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Metropolis-Hastings algorithm for extracting periodic gravitational wave signals
from laser interferometric detector data
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The Markov chain Monte Carlo methods offer practical procedures for detecting signals characterized by a
large number of parameters and under conditions of low signal-to-noise ratio. We present a Metropolis-
Hastings algorithm capable of inferring the spin and orientation parameters of a neutron star from its periodic
gravitational wave signature seen by laser interferometric detectors.
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I. INTRODUCTION

The worldwide network of laser interferometric gravit
tional wave detectors has begun to acquire scientifically
nificant data@1–4# and rapidly rotating neutron stars are
important potential source of signals~we will reserve the
term ‘‘pulsar’’ to refer to the observed pulsating rad
sources!. Although a spinning spherically symmetric neutro
star will not produce gravitational waves, a number
mechanisms have been proposed that are capable of pro
ing quasi-periodic gravitational waves from biaxial or t
axial neutron stars@5,6#. Any gravitational waves from thes
neutron stars will likely be seen at Earth as weak continu
wave signals.

The data analysis task of identifying such a signal in
output of a laser interferometer is challenging and difficu
both because of the weakness of the signal and becaus
time evolution is characterized by a relatively large num
of parameters. Radio observations can provide the sky lo
tion, rotation frequency and spindown rate of known pulsa
but the problem of looking for unknown~or poorly param-
eterized! neutron star sources is significantly more challen
ing. SN1987A is a good example of a poorly parameteriz
source for which the sky location in approximately know
but also for which there is a large uncertainty in the f
quency and spindown parameters of the putative neutron
@7#.

Much work has already gone into all-sky hierarchic
methods for searching for continuous gravitational wa
@8,9#. Here we address the specific problem of a ‘‘fuzz
parameter space search, in which a restricted volume of
space needs to be thoroughly investigated. We take a B
sian approach to this problem and use Markov chain Mo
Carlo ~MCMC! techniques which have been shown to
especially suited to similar problems involving numerous
rameters@10#. In particular, the Metropolis-Hastings~MH!

*Electronic address: nchriste@carleton.edu
†Electronic address: rejean@astro.gla.ac.uk
‡Electronic address: graham@astro.gla.ac.uk
§Electronic address: meyer@stat.auckland.ac.nz
0556-2821/2004/70~2!/022001~7!/$22.50 70 0220
-

f
uc-

s

e
,
its
r
a-
,

-
d

-
tar

l
s

he
e-

te

-

algorithm@11,12# has been used for estimating cosmologic
parameters from cosmic microwave background data@13–
15#, and the applicability of the MH routine has been de
onstrated in estimating astrophysical parameters for grav
tional wave signals from coalescing compact binary syste
@16,17#. MCMC methods have also provided Bayesian inf
ence for noisy and chaotic data@18,19#.

Here we demonstrate that a MH algorithm also offe
great promise for estimating neutron star parameters f
their continuous gravitational wave signals. This work buil
on the development~by two of us! of an end-to-end robus
Bayesian method of searching for periodic signals in gra
tational wave interferometer data@20#, summarized in Sec
II. Starting with this Bayesian approach we apply a simi
MH routine to that used in@13,17#. The description of the
Bayesian MH method is given in Sec. III. In Sec. IV w
present the results of this study, using synthesized data
four and five parameter problems. We believe that t
method offers great hope for signal extraction as more
rameters are included, and this point is discussed in Sec

II. SIGNAL CHARACTERISTICS

We will initially consider searching for signals from
known radio pulsars, and then expand the method to acc
for an uncertainty in the frequency of the gravitational wa
signal. As gravitational waves from pulsars are certai
weak at Earth, long integration periods are required to
tract the signal, and we must take account of the ante
patterns of the detectors and the Doppler shift due to
motion of the Earth.

As in the previous study@20,21# we consider the signa
expected from a non-precessing triaxial neutron star. T
gravitational wave signal from such an object is at twice
rotation frequency,f s52 f r , and we characterize the ampl
tudes of each polarization with overall strain factor,h0. The
measured gravitational wave signal will also depend on
polarization antenna patterns of the detectorF3,1 giving a
signal

s~ t !5
1

2
F1~ t;c!h0~11cos2i !cosC~ t !

1F3~ t;c!h0cosi sinC~ t !, ~1!
©2004 The American Physical Society01-1
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where c is the polarization angle of the radiation~which
depends on the position angle of the spin axis in the plan
the sky! andi is the inclination of the pulsar with respect
the line of sight.

Using a simple slowdown model, the phase evolution
the signal can be usefully parameterized as

C~ t !5f012pF f s~T2T0!1
1

2
f ṡ~T2T0!21

1

6
f s̈~T2T0!3G ,

~2!

where

T5t1dt5t1
r•n

c
1DT . ~3!

Here,T is the time of arrival of the signal at the solar syste
barycenter,f0 is the phase of the signal at a fiducial tim
T0 , r is the position of the detector with regard to the so
system barycenter,n is a unit vector in the direction of the
pulsar,c is the speed of light, andDT contains the relativistic
corrections to the arrival time@22#.

The signal isheterodynedby multiplying the data by
exp@2iC(t)# so that the only time varying quantity remainin
is the antenna pattern of the interferometer~which varies
over the day!. For convenience, the result is low-pass filter
and resampled. We are left with a simple model with fo
unknown parameters: the overall amplitude of the grav
tional wave signal (h0), its polarization angle (c), its phase
at timeT0 (f0), and the angle between the spin axis of t
pulsar and the line of sight (i).

A detailed description of the heterodyning procedure
presented elsewhere@20,21#; here we just provide a summar
of this standard technique. The raw signal,s(t), is centered
near twice the rotation frequency of the pulsar, but is Do
pler modulated due to the motion of the Earth and the o
of the pulsar if it is in a binary system. The modulatio
bandwidth is typically 104 times less than the detector ban
width, so one can greatly reduce the effective data rate
extracting this band and shifting it to zero frequency. In
standard form the result is one binned data point,Bk , every
minute, containing all the relevant information from th
original time series but at only 231026 the original data
rate. If the phase evolution has been correctly accounted
at this heterodyning stage then the only time-varying co
ponent left in the signal will be the effect of the anten
pattern of the interferometer, as its geometry with respec
the neutron star varies with Earth rotation. Any small err
D f , in the heterodyne frequency will cause the signal
oscillate atD f , and for the second part of our study we ha
D f as our fifth parameter. For both these studies we estim
the noise variance,sk

2 , in the bin values,Bk , from the
sample variance of the contributing data. It is assumed
the noise is stationary over the 60 s of data contributing
each bin.
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III. THE METROPOLIS-HASTINGS ALGORITHM

This section presents a brief review of the Bayesian M
approach to parameter estimation. Comprehensive des
tions of MCMC methods and the MH algorithm can b
found elsewhere@10,13,17#.

We will denote the output from the above heterodyni
procedure as$Bk%, with a joint probability distribution func-
tion ~PDF! denoted byp($Bk%ua) conditional on unobserved
parametersa5(a1 , . . . ,ad). The PDFp($Bk%ua) is referred
to as thelikelihoodand regarded as a function of the para
etersa. The parameters of interest for our four parame
study area5(h0 ,c,f0 ,i), while for the five parameter
study they area5(h0 ,c,f0 ,i,D f ).

From Eq.~1!, the ~now complex! heterodyned signal is

y~ tk ;a!5
1

4
F1~ tk ;c!h0~11cos2i !eif0

2
i

2
F3~ tk ;c!h0cosieif0, ~4!

and the binning procedure should, by the central limit the
rem, give the noise a near-Gaussian probability density c
acterized by a variancesk

2 for thekth bin. The likelihood that
the data in this bin, taken at timetk , is consistent with the
above model is

p~Bkua!}expS 2uBk2y~ tk ;a!u2

2sk
2 D , ~5!

and the joint likelihood that the data in all the bins~taken as
independent! are consistent with a particular set of mod
parameters is

p~$Bk%ua!})
k

expS 2uBk2y~ tk ;a!u2

2sk
2 D . ~6!

Bayesian inference requires the specification of a p
PDF for a, p(a), that quantifies the researcher’s pr
experimental knowledge abouta. The phase and polarizatio
priors are flat in their space, and are set uniform forf0 over
@0,p#, and forc over @2p/4,p/4#. The prior for i is uni-
form in cosi over @21,1#, corresponding to a uniform prio
per unit solid angle of pulsar orientation. Finally, in th
present study we take a prior forh0 that is uniform for 0
,h0,1000~in our normalized units for whichsk51), and
zero for all other values.

Using Bayes’ theorem, the post-experimental knowled
of a is expressed by theposteriorPDF of a:

p~au$Bk%!5
p~a!p~$Bk%ua!

p~$Bk%!
}p~a!p~$Bk%ua!, ~7!

wherep($Bk%)5*p($Bk%ua)p(a)da is the marginal PDF of
$Bk% which can be regarded as a normalizing constant as
independent ofa. The posterior PDF is thus proportional t
the product of prior and likelihood.
1-2
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The marginal posterior distribution for parameterai is the
integral of the joint posterior PDF over all other compone
of a other thanai , i.e.,

p~ai u$Bk%!5E . . . E p~au$Bk%!

3da1 . . . dai 21dai 11 . . . dad , ~8!

and contains all the analysis has to say about the value oai
alone. However it is often useful to summarize this in
single ‘‘point estimate’’ ofai using, for example, the poste
rior mean:

^ai&5E aip~ai u$Bk%!dai . ~9!

Calculating the normalization constantp($Bk%) and calculat-
ing each marginal posterior PDF requires difficultd- and
(d21)-dimensional integrations, respectively, that can
evaluated using a sampling approach and MCMC meth
@10,13,17#. Rather than sampling directly fromp(au$Bk%), a
sample from a Markov chain is generated which h
p(au$Bk%) as its equilibrium distribution. Thus, after runnin
the Markov chain for a certain ‘‘burn-in’’ period, these~cor-
related! samples can be regarded as samples from the li
ing distribution, provided that the Markov chain has reach
convergence. Despite their correlations, the ergodic theo
guarantees that the sample average is still a consistent
mate of the posterior mean Eq.~9! @23#.

The specific MCMC technique used for this study was
MH algorithm @11,12#. The MH algorithm generates
sample from the target PDFp(au$Bk%) using a technique tha
is similar to the well-known simulation technique ofrejec-
tion sampling. A candidate is generated from an auxilia
PDF and then accepted or rejected with some probab
Starting with an arbitrary initial statea0, at time n a new
candidatea8 is generated from the candidate generating P
q(auan), which can depend on the current statean of the
Markov chain. This new candidatea8 is accepted with a
certainacceptance probabilitya(a8uan), also depending on
the current statean , given by

a~a8uan!5minH p~a8!p~$Bk%ua8!q~anua8!

p~an!p~$Bk%uan!q~a8uan!
,1J . ~10!

For good efficiency a multivariate normal distribution ce
tered at the current statean is used forq(a8uan). This then
implies that if the posterior probability ata8 is larger than at
the current statean , the proposed step toa8 is always ac-
cepted. However, if the step is in a direction of lower pos
rior probability, then this step is accepted only with a cert
probability given by the ratio of the posterior PDFs~since
our multivariate normal generating function is symmetric
a8 andan and therefore cancels out!. If the candidate is ac-
cepted, the next state of the Markov chain isan115a8, oth-
erwise the chain does not move, i.e.an115an .

The steps of the MH algorithm are therefore:
Step 0: Start with an arbitrary valuea0;
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Stepn11: Generatea8 from q(auan) andu from U(0,1);
If u<a(a8uan) setan115a8 ~acceptance!,
If u.a(a8uan) setan115an ~rejection!.
U(0,1) is the uniform distribution between 0 and 1. T

efficiency of the MH algorithm depends heavily on th
choice of the proposal density. The closer the proposal i
the target distribution, the faster convergence will be acco
plished. This link between the closeness of the proposa
stationary distribution and speed of convergence has
been substantiated by Holden@24#. In the study presented
here we dynamically altered the proposal distribution ba
on information from the chain’s history. The approach, cal
pilot adaptation, is to perform a separate pilot run to ga
insight about the target density and then tune the prop
accordingly for the successive runs. Such adaptation ca
iterated but allowing it infinitely often will destroy the Mar
kovian property of the chain and thereby often comprom
the stationarity of the chain and the consistency of sam
path averages~@25#; see@26# for an example!.

Based on the central limit theorem, the posterior P
should be well approximated by a multivariate normal dis
bution with mean equal to the posterior mode and covaria
matrix equal to minus the Hessian evaluated at the poste
mode. Thus, we use a multivariate normal distribution for
proposal densityq(auan). As the mode is unknown, we try to
make use of pilot samples to estimate its covariance ma
When we initially run the MH algorithm, we sample cand
date parameters from a normal distribution with covarian
matrix equal to the identity matrix and centered around
current state. After the completion of this pilot run we u
the empirical covariance matrix of the sample as covaria
matrix of the multivariate normal proposal density, aga
with mean equal to the current state.

IV. RESULTS

In the first part of our study we reproduced the resu
presented in@20# where the four unknown parameters we
h0 ,i,c, andf0. The signals(t) was synthesized assuming
source at right ascension54h41m54s and declination
518°238329, as would be seen by the LIGO-Livingston in
terferometer. This was then added to white Gaussian no
n(t), which is a good approximation to the detector noise
our band. Our normalized data had a noise variance ofsk

2

51 for each sample, and the amplitude of the signal use
our test runs was varied in the rangeh050.0 to 10.0. We
were able to detect signals forh0.0.1. The length of the
data set corresponded to 14 400 samples or 10 days of da
a rate of one sample per minute~which was the rate used fo
the LIGO/GEO S1 analysis described in@21#!. Although we
will work with strains normalized tosk51, the results can
be cast into a more conventional form by multiplyings i and
h0 by (Sh/60)1/2, where (Sh)1/2 is the strain noise spectra
density of the detector at the frequency of interest, in Hz21.

An example of the MH routine output is shown in Fig.
Displayed are the trace plots and the kernel densities~poste-
rior PDFs!. For this example the program ran for 106 itera-
tions. The first 105 iterations were discarded as the burn-
Short-term correlations in the chain were eliminated
1-3
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FIG. 1. Trace plot~left! and MCMC-estimated posterior PDFs~right! for the pulsar parametersh0 , c, f0 and cosi. In this example the
true parameters wereh055.0, f051.0, c50.4, andi50.5 implying cosi50.88.
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‘‘thinning’’ the remaining terms; we kept every 250th item
the chain. The true parameter values for this run wereh0
55.0, c50.4, f051.0 andi50.5 (cosi50.88). In the ex-
ample displayed in Fig. 1 the MCMC yielded mean valu
and 95% posterior probability intervals ofh054.9 ~4.43 to
5.50!, c50.02 (20.68 to 0.69!, f051.34~0.71 to 2.08!, and
cosi50.90 ~0.79 to 0.99!. The 95% posterior probability in
terval is specified by the 2.5% and 97.5% percentiles
p(ai u$Bk%). In Fig. 2 we display the estimated posterior PD
of h0 on an expanded scale, along with the real and estim
value forh0.

It is crucial that our algorithm is sensitive to the true val
of the gravitational wave amplitude,h0, even under condi-
tions of relatively low signal-to-noise ratio, and Fig. 3 sho
injected h0 values versus their values inferred by the M
routine. The error bars correspond to the 95% posterior p
ability interval, i.e. the lower and upper bound are specifi
by the 2.5% and 97.5% percentiles ofp(ai u$Bk%). The algo-
rithm clearly is successful in finding and estimatingh0.
While the error bars increase as the signal gets larger,
relative errorDh0 /h0 does diminish ash0 increases. The fac
that the 95% posterior probability interval grows withh0 for
constant noise level would seem to be counterintuitive.
addition, the widths of the posterior probability distributio
for h0 are larger than would be naively expected from
search for a simple periodic signal. The reason is that th
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error bars represent the uncertainty in the parameter ra
than just the level of the noise, and this is affected both
the noise level and the posterior covariance between a
the parameters. The MCMC technique also allows one
calculate cross-correlation coefficients from the Mark
chains of the parameters, and the value betweenh0 and cosi

FIG. 2. An expanded view of the estimated posterior PDF ba
on the MCMC sample for parameterh0. The vertical solid line
shows the posterior mean ofh054.9, while the vertical dotted line
marks the true parameter value ofh055.0.
1-4
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in all of our runs was;20.95. As a result the data ar
consistent with a relatively broad range of combinations
the two parameters, making theirindividual values rather
uncertain here—an effect evident from Eq.~1!.

The effect of the other unknown parameters~particularly

FIG. 3. The posterior mean based on the MCMC sample for
gravitational wave amplitude parameterh0 versus the actual value
of h0 used in synthesizing the data. The error bars correspon
lower and upper bounds at the 2.5% and 97.5% percentiles o
posterior PDF. The solid line has a slope of 1. The calculations w
performed over 14 000 data points, each with noise variance
sk

251.
02200
f

i) on the posterior PDF forh0 can be clearly shown by
repeating the analysis for Fig. 3 but withh0 as the only
unknown, namely, all of the other parameters set to th
actual values in the MCMC routine. Under these circum
stances the widths of all 95% posterior probability interv
are 0.116, independent of the value ofh0. Comprehensive
analyses have investigated detection statistics for a peri

e
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FIG. 4. The posterior mean based on the MCMC sample for
gravitational wave amplitude parameterh0 ~dotted line!, along with
that produced via the method presented in@20# ~solid line!. In this
example thetrue value wash050.5, while the othertrue parameter
values werec50.4, f51.0, andi50.5.
m
FIG. 5. Trace plot~left! and posterior PDFs~right! for the pulsar parametersh0 andD f . In this example from the five parameter proble
the true values for these critical parameters wereh051.0 andD f 50.0078125 Hz.
1-5
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CHRISTENSENet al. PHYSICAL REVIEW D 70, 022001 ~2004!
signal in a gravity wave detector@27#. However, these statis
tics are concerned only with the amplitude of the perio
signal, and not with parameter estimation~as described
above!. If we write Eq. ~1! as s(t)5A cos(C1F) ~with A
being the periodic signal amplitude andF a phase term! then
the detection statistic of@27# would apply to finding a signa
amplitudeA in the presence of the detector noise. In terms
Eq. ~1!, the amplitude of the periodic signal would be

A5$@F1~ t;c!h0~11cos2i !/2#21@F3~ t;c!h0cosi#2%1/2.

~11!

It is clear thatA has a complicated dependence onh0 and
cosi. We will never know,a priori, the value of all the pulsa
parameters. Our study here is about parameter estima
and not knowing the values of all the pulsar parameters
timately increases the width in the posterior PDF for t
gravity wave magnitudeh0.

As the magnitudes of the signals are diminished th
comes a point when one is no longer able toconfidently
claim a detection. This threshold is somewhat arbitrary,
dependent on the statistics and interpretation. In the st
presented here weclaim that a signal is detected when th
h050 point is more that two standard deviations from t
mean value of the MCMC generated posterior PDF forh0.
For the synthesized signals we investigated this co
sponded to a threshold for detection ofh050.1; in this case
the measured mean of the posterior PDF forh0 was 2.1
standard deviations away from zero. For an initial detect
of gravitational radiation it is likely that the scientific com
munity will demand a significantly larger signal-to-noise r
tio. However, the performance of the MCMC routine is s
very good for these relatively low signal levels.

Although 106 Monte Carlo iterations were used in th
study ~taking 1 day on a 1 GHz processor! adequate distri-
butions can be generated from 105 iterations after the burn
in, so good results can be achieved after just a few hours
fact the marginalizations discussed above can be tac

FIG. 6. The posterior mean based on the MCMC sample for
gravitational wave amplitude parameterh0 versus the actual value
of h0 used in synthesizing the data. This example is from the
parameter problem. The error bars correspond to the lower
upper bounds being specified by the 2.5% and 97.5% percentile
the posterior PDF. The solid line has a slope of 1.
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more quickly using simple summing methods as perform
by @20#, and the result of a comparison of the two is show
in Fig. 4. The great advantage of the MCMC method for us
its demonstrated ability to deal with problems that have
large number of parameters@10#, where other numerical in-
tegration techniques~such as employed by@20#! are not fea-
sible. The ultimate goal of our research is to expand t
pulsar parameter estimation work to include more para
eters. The next step in increasing the complexity of the p
sar signal is to consider potential sources of known locati
but with unknown rotation frequency. In order to start th
investigation we added a new parameter, the uncertaint
the frequency of the source,D f . In this example the exac
value of the pulsar’s gravitational wave signal is uncertain
within 1/60 Hz. In the study we present here there is a d
ference,D f , between the gravitational wave signal frequen
and the heterodyne frequency. The addition of this new
rameter did not significantly increase the rate at which
code ran, but did~by about 20%! increase the length of the
burn-in time. If one wanted to increase this frequency ran
to 5 Hz then this could be done by running the MCMC co
on 300 processors, with each run differing in center f
quency by 1/60 Hz. The Markov chain using thecorrect
frequency would converge, while the other 299 chains wo
not. This will be a future research project for us.

In our MH code we used a uniform prior for the unce
tainty in the frequency,D f , over 60.016 67 Hz. The injec-
tion parameters used werec50.4, f51.0, D f
50.007 812 5 Hz, andi50.5 (cosi50.88). h0 was again
injected with a number of values between 0.25 and 10.0
Fig. 5 we show sample trace plots and posterior PDFs forD f
and h0 when the injected value ofh0 was 1.0. For this ex-
ample the MCMC algorithm yielded mean values and 95
posterior probability intervals ofh051.02~0.86 to 1.26! and
D f 50.007 812 497 Hz~0.007 812 480 Hz to 0.007 812 51
Hz!. The frequency PDF is quite narrow, which was respo
sible for the increase in the burn-in time as the Markov ch
must find this narrow region of parameter space. In Fig. 6
display the estimate for the gravitational wave amplitu
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FIG. 7. The posterior mean based on the MCMC sample for
uncertainty in the frequency,D f , versus the actual value ofh0 used
in synthesizing the data. This example is from the five param
problem. The error bars correspond to the lower and upper bou
being specified by the 2.5% and 97.5% percentiles of the poste
PDF. The horizontal line corresponds to the real value ofD f
50.007 812 500 Hz.
1-6
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(h0) predicted by the five parameter MH routine versus
actualh0. In Fig. 7 we display the estimate for the differen
in frequencyD f predicted by the five parameter MH routin
versus the injectedh0.

V. DISCUSSION

Recent applications of MCMC techniques have provid
a Bayesian approach to estimating parameters in a numb
physical situations. These include cosmological param
estimation from cosmic microwave background data@13–
15#, estimating astrophysical parameters for gravitatio
wave signals from coalescing compact binary syste
@16,17#, and parameter estimation of a chaotic system in
presence of noise@18,19#. An all sky survey for periodic
gravitational waves from neutron stars must explore a v
large parameter space, and this has partially been addre
in @8#. Generically, the signal from a neutron star in a bina
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system will be characterized by at least 13 parameters.
our hope that the MCMC techniques will prove fruitful i
dealing with these complex signals.

In this paper we have demonstrated that the success o
MH routine for the five parameter problem:h0 , c, f0 , i and
D f . Our longer term plans are to account for other para
eters, such as spindown rate, pulsar wobble, and poss
location of the signal in the sky. This research is currently
progress.

ACKNOWLEDGMENTS

This work was supported by National Science Foundat
grants PHY-0071327 and PHY-0244357, the Royal Soci
of New Zealand Marsden fund award UOA204, the Natu
Sciences and Engineering Research Council of Canada,
versities U.K., and the University of Glasgow.
tt.

tt,
.
t,

um

to

k/

oc.
@1# B. Barish and R. Weiss, Phys. Today52 ~10!, 44 ~1999!.
@2# B. Willke et al., Class. Quantum Grav.19, 1377~2002!.
@3# B. Caronet al., Nucl. Phys. B~Proc. Suppl.! 54, 167 ~1996!.
@4# K. Tsubono, in1st Edoardo Amaldi Conference on Gravita

tional Wave Experiments, edited by E. Coccia, G. Pizella, an
F. Ronga~World Scientific, Singapore, 1995!, p. 112.

@5# C. Cutler, Phys. Rev. D66, 084025~2002!.
@6# L. Bildsten, Astrophys. J. Lett.501, L89 ~1998!.
@7# J. Middleditch, J.A. Kristan, W.E. Kunkel, K.M. Hill, R.D.

Watson, R. Lucinio, J.N. Imamura, T.Y. Steiman-Camero
A.S. Shearer, R. Butler, M. Redfern, and A.C. Danks, N
Astron.5, 243 ~2000!.

@8# P. Jaranowski, A. Kro´lak, and B.F. Schutz, Phys. Rev. D58,
063001~1998!.

@9# P. Brady and T. Creighton, Phys. Rev. D61, 082001~2000!.
@10# W.R. Gilks, S. Richardson, and D.J. Spiegelhalter,Markov

Chain Monte Carlo in Practice~Chapman and Hall, London
1996!.

@11# N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H
Teller, and E. Teller, J. Chem. Phys.21, 1087~1953!.

@12# W.K. Hastings, Biometrika57, 97 ~1970!.
@13# N. Christensen, R. Meyer, L. Knox, and B. Luey, Class. Qu

tum Grav.18, 2677~2001!.
,

-

@14# L. Knox, N. Christensen, and C. Skordis, Astrophys. J. Le
563, L95 ~2001!.

@15# L. Verde, H.V. Peiris, D.N. Spergel, M. Nolta, C.L. Benne
M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S.S
Meyer, L. Page, G.S. Tucker, E. Wollack, and E.L. Wrigh
Astrophys. J., Suppl. Ser.148, 195 ~2003!.

@16# N. Christensen and R. Meyer, Phys. Rev. D64, 022001~2001!.
@17# N. Christensen, R. Meyer, and A. Libson, Class. Quant

Grav.21, 317 ~2004!.
@18# R. Meyer and N. Christensen, Phys. Rev. E62, 3535~2000!.
@19# R. Meyer and N. Christensen, Phys. Rev. E65, 016216~2002!.
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