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3 Università degli Studi di Urbino, Urbino, Italy

Presented is a Bayesian parameter estimation method for the analysis of interferometric grav-
itational wave observations of an inspiral of binary compact objects using data recorded si-
multaneously by a network of several interferometers at different sites. We consider neutron
star or black hole inspirals that are modeled to 3.5 post-Newtonian (PN) order in phase and
2.5 PN in amplitude. Inference is facilitated using Markov chain Monte Carlo methods that
are adapted in order to efficiently explore the particular parameter space. Nine parameters
are estimated, including those associated with the binary system, plus its location on the sky.
We explain how this technique will be part of a detection pipeline for compact objects with
masses up to 20 M�, including binary systems with very large mass ratios.

1 Introduction

A world-wide network of interferometric gravitational wave detectors is now on-line. LIGO has
reached its target sensitivity 1, and Virgo is fast approaching theirs 2. Compact binary systems
will certainly produce gravitational waves, and they are likely to be one of the most promising
sources. The LIGO Scientific Collaboration (LSC) 3 and Virgo 4,5 each have search pipelines for
binary inspiral events, and studies have shown that these pipelines have equivalent detection
capabilities, and soon the LSC and Virgo will be conducting collaborative searches 6.

The purpose of a binary inspiral detection pipeline is to find a signal within the data. Once
researchers suspect that a signal is present then parameter estimation techniques can be applied
in order to produce estimates and summary statistics for the astrophysical parameters. Bayesian
Markov chain Monte Carlo (MCMC) methods 7 are well suited for this problem, especially since
it is possible to produce accurate predictions for the form of the signal. MCMC parameter
estimation techniques have been developed for binary neutron star inspirals, as seen by a single
interferometer 8. In addition, MCMC methods have been developed for the coherent analysis of
data from a world-wide network of interferometers 9.



A difficult detection scenario involves finding a signal produced by a binary system where
the mass ratio between the two objects is large. In such a case, the signal will likely have its
amplitude significantly modulated, and it will be necessary to use higher-order post-Newtonian
(PN) approximations. Here we summarize our method for producing parameter estimates asso-
ciated with a binary inspiral modeled to 3.5 post-Newtonian (PN) order in phase, and 2.5 PN
in amplitude 10,12. We employ new and more advanced MCMC methods, such as evolutionary
MCMC 14. The higher order PN templates will also allow for examination of signals where the
amplitude is modulated, as may be the case with rather large ratios between the masses of the
compact objects. Finally, we see this MCMC program as part of a larger detection pipeline for
signals from binary inspirals with large mass ratios, and individual masses going up to 20 M�.
We imagine, for example, using an existing detection pipeline 5 to generate a reasonable number
of triggers; the MCMC would then analyze each of the triggers in detail. Once the MCMC has
reached convergence, an estimate for the signal parameters would be produced.

2 Coherent MCMC for Binary Inspiral Signals

We follow a Bayesian approach in order to do inference on the inspiral signal’s parameters.
Bayesian inference depends on evaluating the parameters’ posterior distribution, which is given in
terms of the (non-normalized) posterior density, in our case a function of 9 parameters. Typically,
one will be interested in figures such as posterior means, confidence bounds, or marginal densities
for individual parameters, which require integration of the posterior over the parameter space.
This problem is commonly approached using Monte Carlo integration, i.e. by simulating random
draws from the posterior distribution, and then approximating the desired integrals by sample
statistics (means by averages, etc.). The most popular algorithms for this purpose are Markov
chain Monte Carlo (MCMC) samplers that simulate a random walk through parameter space
whose stationary distribution is the posterior distribution 15,7. For our purpose we used a
basic Metropolis sampler that we recently upgraded to an evolutionary MCMC algorithm 14,
a generalization that is motivated by genetic algorithms 16. This extension offers substantial
improvement over the previously employed parallel tempering 9 and yielded a sampler that
reliably converged towards the true posterior distribution in the examples discussed below.

Our simulated data consist of simultaneous measurements from several interferometric de-
tectors, superimposed with interferometer-specific Gaussian noise. The signal waveform that
was injected into and recovered from the data was implemented using a 3.5 post-Newtonian
(PN) approximation for the phase evolution 10,17, and a 2.5 PN model for the amplitude 12.
The 9 parameters determining the responses at different interferometers are: individual masses
(m1,m2), luminosity distance (dL), inclination angle (ι), coalescence phase (φ0), coalescence
time at geocenter (tc), declination (δ), right ascension (α) and polarization angle (ψ).

We applied non-informative priors on the ‘geometrical’ parameters that describe the inspiral
event’s location and orientation. The coalescence time tc is assumed to be known in advance up
to a certain accuracy from the detection pipeline that would in reality precede such an analysis 5;
here we set the prior to be uniform across ±5 ms around the time-trigger value. The prior for
the masses (m1, m2) reflects the distribution of the masses among binary inspirals, which could
be based on observational evidence as well as theoretical considerations. For now, we simply
defined it as uniform across a range of 1–10 M�. Assuming that inspirals happen uniformly
across space leads to a prior P(dL ≤ x) ∝ x3 for the luminosity distance dL. This is an improper
prior, seemingly implying there was an ‘infinite’ probability for ‘infinitely remote’ inspiral events.
It is also unrealistic, since an inspiral event needs to happen within a certain range in order to
be detectable. We incorporated this restriction into the prior specification by considering the
detection probability of an inspiral event, depending on the signal-to-noise ratio (SNR).

We implemented the MCMC sampler as a basic Metropolis algorithm 15,7 that was then



extended to a parallel tempering algorithm. The ‘tempering’ here works as in a simulated an-
nealing algorithm, and prevents MCMC chains from getting stuck in local modes of the posterior
distribution. Parallel tempering is the special case of a Metropolis-coupled MCMC (MCMCMC)
algorithm 7, where several tempered MCMC chains, each at different temperatures, are run in
parallel, and additional proposals are introduced to ‘swap’ parameter sets between chains 18,9.
This algorithm can be further refined by implementing elements of genetic algorithms 16. The
set of parallel chains may be thought of as constituting a ‘population’ whose individuals may
be crossed to form ‘hybrids’ that inherit properties from both ‘parental’ chains, the result be-
ing an evolutionary MCMC algorithm 14. The ‘crossovers’ between sets of parameters were
implemented as real crossovers, in which offsprings are formed by randomly reassembling the
parental parameter sets, as well as snooker crossovers, in which a new offspring is proposed
somewhere on the straight line connecting the two parental points in parameter space 19. We
applied our MCMC routine to a simulated data set, corresponding to an inspiral signal that is
received at three interferometers, specifically the two 4-km LIGO detectors at Hanford (LHO)
and Livingston (LLO), and the 3-km Virgo interferometer near Pisa (V). The simulated inspiral
involved masses of m1 = 2M� and m2 = 5M� (chirp mass mc = 2.70M�, mass ratio η = 0.204),
observed from a distance of dL = 30Mpc at tc = 700 009 012.345 GPS seconds. For the synthe-
sized data that we use the noise characteristics were assumed to match the target sensitivities
for LIGO and Virgo 20. The resulting SNRs 9 at the three sites were 8.4 (LHO), 10.9 (LLO),
6.4 (V); the network SNR was 15.2. Figure 1 shows the marginal posterior distributions for sev-
eral individual parameters in comparison to the true values for the injected signal. While some

declination δ (radian)
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coalescence time tc (s)
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luminosity distance dL (Mpc)
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chirp mass mc (sun masses)
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mass ratio η
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Figure 1: Marginal joint posterior densities for some of the parameters. Dashed lines indicate the true parameter
values.

of the distributions appear roughly Gaussian, others are clearly not; some even possess multiple
modes. This illustrates some of the strengths of a fully Bayesian approach: no approximations
to the posterior’s (or likelihood’s) shape are made, an irregular posterior surface does not pose
a problem, and the assessment of relative importance of multiple modes arises naturally 9.

3 Discussion

We have presented a description of our coherent MCMC code for estimating nine parameters
associated with a binary inspiral signal detected by a network of interferometric detectors.



This program uses time-domain inspiral templates that are 3.5 PN in phase and 2.5 PN in
amplitude. New MCMC techniques, such as evolutionary MCMC and genetic algorithms, have
been implemented in our code. The code can be applied to inspiral signals where the masses of
the components can be as large as 20 M�; inspirals with large mass ratios can also be successfully
analyzed. This code is part of a large mass ratio inspiral detection pipeline that we are currently
developing; a loose-net inspiral detection pipeline (using, for example, lower order PN templates)
will generate a reasonable number of triggers, and this MCMC will then be applied to those
times where triggers were recorded. The next logical extension of our binary inspiral MCMC
work will be to systems with spin; this is currently an area of active research for us.
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