then-tangle for states with subsystems larger thanexploration of their mixed-state forms may lead to the dis-
qubits. covery of relationships between different types of entangle-
ment within a particular system.
IV. DISCUSSION

In summary, we have proposed a potential measure of a
type of n-partide entanglement of pure and mixed states: for
pure states ther-tangle, and for mixed states the related We would like to thank W. K. Wootters for a great deal of
'"" . These measures show many signs of being usefulseful advice. This work was supported by the Kresge Foun-
ways to quantify a type of multipartide entanglement. Fordation and Carleton College.
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