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Metropolis-Hastings algorithm for extracting periodic gravitational wave signals
from laser interferometric detector data
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The Markov chain Monte Carlo methods offer practical procedures for detecting signals characterized by a
large number of parameters and under conditions of low signal-to-noise ratio. We present a Metropolis-
Hastings algorithm capable of inferring the spin and orientation parameters of a neutron star from its periodic
gravitational wave signature seen by laser interferometric detectors.
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[. INTRODUCTION algorithm[11,12 has been used for estimating cosmological
parameters from cosmic microwave background dat
The worldwide network of laser interferometric gravita- 15], and the applicability of the MH routine has been dem-
tional wave detectors has begun to acquire scientifically sigonstrated in estimating astrophysical parameters for gravita-
nificant data[1—4] and rapidly rotating neutron stars are an tional wave signals from coalescing compact binary systems
important potential source of signalsie will reserve the [16,17. MCMC methods have also provided Bayesian infer-
term “pulsar” to refer to the observed pulsating radio €Nc€ for noisy and chaotic d&ta8,19. '
sources Although a spinning spherically symmetric neutron  /éré we demonstrate that a MH algorithm also offers
star will not produce gravitational waves, a number ofdreat promise for estimating neutron star parameters from

mechanisms have been proposed that are capable of prodJB?ir continuous gravitational wave signals. This work builds
ing quasi-periodic gravitational waves from biaxial or tri- on the developmenby wo of ug of an end-to-end robust

. o Bayesian method of searching for periodic signals in gravi-
axial neutron starg5,6]. Any gravitational waves from these

. . tational wave interferometer daf20], summarized in Sec.
neutron stars will likely be seen at Earth as weak continuous Starting with this Bayesian approach we apply a similar
wave signals. :

. . " . ) MH routine to that used i113,17]. The description of the
The data analysis task of identifying such a signal in theBayesian MH method is given in Sec. Ill. In Sec. IV we
output of a laser interferometer is challenging and difficult,present the results of this study, using synthesized data, for
both because of the weakness of the signal and because {{§,r and five parameter problems. We believe that this
time eVOlUtion iS Characterized by a relatively |al’ge numbermethod offers great hope for Signa' extraction as more pa_
of parameters. Radio observations can provide the sky locgameters are included, and this point is discussed in Sec. V.
tion, rotation frequency and spindown rate of known pulsars,

but the problem of looking for unknowfor poorly param- Il. SIGNAL CHARACTERISTICS

eterized neutron star sources is significantly more challeng-
ing. SN1987A is a good example of a poorly parameterizec?(n
source for which the sky location in approximately known
but also for which there is a large uncertainty in the fre-
guency and spindown parameters of the putative neutron st
[7].

Much work has already gone into all-sky hierarchical
methods for searching for continuous gravitational wave
[8,9]. Here we address the specific problem of a “fuzzy”
parameter space search, in which a restricted volume of thgx
space needs to be thoroughly investigated. We take a Bay

sian approach to this problem and use Markov chain Mont otation frequencyf .= 2f,, and we characterize the ampli-

Carlo (MCMC) techniques which have been shown to be > . )
especially suited to similar problems involving numerous pa—JEUOIeS of each polarization with overall strain factag, The

rameters[10]. In particular, the Metropolis-HastingdH) meagure_d gravitational wave signal will also dep_e_nd on the
polarization antenna patterns of the detedtqr, giving a

We will initially consider searching for signals from
own radio pulsars, and then expand the method to account
for an uncertainty in the frequency of the gravitational wave
signal. As gravitational waves from pulsars are certainly
eak at Earth, long integration periods are required to ex-
tract the signal, and we must take account of the antenna
éaatterns of the detectors and the Doppler shift due to the
motion of the Earth.

As in the previous study20,21] we consider the signal
pected from a non-precessing triaxial neutron star. The
ravitational wave signal from such an object is at twice its

signal
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where ¢ is the polarization angle of the radiatigwhich lll. THE METROPOLIS-HASTINGS ALGORITHM
depends on the position angle of the spin axis in the plane of
the sky and. is the inclination of the pulsar with respect to
the line of sight.

Using a simple slowdown model, the phase evolution o
the signal can be usefully parameterized as

This section presents a brief review of the Bayesian MH
approach to parameter estimation. Comprehensive descrip-
ftions of MCMC methods and the MH algorithm can be
found elsewher§10,13,117.

We will denote the output from the above heterodyning
procedure a$B,}, with a joint probability distribution func-

1. , L. 3 tion (PDP denoted byp({B,}|a) conditional on unobserved

W(t)=got2m f(T—To)+ Efs(T_TO) + gfs(T_TO) ' parametera=(a,, . ..,aq). The PDFp({B}|a) is referred
to as thdikelihood and regarded as a function of the param-
etersa. The parameters of interest for our four parameter

) study area=(hg,#,dq,t), while for the five parameter
study they are=(hg, ¥, ¢q,¢,AT).
where From Eg.(1), the (now complex heterodyned signal is
r-n t )1Ft Yho(1+cose)e o
‘ ;a)=— ; co
T:t+5t:t+T+AT_ &) y(ty 2 +(tis ) ho( L
i .

— =Fy(tx;)hocosce %o, (4

Here,T is the time of arrival of the signal at the solar system 2

barycenter,¢, is the phase of the signal at a fiducial time

To, I is the position of the detector with regard to the solar@nd the binning procedure should, by the central limit theo-

system barycenten is a unit vector in the direction of the rem, give the noise a near-Gaussian probability density char-

pulsar.c is the speed of light, and; contains the relativistic acterized by a varianagf for thekth bin. The likelihood that
corrections to the arrival img22]. the data in this bin, taken at tintg, is consistent with the

The signal isheterodynedby multiplying the data by @bove model is
exd —iW(t)] so that the only time varying quantity remaining
is the antenna pattern of the interferometetich varies —[By—y(ty:a)|?
over the day. For convenience, the result is low-pass filtered P(Bifa)xex 252 '
and resampled. We are left with a simple model with four «

unknown parameters: the overall amplitude of the gravitazng the joint likelihood that the data in all the bifiaken as

tional wave signallfo), its polarization angley), its phase  independentare consistent with a particular set of model
at timeT, (¢o), and the angle between the spin axis of theparameters is

pulsar and the line of sight).

A detailed description of the heterodyning procedure is — By —y(t,:a)|?
presented elsewhef20,21; here we just provide a summary p({Bla)x]] exp( —2) . (6)
of this standard technique. The raw sigrsl;), is centered K 20}
near twice the rotation frequency of the pulsar, but is Dop-
pler modulated due to the motion of the Earth and the orbit Bayesian inference requires the specification of a prior
of the pulsar if it is in a binary system. The modulation PDF for a, p(a), that quantifies the researcher’s pre-
bandwidth is typically 1 times less than the detector band- €xperimental knowledge aboat The phase and polarization
width, so one can greatly reduce the effective data rate bpriors are flat in their space, and are set uniformdgrover
extracting this band and shifting it to zero frequency. In its[0,7], and for¢ over[ —m/4,m/4]. The prior for. is uni-
standard form the result is one binned data pdqt, every  form in cos: over[ —1,1], corresponding to a uniform prior
minute, containing all the relevant information from the per unit solid angle of pulsar orientation. Finally, in the
original time series but at only 210 ° the original data present study we take a prior fox, that is uniform for O
rate. If the phase evolution has been correctly accounted fof ho<<1000(in our normalized units for whiclr,=1), and
at this heterodyning stage then the only time-varying comzero for all other values.
ponent left in the signal will be the effect of the antenna Using Bayes' theorem, the post-experimental knowledge
pattern of the interferometer, as its geometry with respect tof a is expressed by thgosterior PDF of a:
the neutron star varies with Earth rotation. Any small error, (@p(BJla)
Af, in the heterodyne frequency will cause the signal to _ Plta)p(iBysla
oscillate atAf, and for the second part of our study we have P(@{Bi)= P({By}) “p@p(BIa). @
Af as our fifth parameter. For both these studies we estimate
the noise varianceg?, in the bin valuesB,, from the wherep({B,})=/p({B\}|a)p(a)da is the marginal PDF of
sample variance of the contributing data. It is assumed thdtB,} which can be regarded as a normalizing constant as it is
the noise is stationary over the 60 s of data contributing tandependent of. The posterior PDF is thus proportional to
each bin. the product of prior and likelihood.

®
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The marginal posterior distribution for parameteiis the Stepn+1: Generata’ from q(ala,) andu from U(0,1);
integral of the joint posterior PDF over all other components If usa(a’|a,) seta,,;=a’ (acceptance
of a other thang, , i.e., If u>a(a'|a,) seta,,;=a, (rejection.

U(0,1) is the uniform distribution between 0 and 1. The
_ efficiency of the MH algorithm depends heavily on the
p(aiHBk})_J T J p(al{By}) choice of the proposal density. The closer the proposal is to
the target distribution, the faster convergence will be accom-
plished. This link between the closeness of the proposal to
stationary distribution and speed of convergence has also
been substantiated by Hold¢@4]. In the study presented
here we dynamically altered the proposal distribution based
on information from the chain’s history. The approach, called
pilot adaptation is to perform a separate pilot run to gain
insight about the target density and then tune the proposal
<ai>:f aip(aj|{By})da . (9)  accordingly for the successive runs. Such adaptation can be
iterated but allowing it infinitely often will destroy the Mar-
kovian property of the chain and thereby often compromise
the stationarity of the chain and the consistency of sample
é)ath averagef 25]; see[26] for an examplg

Xda;...da_qda,q...day, (8)

and contains all the analysis has to say about the valag of
alone. However it is often useful to summarize this in a
single “point estimate” ofa; using, for example, the poste-
rior mean:

Calculating the normalization constgmt{B,}) and calculat-
ing each marginal posterior PDF requires difficdit and

(d—l)-dimen_sional integlrations, respectively, that can b Based on the central limit theorem, the posterior PDF
a’gl;gtf; ;S'?hg aﬂfamphng lgpp:jqacfll a?d MC|MBC methOdghould be well approximated by a multivariate normal distri-
13,17. Rather than sampling directly from(a|{By}), a bution with mean equal to the posterior mode and covariance

sample from a Markov chain is generated which has : ; - ;
. o o . ““matrix equal to minus the Hessian evaluated at the posterior
p(al{B,}) as its equilibrium distribution. Thus, after running g P

. . . ; mode. Thus, we use a multivariate normal distribution for the
the Markov chain for a certain “burn-in” period, thesgeor-

related samples can be regarded as samples from the Iimi;ﬁi()posal denS|Fy|(a|an). As the m(_)de 'S gnknowq, we try to.
: A : . ake use of pilot samples to estimate its covariance matrix.
Ny d|str|but|on|,3pr0\_/t|deig that thell\/ltgrkovtﬁhaln h?ﬁ r;ar?che hen we initially run the MH algorithm, we sample candi-
ot st o & St 0ot paramte ro a normal Gstbuton wih covarance
atrix equal to the identity matrix and centered around the
current state. After the completion of this pilot run we use
Ghe empirical covariance matrix of the sample as covariance
matrix of the multivariate normal proposal density, again

with mean equal to the current state.

mate of the posterior mean E@) [23].

The specific MCMC technique used for this study was th
MH algorithm [11,12. The MH algorithm generates a
sample from the target PD§{al{B,}) using a technique that
is similar to the well-known simulation technique ijec-
tion sampling A candidate is generated from an auxiliary
PDF and then accepted or rejected with some probability. IV. RESULTS
Starting with an arbitrary initial state,, at timen a new

didates’ | ted f th didat tina PDF In the first part of our study we reproduced the results
candidatea 1S generated irom the candidate generating presented if20] where the four unknown parameters were
g(ala,), which can depend on the current stateof the

hg,¢, ¥, andgy. The si (t thesized i
Markov chain. This new candidate’ is accepted with a o' ¥, anddo. The signal(t) was synthesized assuming a

; ., \ ! source at right ascensie"41m54° and declination
certainacceptance probabilityr(a’|a,), also depending on —18°2332', as would be seen by the LIGO-Livingston in-
the current stata,,, given by '

terferometer. This was then added to white Gaussian noise,
) Blg , n(t), which is a good approximation to the detector noise in
a(a’|a,) = min p(a’)p({Bi}a’)q(a,|a ), . (10 our band. Our normalized data had a noise variancerof

p(a,) p({By}lan)q(a’|a,) =1 for each sample, and the amplitude of the signal used in

our test runs was varied in the rangg=0.0 to 10.0. We

For good efficiency a multivariate normal distribution cen-were able to detect signals ftx,>0.1. The length of the
tered at the current statg, is used forq(a’|a,). This then data set corresponded to 14 400 samples or 10 days of data at
implies that if the posterior probability @t is larger than at a rate of one sample per minuighich was the rate used for
the current state,,, the proposed step ta’ is always ac- the LIGO/GEO S1 analysis described[21]). Although we
cepted. However, if the step is in a direction of lower poste-will work with strains normalized tar =1, the results can
rior probability, then this step is accepted only with a certainbe cast into a more conventional form by multiplyiogand
probability given by the ratio of the posterior PDEsince  h, by (S,/60)"?, where G,)%? is the strain noise spectral
our multivariate normal generating function is symmetric indensity of the detector at the frequency of interest, in Hz

a’ anda, and therefore cancels gutf the candidate is ac- An example of the MH routine output is shown in Fig. 1.

cepted, the next state of the Markov chairajs ;=a’, oth-  Displayed are the trace plots and the kernel densffieste-

erwise the chain does not move, isg.. 1=a,. rior PDFS9. For this example the program ran for®liGera-
The steps of the MH algorithm are therefore: tions. The first 10 iterations were discarded as the burn-in.
Step 0: Start with an arbitrary valug; Short-term correlations in the chain were eliminated by
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FIG. 1. Trace plofleft) and MCMC-estimated posterior PDRgght) for the pulsar parametehs,, i, ¢, and cos. In this example the
true parameters wetg,=5.0, ¢y=1.0, y=0.4, and.=0.5 implying cos=0.88.

“thinning” the remaining terms; we kept every 250th item in error bars represent the uncertainty in the parameter rather
the chain. The true parameter values for this run weye than just the level of the noise, and this is affected both by
=5.0, y=0.4, ¢o=1.0 and:=0.5 (cos=0.88). In the ex- the noise level and the posterior covariance between all of
ample displayed in Fig. 1 the MCMC yielded mean valuesthe parameters. The MCMC technique also allows one to
and 95% posterior probability intervals bf=4.9 (4.43 to  calculate cross-correlation coefficients from the Markov
5.50, 4=0.02 (- 0.68 10 0.69, $=1.34(0.71t0 2.08, and  chains of the parameters, and the value betweeand cos
c0s:t=0.90(0.79 to 0.99. The 95% posterior probability in-
terval is specified by the 2.5% and 97.5% percentiles of

p(a|{B}). In Fig. 2 we display the estimated posterior PDF
of hy on an expanded scale, along with the real and estimated e
value forh,.

It is crucial that our algorithm is sensitive to the true value 2 A
of the gravitational wave amplitudéy, even under condi- .
tions of relatively low signal-to-noise ratio, and Fig. 3 shows £ 3 A
injected h, values versus their values inferred by the MH =
routine. The error bars correspond to the 95% posterior prob- S
ability interval, i.e. the lower and upper bound are specified
by the 2.5% and 97.5% percentilesp(fa;|{B,}). The algo- s
rithm clearly is successful in finding and estimatihg. °
While the error bars increase as the signal gets larger, the ] ' ' '

relative errorAhy/hy does diminish al increases. The fact
that the 95% posterior probability interval grows witp for
constant noise level would seem to be counterintuitive. In  F|G. 2. An expanded view of the estimated posterior PDF based
addition, the widths of the posterior probability distributions on the MCMC sample for parametéx,. The vertical solid line

for hy are larger than would be naively expected from ashows the posterior mean bf=4.9, while the vertical dotted line
search for a simple periodic signal. The reason is that thes@arks the true parameter value lgf=5.0.

ho
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FIG. 3. The posterior mean based on the MCMC sample for the FIG. 4. The posterior mean based on the MCMC sample for the

gravitationa! wave am.pl.itude parametgy versus the actual value ravitational wave amplitude parametey (dotted ling, along with
of hy used in synthesizing the data. The error bars correspond t at produced via the method presented2a] (solid line). In this

lower and upper bounds at the 2.5% and 97.5% percentiles of thgxample therue value wash,=0.5, while the othetrue parameter
posterior PDF. The solid line has a slope of 1. The calculations Wer?alues weray=0.4, p=1.0 andL‘= 0.5

performed over 14000 data points, each with noise variance o
og=1. ) on the posterior PDF fohy can be clearly shown by
repeating the analysis for Fig. 3 but withy as the only

in all of our runs was~—0.95. As a result the data are unknown, namely, all of the other parameters set to their

consistent with a relatively broad range of combinations ofactual values in the MCMC routine. Under these circum-

the two parameters, making thdimdividual values rather stances the widths of all 95% posterior probability intervals

uncertain here—an effect evident from Ed). are 0.116, independent of the value lgf. Comprehensive
The effect of the other unknown parametéparticularly  analyses have investigated detection statistics for a periodic
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FIG. 5. Trace plotleft) and posterior PDF&ight) for the pulsar parametehg andAf. In this example from the five parameter problem
the true values for these critical parameters weye 1.0 andAf=0.0078125 Hz.
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FIG. 7. The posterior mean based on the MCMC sample for the
uncertainty in the frequency f, versus the actual value bf, used

FIG. 6. The posterior mean based on the MCMC sample for then synthesizing the data. This example is from the five parameter
gravitational wave amplitude parametey versus the actual value problem. The error bars correspond to the lower and upper bounds
of hy used in synthesizing the data. This example is from the fiveneing specified by the 2.5% and 97.5% percentiles of the posterior
parameter problem. The error bars correspond to the lower anpDF. The horizontal line corresponds to the real valueAdf
upper bounds being specified by the 2.5% and 97.5% percentiles e 0.007 812 500 Hz.
the posterior PDF. The solid line has a slope of 1.

signal in a gravity wave detectp27]. However, these statis- [)norgoquick(;y #sing slitmgle summin_g met?(t)r(]js tas perf(?]rmed
tics are concerned only with the amplitude of the periodic, y [_ ], and the result of a comparison of the two is s own
signal, and not with parameter estimati¢as described in Fig. 4. The great advantage of the MCMC method for us is

above. If we write Eq. (1) as s(t)=A cos@+®) (with A its demonstrated ability to deal with problems that have a

; P ; large number of parametef$0], where other numerical in-
being the periodic signal amplitude afida phase terpmthen . .
the detection statistic §27] would apply to finding a signal tegration techniquegsuch as employed b20]) are not fea-

amplitudeA in the presence of the detector noise. In terms ofs'ble' The ultimate gpal qf our resear.ch is to expand this
Eq. (1), the amplitude of the periodic signal would be pulsar parameter estimation V\_/ork to include more param-
' eters. The next step in increasing the complexity of the pul-

A={[F+(t;(ﬁ)h0(1+C032L)/2]2+[F><(t;lﬂ)hOCOSL]Z}UZ. sar signal is to consider_ potential sources of known Iocatiqn,
but with unknown rotation frequency. In order to start this
(11 investigation we added a new parameter, the uncertainty in
the frequency of the sourc&f. In this example the exact
It is clear thatA has a complicated dependence fgpnand  value of the pulsar’s gravitational wave signal is uncertain to
cost. We will never knowa priori, the value of all the pulsar within 1/60 Hz. In the study we present here there is a dif-
parameters. Our study here is about parameter estimatioference Af, between the gravitational wave signal frequency
and not knowing the values of all the pulsar parameters uland the heterodyne frequency. The addition of this new pa-
timately increases the width in the posterior PDF for therameter did not significantly increase the rate at which the
gravity wave magnitudé. code ran, but didby about 20% increase the length of the
As the magnitudes of the signals are diminished therdourn-in time. If one wanted to increase this frequency range
comes a point when one is no longer ablectnfidently to 5 Hz then this could be done by running the MCMC code
claim a detection. This threshold is somewhat arbitrary, an@n 300 processors, with each run differing in center fre-
dependent on the statistics and interpretation. In the studguency by 1/60 Hz. The Markov chain using therrect
presented here welaim that a signal is detected when the frequency would converge, while the other 299 chains would
ho=0 point is more that two standard deviations from thenot. This will be a future research project for us.
mean value of the MCMC generated posterior PDFHgr In our MH code we used a uniform prior for the uncer-
For the synthesized signals we investigated this corretainty in the frequencyAf, over +0.016 67 Hz. The injec-
sponded to a threshold for detectiontgf=0.1; in this case tion parameters used werey=0.4, ¢=1.0, Af
the measured mean of the posterior PDF ligrwas 2.1 =0.007 812 5 Hz, and=0.5 (cos=0.88). hy was again
standard deviations away from zero. For an initial detectiorinjected with a number of values between 0.25 and 10.0. In
of gravitational radiation it is likely that the scientific com- Fig. 5 we show sample trace plots and posterior PDFafor
munity will demand a significantly larger signal-to-noise ra-and hy when the injected value diy was 1.0. For this ex-
tio. However, the performance of the MCMC routine is still ample the MCMC algorithm yielded mean values and 95%
very good for these relatively low signal levels. posterior probability intervals diy=1.02(0.86 to 1.26 and
Although 16 Monte Carlo iterations were used in this Af=0.007 812 497 H£0.007 812 480 Hz to 0.007 812 515
study (taking 1 day on a 1 GHz procesg@dequate distri- Hz). The frequency PDF is quite narrow, which was respon-
butions can be generated from®li€erations after the burn- sible for the increase in the burn-in time as the Markov chain
in, so good results can be achieved after just a few hours. Imust find this narrow region of parameter space. In Fig. 6 we
fact the marginalizations discussed above can be tackledisplay the estimate for the gravitational wave amplitude
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(hg) predicted by the five parameter MH routine versus thesystem will be characterized by at least 13 parameters. It is
actualh,. In Fig. 7 we display the estimate for the difference our hope that the MCMC techniques will prove fruitful in
in frequencyAf predicted by the five parameter MH routine dealing with these complex signals.
versus the injected. In this paper we have demonstrated that the success of the
MH routine for the five parameter probleimg, , ¢q, ¢ and
V. DISCUSSION Af. Our longer term plans are to account for other param-
eters, such as spindown rate, pulsar wobble, and possibly

Recent applications of MCMC techniques have providedocation of the signal in the sky. This research is currently in
a Bayesian approach to estimating parameters in a number gfogress.

physical situations. These include cosmological parameter

estimation from cosmic microwave background dpt8—

15], esti_mating astrophysical_ parameters fo_r gravitational ACKNOWLEDGMENTS

wave signals from coalescing compact binary systems

[16,17, and parameter estimation of a chaotic system in the This work was supported by National Science Foundation
presence of nois¢l8,19. An all sky survey for periodic grants PHY-0071327 and PHY-0244357, the Royal Society
gravitational waves from neutron stars must explore a verpf New Zealand Marsden fund award UOA204, the Natural
large parameter space, and this has partially been addressgdiences and Engineering Research Council of Canada, Uni-
in [8]. Generically, the signal from a neutron star in a binaryversities U.K., and the University of Glasgow.

[1] B. Barish and R. Weiss, Phys. Tod&g (10), 44 (1999. [14] L. Knox, N. Christensen, and C. Skordis, Astrophys. J. Lett.

[2] B. Willke et al,, Class. Quantum Grai.9, 1377(2002. 563 L95 (2001).

[3] B. Caronet al, Nucl. Phys. B(Proc. Supp). 54, 167 (1996.  [15] L. Verde, H.V. Peiris, D.N. Spergel, M. Nolta, C.L. Bennett,

[4] K. Tsubono, in1st Edoardo Amaldi Conference on Gravita- M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S.S.
tional Wave Experimentedited by E. Coccia, G. Pizella, and Meyer, L. Page, G.S. Tucker, E. Wollack, and E.L. Wright,
F. Ronga(World Scientific, Singapore, 1995p. 112. Astrophys. J., Suppl. Set48 195 (2003.

[5] C. Cutler, Phys. Rev. [B6, 084025(2002. [16] N. Christensen and R. Meyer, Phys. Rev64) 022001(2001).

[6] L. Bildsten, Astrophys. J. Let601, L89 (1998. [17] N. Christensen, R. Meyer, and A. Libson, Class. Quantum

[7] J. Middleditch, J.A. Kristan, W.E. Kunkel, K.M. Hill, R.D. Grav. 21, 317(2004.

[18] R. Meyer and N. Christensen, Phys. Rew6Z 3535(2000.

[19] R. Meyer and N. Christensen, Phys. Re6% 016216(2002.
[20] Rgean J. Dupuis and Graham Woan, “A Bayesian Method to
. Search for Periodic Gravitational Waves.”

[8] P. Jaranowski, A. Krak, and B.F. Schutz, Phys. Rev. B8, [21] B. Abbott et al, Phys. Rev. D69, 082004(2004.

063001(1998. [22] J.H. Taylor, Phys. Rev. [B6, 084025(2002.
[9] P. Brady and T. Creighton, Phys. Rev.6}, 082001(2000. [23] L. Tierney, Ann. Stat22, 1701(1994.

[10] W.R. Gilks, S. Richardson, and D.J. Spiegelhaltéarkov  [54] | Holden, “Adaptive chains,” http:/www.statslab.cam.ac.uk/

Watson, R. Lucinio, J.N. Imamura, T.Y. Steiman-Cameron,
A.S. Shearer, R. Butler, M. Redfern, and A.C. Danks, New
Astron. 5, 243(2000.

Chain Monte Carlo in PracticéChapman and Hall, London, meme

1996. [25] W.R. Gilks, G.O. Roberts, and S.K. Sahu, J. Am. Stat. Assoc.
[11] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. 93, 1045(1998.

Teller, and E. Teller, J. Chem. Phy&l, 1087(1953. [26] A.E. Gelfand and S.K. Sahu, J. Comput. Graph. Sa261
[12] W.K. Hastings, Biometrikd7, 97 (1970. (1994.
[13] N. Christensen, R. Meyer, L. Knox, and B. Luey, Class. Quan-[27] B. Allen, M.A. Papa, and B.F. Schutz, Phys. Rev. @B,

tum Grav.18, 2677(2001). 102003(2002.

022001-7



