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Abstract
It has been recognized that the magnetic fields from the Schumann resonances 
could affect the search for a stochastic gravitational-wave background 
by LIGO and Virgo. Presented here are the observations of short duration 
magnetic field transients that are coincident in the magnetometers at the LIGO 
and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, 
USA, are also used and show short duration magnetic transients of global 
extent. We measure at least 2.3 coincident (between Poland and Colorado) 
magnetic transient events per day where one of the pulses exceeds 200 pT. 
Given the recently measured values of the magnetic coupling to differential 
arm motion for Advanced LIGO, there would be a few events per day that 
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would appear simultaneously at the gravitational-wave detector sites and 
could move the test masses of order 10−18 m. We confirm that in the advanced 
detector era short duration transient gravitational-wave searches must account 
for correlated magnetic field noise in the global detector network.

Keywords: Schumann resonances, correlated noise, gravitational waves

(Some figures may appear in colour only in the online journal)

1. Introduction

The biggest and most sensitive gravitational-wave observatories in the world are presently the 
two twin interferometers placed in the United States, Advanced LIGO [1, 2] and the European 
Virgo [3], located in Italy. The coming years will also see the arrival of the Japanese grav-
itational-wave detector, KAGRA [4], as well as a third LIGO detector that is to be located 
in India [5]. The Advanced LIGO detectors recently observed gravitational waves from the 
coalescences of binary black holes [6–8].

To be able to measure the subtle effects that are caused by gravitational waves, the detec-
tors have to be extremely sensitive instruments. Therefore, they are also sensitive to many 
sources of environmental noise that need to be identified in the data and removed by properly 
defined vetoes [9–14]. In order to verify that environmental noise is not corrupting the data, all 
of the detectors and their local environments are constantly monitored by various instruments 
such as seismometers, accelerometers, microphones, magnetometers, etc. In this paper we are 
focusing on magnetic noise transients that are caused by electromagnetic discharges in our 
atmosphere. The so-called Schumann resonances are characteristic structures in the Earth’s 
electromagnetic spectrum. The extremely low frequency (ELF) electromagnetic waves propa-
gating around the Earth can create magnetic fields that are coherent over global distances. The 
long-term correlation of magnetic noise between the two LIGO detectors and Virgo was stud-
ied previously [15, 16]. These studies were done in the context of searching for a stochastic 
gravitational-wave background (SGWB), where the signal search method (looking for a cor-
related signal in two detectors) assumes that the noise in the two detectors is non-correlated. 
A search for a SGWB is a major research activity for LIGO and Virgo [17]. In a search for a 
SGWB the data from two detectors are correlated over a timescale of many months to year 
[18]; hence the long-term presence of correlated magnetic field noise from the Schumann 
resonances would create a systematic error in the SGWB signal search. It has been demon-
strated that a search for a SGWB by Advanced LIGO and Advanced Virgo could be corrupted 
by correlated magnetic field noise [15, 16].

Whereas the search for a SGWB is done over very long time periods, searches for transient 
gravitational-wave events examine timescales from milli-seconds to a few minutes [19–21]. 
Long compact binary coalescence signals are therefore also included. There is a similar cor-
related noise source that should be considered when searches are conducted for short duration 
transient gravitational waves. Specifically, very powerful atmospheric discharges can produce 
significant electromagnetic waves that can propagate around the world. These electromagnetic 
events can be observed as individual short-duration coincident signals rather than the quasi-
constant background of the Schumann resonances.

A major motivation for the study presented in this paper was an event that occurred on 
December 12, 2009 near Corsica [22]. This powerful discharge, called a super jet, was seen in 
many low-noise magnetometers around the world. It was also detected by the magnetometers 
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at Virgo (Cascina, Pisa, Italy), LIGO-Hanford (Hanford, Washington, USA), and LIGO-
Livingston (Livingston, Louisiana, USA). If it had been seen in the detectors’ gravitational 
channels of two interferometers, then it could have been considered a coincident trigger, mim-
icking gravitational wave. As we will show below, it is very important to perform a regular 
search for coincident electromagnetic events and distinguish them from potential real grav-
itational-wave signals. In section 2 we will explain the nature of Schumann resonances and 
observational methods that are used to study them. We will introduce and describe data col-
lected with low-noise magnetometers located in Poland and Colorado. Then, in section 3 we 
will present gravitational-wave detectors LIGO and Virgo. We will also use magnetometer 
data from the LIGO and Virgo sites during the 2009–2010 period, when these gravitational-
wave detectors were operating in their initial configurations. In section 4 we will present the 
method and tools that were used in our coincident transient magnetic field search followed by 
the obtained results in section 5. Concluding remarks are presented in section 6.

2. Characteristic of natural ELF fields on earth

A relatively high level of natural ELF electromagnetic fields is associated with long-range 
propagation of electromagnetic waves in the 3–3000 Hz frequency range. ELF waves prop-
agate in the waveguide formed by the conductive surface of Earth and the lower ionospheric 
layers at the altitude of about 75 km. Since the reflective layer is located at the altitude lower 
than half the wavelength, the Earth-ionosphere waveguide behaves like a low-loss transmis-
sion line. The attenuation rate in the lower part of the ELF range is particularly small. At 10 Hz 
it is only 0.25 dB/1000 km [23]. It increases with approximately the square root of frequency, 
reaching a maximum close to the cutoff frequency, which is  ≈1500 Hz. The phase velocity, 
similar to the attenuation, has a dispersive nature; it is equal to about 0.75 c at 10 Hz and 
gradually increases with frequency.

The main source of ELF waves in the Earth-ionosphere waveguide are negative cloud-to-
ground lightning discharges. They occur as a result of the accumulation of negative charges in 
the bottom part of a storm cell, leading to the electric breakdown between the cloud and the 
ground. A single negative cloud-to-ground strike is a short current impulse that lasts for about 
75 μs and is associated with the charge flow of about 2.5 C in the plasma channel that has the 
length of 2–3 km. A typical charge moment change of negative cloud-to-grounds is about 6 
Ckm [24]. It generates an electromagnetic field pulse whose spectrum is practically flat up to 
the cutoff frequency.

On Earth, mostly in the tropics, about 1000 storm cells are constantly active, and they 
generate about 50 negative cloud-to-ground discharges per second. The vertical lightning dis-
charge radiates electromagnetic waves in all directions. They propagate around the world 
and interfere with each other. As a result, the spectrum of atmospheric noise has a resonant 
character. This was predicted for the first time by Schumann [25] in 1952. Schumann solved 
the field equations in the spherical Earth-ionosphere cavity built of the perfectly conducting 
ground and ionosphere, and obtained the following eigenfrequencies: 10.6, 18.4, 26.0, ... Hz. 
Due to the dispersive attenuation of the Earth-ionosphere waveguide, the measured resonance 
frequencies proved to be lower: 8, 14, 20 ... Hz (first measurement in 1960 [26]). Because of 
relatively small quality factors of the Earth-ionosphere cavity, which are equal to about 4, 5, 
6, ..., respectively, the Schumann resonance peaks are relatively wide.

Since the cavity is excited by a random Poissonian distribution of negative cloud-to-ground 
discharges in the storm centers, the field in the Earth-ionosphere waveguide has the character 
of a Gaussian process. Its coherence time does not exceed one second. The spectral density 
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of the first Schumann resonance peak is about 1 pT −Hz 1 and at any given moment it is 
different at each observation location, due to its different position relative to the world storm 
centers. The background Schumann resonance field sets the lower limit for the amplitude level 
which can be detected for other sources of magnetic field background.

Other sources include the positive cloud-to-ground atmospheric discharges. They occur 
because of positive charge accumulation in the upper parts of extended mesoscale convective 
systems, which leads to a breakdown. As a result, a significant charge (≈20 C) is removed 
through the plasma channel that has a length of about 12 km. Due to a significant charge 
moment, which is of order of 250 Ckm, these discharges generate strong ELF field pulses, 
visible above the Schumann resonance background noise, even at large distances. The strong-
est of them have the charge moments of order of 1000 Ckm and generate signals classified as 
Q-bursts.

These electromagnetic events have characteristic waveforms in which multiple round-the-
world propagation is visible. This will be seen in some of the examples to follow in this paper. 
An initial very rapid pulse can be associated with the wave propagating directly from the 
source. A wider (in time) subsequent signal can be associated with a round-the-world wave. 
Since the first impulse is short in time and has a large amplitude, it will be observed with a 
relatively large signal-to-noise ratio (SNR) and a wide frequency bandwidth. After propagat-
ing around the world, the higher frequency components are more attenuated than the lower 
frequency components, so for the subsequent signals only the low frequency components are 
clearly visible, especially at the Schumann resonance frequencies.

Very strong discharges also occur between the clouds and the ionosphere. The most com-
mon type of such a discharge is associated with a transient luminous event, known as a Sprite. 
The occurrence of a Sprite above a mesoscale convective system is usually preceded by a posi-
tive cloud-to-ground discharge. Sprites are associated with charge flow from the ionosphere 
to the cloud, which lasts up to a few hundred of milliseconds. Charge moment change of such 
discharges can reach several thousand Ckm [27]. Among the most powerful discharges asso-
ciated with transient luminous events are Gigantic Jets. They usually last shorter than Sprites 
and can have the charge moment of up to several thousand Ckm. The rise time of Gigantic Jets 
is short, so they generate ELF field pulses with very large amplitudes, clearly visible anywhere 
on Earth. Because of that, the signals associated with them can potentially have an influence 
on gravitational-wave detectors. However, there are relatively rare, a few to a dozen per year. 
In Europe, only one case was recorded so far, near Corsica on December 12 2009 [28]. The 
analysis of the impact of the European Gigantic Jet on the Virgo detector is presented as an 
example in this paper.

2.1. Observational methods

Observations of natural ELF field pulses are carried out using broadband low noise magnetom-
eters. The required sensitivity can be obtained by magnetometers equipped with ferromagn etic 
antennas based on Faraday effect connected to low noise semiconductor amplifiers. The use of 
SQUIDs has been limited to occasional technical trials due to technical inconveniences. The 
sensor parameters that determine the quality of observations are the lower cut-off frequency, 
the upper cut-off frequency and the noise level. The lower cut-off frequency should be 30 mHz 
or lower in order to preserve non-distorted waveforms of longer pulses, produced by upper 
discharges (cloud-to-ionosphere discharges). The upper cut-off frequency (upper frequency 
limit) determines the time resolution of a magnetometer. In the case of observations of short 
impulses, which have broadband spectra and are produced by cloud-to-ground discharges, the 
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upper frequency limit has a direct impact on the amplitude of the recorded impulses. It has 
small influence on amplitudes of the slow varying fields generated by upper discharges.

The Krakow ELF research team runs the Hylaty ELF station located in a sparsely popu-
lated area of Poland, near the Bieszczady National Park [29]. The Hylaty observatory is practi-
cally free from man-made noise and provides high quality data. Since 2005, we have carried 
out continuous recordings of two horizontal magnetic field components using the ELA7 mag-
netometer, which has a frequency range of 30 mHz to 60 Hz. In 2013 we installed broadband 
ELA10 magnetometers that have a frequency range of 30 mHz to 300 Hz and are intended 
for research of ELF field pulses and Schumann Resonances. The new system is characterized 
by low noise, 0.001 pT −Hz 1 at 100 Hz, and the timing accuracy is better than 1 ms. See 
[29] for explicit details on the magnetometers. The same magnetometer model is used at the 
Hugo station (Hugo State Wildlife Area) in Colorado, USA, installed in 2015, and in southern 
Patagonia, Argentina, installed in 2016. Due to spectral purity requirements, and to avoid pol-
lution from power sources, the stations are battery powered.

The Hylaty, Hugo and Patagonia stations are located on three continents forming the 
WERA system (World ELF Radiolocation Array) that enable observation of very strong 
atmospheric discharges occurring anywhere on Earth [30]. Using inverse solutions developed 
for this purpose [27, 28, 31] we can determine the current and charge moments of these dis-
charges. Each of these stations have two ferrite core active magnetic field antennas, with one 
oriented to observe magnetic fields along the North–South direction, and the other oriented 
to observe magnetic fields along the East–West direction. These instruments are sensitive to 
the Schumann resonances as well as transient signals from individual lightning discharges. 
Large peak current discharges are often associated with transient luminous events that occur 
at stratospheric and mesospheric altitudes [32] and their transient electromagnetic signals 
can be observed worldwide. The magnetometers are also sensitive to moderate peak current 
discharges depending on the relative distance from the receiver and the presence of very long 
continuing currents which preferentially excite radiation in the ELF band [33]. They have a 
lower cut-off frequency of 0.03 Hz with the overall shape of the spectrum dominated by 1/f 
noise10.

2.2. Characteristics of the data from the Hylaty and Colorado stations

The recorded magnetic signals from the Hylaty and Hugo stations can be used for invest-
igations of the influence of natural ELF electromagnetic fields on gravitational-wave detec-
tors. The Hylaty station is located about 1100 km from the Virgo detector. The Hugo station 
is conveniently located midway between the Hanford and Livingston gravitational detectors.

Due to the dispersive properties of the Earth-ionosphere waveguide, the velocity of propa-
gation of ELF waves depends on frequency. The observed group velocity for short ELF pulses 
depends on the upper frequency limit of the magnetometers and for the ELA10 it is about 0.88 
c. This means that every 1000 km introduces a delay of about 3.8 ms. It is important to remem-
ber that gravitational waves travel in straight lines at the speed of light, straight through the 
Earth; the ELF signals travel along a great circle. The location of the Hylaty and Hugo mag-
netometers are displayed in figure 1, as well as the LIGO and Virgo gravitational-wave detec-
tors. The moment of registration of the signal by a magnetometer is additionally delayed by 
the group delay of the impulse inside the magnetometer circuitry. The group delay is inversely 

10 The magnetometer data for the WERA system is not publicly available, but can be shared with collaborators, 
including potential future collaborators. Data requests can be sent to elf@oa.uj.edu.pl.
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proportional to the energy bandwidth of a magnetometer [34]. In the case of the ELA10 sys-
tem the group delay of antenna and receiver is 4.2 ms. Taking into account the locations of 
the Hylaty and Hugo stations the maximum difference in time of arrival of impulses does not 
exceed 30 ms. An accurate assessment of the group delay on the output of magnetometers 
and gravitational detectors is relevant only when investigating the response of the detectors to 
individual ELF field events, such as Q-bursts and Gigantic Jets.

3. LIGO/Virgo data

The magnetometer data from the LIGO and Virgo sites that are analyzed in this present study 
came from times during initial LIGO’s S6 science run, along with Virgo’s VSR2 science run. 
LIGO’s S6 run spanned the period from July 2009 to October 2010. Virgo operated from July 
2009 to January 2010, and then from July 2010 to October 2010. During the initial LIGO 
and Virgo observations no gravitational waves were detected, but important upper limits on 
the strength of gravitational-wave backgrounds have been set [17, 19, 20, 35–37]. While the 
spectacular detection of gravitational waves had to await the 2015 start of observation by 
Advanced LIGO [6], initial LIGO and Virgo also benefited from a wealth of information from 
environmental sensors [9–11, 38]. This data from environmental monitors plays an important 
role for the future operations of Advanced LIGO [1, 2], Advanced Virgo [3], and KAGRA [4].

Magnetometers are placed at strategic locations around the LIGO and Virgo observatory 
sites, typically near the gravitational-wave detector test masses. At each location magnetic 
field measurements are made in the three Cartesian directions. The x and y directions are 
defined by the interferometer arms, while the z direction is normal to the Earth’s surface. 
Under normal conditions the magnetic fields from the Schumann resonances will only have 
components parallel to the Earth’s surface. The initial LIGO and Virgo magnetometers were 
mounted inside buildings; the presence of much metal will distort the field direction and allow 
for observations on the Schumann magnetic fields in the z directed magnetometers as well. 

Figure 1. Left: the location of the Hugo magnetometers and the LIGO-Hanford and 
LIGO-Livingston gravitational-wave detectors, along with the distance separation and 
the time of propagation for ELF waves. Right: the location of the Hylaty magnetometers 
and the Virgo gravitational-wave detector, along with the distance separation and the 
time of propagation for ELF waves.
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For the observation of the December 12, 2009 Gigantic Jet the magnetometer used at the Virgo 
site was a ‘broadband induction coil magnetometer’, model MFS-06 by Metronix. For the 
observation of the Gigantic Jet the LIGO-Livingston magnetometer was a Bartington Mag-
03, while the LIGO-Hanford observation was done with a custom made coil magnetometer.

It is now clear that common magnetic field noise from the Schumann resonances [25, 39] 
may very well inhibit the attempt by Advanced LIGO and Advanced Virgo to measure or 
set limits on the strength of a stochastic gravitational-wave background [15, 16] due to an 
undesired sensitivity of the instruments to magnetic fields. However, through the observations 
of the December 12, 2009 positive gigantic jet [22] it became apparent that LIGO and Virgo 
needed to worry about large magnetic transient events that could possibly create coincident 
short duration noise events at the different gravitational-wave detectors. The transient magn-
etic field from this event was simultaneously observed as a very loud signal in magnetom-
eters located at the Virgo gravitational-wave detector, and the LIGO-Hanford observatory. 
A smaller signal was measured in a magnetometer at the LIGO-Livingston observatory. The 
time-frequency spectrograms of these magnetometer observations are displayed in figure 2.

Figure 2. This figure  presents the time-frequency spectrograms of magnetometers 
located at the LIGO-Hanford (Hanford, Washington, USA; magnetometer in the local 
x direction; upper left), Virgo (Cascina, Italy; magnetometer in the local y direction; 
upper right), and LIGO-Livingston (Livingston, Louisiana, USA; magnetometer in the 
local z direction; bottom) sites at the time of the December 12, 2009 positive Gigantic 
Jet (at 23:36:56.55 UTC, or 944696231 GPS) [22]. The signal is clearly present in the 
LIGO-Hanford, LIGO-Livingston and Virgo magnetometers. In addition, the bottom 
right spectrogram shows the event in the Virgo gravitational-wave strain, h(t), data. Note 
that the SNR scales for the four figures are different, and the signal is strongest in the 
Virgo and LIGO-Hanford magnetometers. The observed events are at time consistent 
with other observations around the world [22].

I Kowalska-Leszczynska et alClass. Quantum Grav. 34 (2017) 074002
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What was particularly worrisome about this electromagnetic event was that it actually cre-
ated a perceptible signal in Virgo’s gravitational-wave strain (h(t)) channel; See figure 2, bot-
tom right. No signal was definitively observed in the LIGO-Hanford and LIGO-Livingston 
h(t) data, although the spectrograms do show some low SNR structure that is coincident with 
the magnetic event. It is problematic to know that a transient electromagnetic signal of global 
extent could produce a signal in a gravitational-wave detector. Fortunately electro magnetic 
events of this magnitude will be detectable by the network of magnetometers at the grav-
itational-wave detector sites [14]. In fact, the philosophy that Advanced LIGO [1, 2] and 
Advanced Virgo [3] have pursued for environmental monitoring is to place networks of detec-
tors (magnetometers, seismometers, accelerometers, microphones, etc), more sensitive than 
the gravitational-wave detectors themselves to that particular noise source, for all environ-
mental influences. As noted above, this Gigantic Jet event served as the motivation for the 
study presented in this paper. We are seeking to find out how often electromagnetic events can 
be observed in coincidence at global distances, and what are the amplitudes for these magnetic 
transients. It should be noted that the magnetic isolation for Advanced Virgo [3] will prob-
ably be better than initial Virgo, and it would be unlikely for an event like this to be observed 
in Advanced Virgo. Advanced LIGO’s [1, 2] magnetic isolation has been measured to be of 
order 10−8 m T−1 from 10–20 Hz (and decreases to 10−9 m T−1 from 25–40 Hz) [14]. This 
implies that a 100 pT (a large but not rare electromagnetic event [28]) magnetic pulse could 
move an Advanced LIGO mirror by approximately 10−18 m. For comparison, the gravitational 
wave observed by Advanced LIGO, GW150914, moved the LIGO mirrors by × −2 10 18 m [6]. 
Hence it will be necessary to monitor coincident magnetic transient events, and especially to 
identify them and veto these times from the gravitational-wave searches.

4. Analysis

To search for coincident short-duration magnetic events, we analyzed the magnetometer data 
using an algorithm called Omicron [40]. Derived from the original burst Q-pipeline [41], 
Omicron identifies and characterizes excess power noise transients in Advanced LIGO and 
Advanced Virgo detectors data [14]. In addition, a gravitational-wave burst search is con-
ducted using Omicron to detect transient signals in the output port of the LIGO and Virgo 
detectors [42, 43]. Omicron was designed to unite the robustness and noise parameter estima-
tion accuracy of a burst search with the computational efficiency required for a near real-time 
analysis of several hundred channels on available computational resources. Omicron produces 
triggers using the Q transform [44] which consists of projecting a data time series, x(t), onto 
a basis of windowed complex exponentials defined by a central time τ, a central frequency φ, 
and a quality factor Q:

( ) ( ) ( )∫τ φ τ φ= − πφ

−∞

+∞
−X Q x t w t Q t, , , , e d .t2i (1)

The transform coefficient, X, measures the average signal amplitude and phase within a time-
frequency region, called a tile, centered on time τ and frequency φ, whose shape and area are 
determined by the requested quality factor Q and the particular choice of analysis window, 
w. Although the optimal time and frequency resolution is achieved by a Gaussian window, 
for implementation purpose, a Connes window is implemented in Omicron. The tiles are dis-
tributed to cover a finite region in central time, central frequency, and Q such that mismatch 
between any sinusoidal Gaussian in this signal space and the nearest basis function does not 
exceed a specified maximum mismatch. This naturally leads to a tiling structure consisting of 
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logarithmically spaced Q planes, logarithmically spaced frequency rows, and linearly spaced 
times. For each tile, a SNR value, ρ, is estimated. It measures the ratio between the signal and 
noise amplitude around time τ and frequency φ. An Omicron trigger is defined as a tile the 
SNR of which is larger than a specified SNR threshold.

Omicron was configured to search events associated to the very specific phenomena that we 
were investigating. The frequencies of the Schumann resonances and ELF lightning-induced 
transients are located in the low end of the LIGO/Virgo sensitivity band, therefore we focused 
on low frequencies in our analysis, from 1 to 100 Hz. Moreover, the focus was set to the most 
significant events selected with ρ> 5. Multiple magnetometers are located around the LIGO 
and Virgo sites. For this study we analyzed the MFS-06 Metronix magnetometers at Virgo, the 
Bartington Mag-03 magnetometers at the LIGO-Hanford and LIGO-Livingston sites, and the 
custom built coil magnetometers at the LIGO-Hanford and LIGO-Livingston sites. The time 
period studied was during LIGO’s sixth science run, and Virgo’s second science run, from 
October 19, 2009, to January 8, 2010.

In order to find magnetic transient events observed at more than one gravitational-wave 
observatory simultaneously we conducted coincidence tests between magnetometer events 
seen at each pair of our detector locations. The data are stamped using GPS and have a timing 
precision better than 1 μs, far better than the accuracy required for this study. Because of the 
broad structure, both in time and frequency, of the events caused by lighting discharges, we 
set a relatively wide time window for the coincidence test of 0.25 s. We only studied triggers 
where the Omicron SNR exceeded 5 when the frequency range was restricted between 7 Hz 
and 25 Hz; aside from this restriction, the frequency content of the recorded events were not 

Figure 3. The number of coincident triggers as a function of time delay for 
magnetometers located at LIGO-Hanford (magnetometer at the end of the y-arm 
pointing in the local x direction) and LIGO-Livingston (magnetometer in the central 
building pointing in the local z direction). The horizontal line represents the mean value 
of the time slide results (excluding the 0.625 s covered by the central 5 bins), while the 
dashed lines represent the standard deviation (again excluding the central 5 bins). The 
height of the zero-lag peak is 5.5 standard deviations.
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considered in determining coincidence. To estimate the background of random coincidences, 
we used standard procedure known as time slides. An artificial time delay greater than the 
propagation time of the signal is inserted between the two data streams; in this way it is pos-
sible to know that all of the coincident events are due to noise. We performed 80 time slides of 
the data, ranging between  −5 and 5 s.

5. Results

5.1. S6, VSR2 data

We have analyzed all combinations of different magnetometer channels from the three differ-
ent detectors (21 magnetometers at LIGO-Hanford, 12 magnetometers at LIGO-Livingston, 
and 10 magnetometers at Virgo). Most of the combinations did not show any discernible 
effect. However, there were a few combinations where we have observed a significant excess 
of coincidences in zero lag (namely a true coincidence as opposed to what is seen with an 
artificial time delay) with respect to other time slides. The presence or lack of an observable 
correlation depends on the level of the local electromagnetic fields, and the sensitivity of the 
magnetometers. In general the MFS-06 Metronix magnetometers at Virgo are more sensitive 
than the Bartington Mag-03 magnetometers at LIGO.

Figure 4. The number of coincident triggers as a function of time delay for 
magnetometers located at LIGO-Hanford (magnetometer at the end of the y-arm 
pointing in the local z direction) and Virgo (magnetometer at the West-end building 
pointing in the local x direction). The horizontal line represents the mean value of the 
time slide results (excluding the 0.625 s covered by the central 5 bins), while the dashed 
lines represent the standard deviation (again excluding the central 5 bins). The height of 
the zero-lag peak is 40 standard deviations.
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Histograms showing the most significant correlations are presented in figure  3 for the 
LIGO-Hanford–LIGO-Livingston combination, while figure 4 displays a correlation between 
Virgo and LIGO-Hanford. Note that we were unable to measure any significant correla-
tions between magnetometer data from Virgo and LIGO-Livingston. The distance between 
LIGO-Hanford and LIGO-Livingston is 3030 km (10 ms light travel time), while the distance 
between LIGO-Hanford and Virgo is 8850 km (30 ms light travel time). Both plots show an 
excess in the 5 central bins corresponding to a width of 0.625 s.

5.2. Poland-Colorado data

The magnetic environments around the LIGO and Virgo sites are quite noisy. In order to bet-
ter understand and measure correlated magnetic transient events on a global distance scale 
we analyzed data from very low noise magnetometers that have been installed in electro-
magnetic quiet locations. Specifically, we used the ELF magnetometers from the Poland 
( � �N E49.2 , 22.5 ) and Colorado ( � �N W38.9 , 103.4 ) stations of the WERA project [30]. The 
distance between these stations is 8873 km (30 ms light travel time).

We have analyzed data from the Poland–Colorado magnetometers over the period of June 
3, 2015 to June 16, 2015 (13 d, 1 h, 34 min, 32 s in total). Figure 5 displays the number of coin-
cident triggers as a function of time lag. There is a clear excess of events at the zero lag time. 
Moreover, it was found that the peak frequency of these events coincide with the expected 

Figure 5. The number of coincident triggers as a function of time delay for the low 
noise magnetometers located in Bieszczady Mountains in Poland (magnetometer in the 
local East–West direction) and the other in the Hugo State Wildlife Area in Colorado 
(magnetometer in the local East–West direction). The horizontal line represents the 
mean value of the time slide results (excluding the 0.625 s covered by the central 5 
bins), while the dashed lines represent the standard deviation (again excluding the 
central 5 bins). The height of the zero-lag peak is 50 standard deviations.
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Schumann resonances (7.83, 14.3, 20.8, 27.3 and 33.8 Hz). These events are coherent in time 
and frequency across the detectors, proving that they have a common origin.

It should be noted that for the significance of the zero lag peaks in figures 3–5 we made 
note of the look elsewhere effect. It only has a small effect for the Hanford-Livingston mag-
netometer combination, an infinitesimal effect for the Hanford-Virgo combination, and no 
effect at all for the results for the Poland-Colorado combination (where the observation of the 
coincidence is overwhelming large in every magnetometer combination studied).

In order to better understand the potential deleterious effects that these coincident magnetic 
transient events might have on LIGO and Virgo data we made a histogram of the amplitude 
of the coincident events observed simultaneously in Poland and Colorado. The calibrated 
magnetometer data were passed through a 1 Hz high-pass filter, and the peak (absolute value) 
value within  ±1 s of the Omicron trigger was selected.

Note that the shape of the distribution is similar for the magnetometers in Poland and 
Colorado, but the Colorado events are slightly larger. This could be due to a slight mis- 
calibration of the magnetometers, or proximity of the receiver to numerous lightning storms 
during the month of June. No attempt has been made to subtract off local magnetic noise 
from the pulses having a global extent. As such, the histograms in figure 6 are likely to be 
a small overestimation of the globally coincident magnetic transient events. Because of the 

Figure 6. A histogram of the amplitudes of the coincident magnetic triggers from 
the low noise magnetometers in Poland and Colorado (as displayed in figure 5). The 
calibrated magnetometer was high-pass filtered (1 Hz), and the peak (absolute value) 
value within  ±1 s of the Omicron trigger was selected.
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tuning of the Omicron pipeline, there was a predisposition to identify magnetic events in the 
6–25 Hz band, where Advanced LIGO and Advanced Virgo will have good sensitivity and 
the presence of the Schumann resonances and ELF lightning-induced transients is the largest. 
This is also the region where the recently measured magnetic noise coupling [14] is the larg-
est, 10−8 m T−1 around 10–20 Hz. We use these low noise measurement results from Poland 
and Colorado as an example of the globally coincident transient magnetic events that would 

Figure 7. Displayed here is an example of a magnetic transient event that was 
observed simultaneously in the low-noise magnetometers in Poland and Colorado. 
The top figure displays the time-frequency spectrogram from the Poland North–South 
magnetometer data, while the bottom figure gives the time-frequency spectrogram for 
the Colorado North–South magnetometer data. Note the simultaneity and similarity of 
the signals. This event has been identified as occurring at 2015-06-09 at 10:17:20:563 
UTC in China with latitude �= 23.942  , longitude �= 110.990  , with a peak current of 
149 kA and positive polarity.
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effect LIGO and Virgo. A 200 pT magnetic event could produce a signal in Advanced LIGO 
equivalent to a motion of the test mass of × −2 10 18 m, the same amount that they moved when 
detecting GW150914 [6]. There were 30 events of this magnitude observed with the Poland 
magnetometer over the 13-day period, or roughly 2.3 per day. The rate was about twice as 
large in Colorado.

5.3. Examination of coincident magnetic transients

We examined a number of the magnetic transient events that were simultaneously observed 
in the Polish and Colorado magnetometers. Two examples are presented in figures 7 and 9. 
The signals were observed in coincidence with the Polish and Colorado low-noise magnetom-
eters. Moreover, we note that the signal morphology is similar: the energy excess is of short 
duration and broad-band. The signal peak frequency measured by Omicron ( −

+35.35 0.88
0.91 Hz) 

is the same in both detectors and is compatible with a known Schumann resonance at 33.8 

Figure 8. Displayed here the time series for the same magnetic event as in figure 7 that 
was observed simultaneously in the low-noise magnetometers in Poland and Colorado. 
The top figure displays the time series from the Polish North–South and East–West 
magnetometers, while the bottom plot is from the Colorado North–South and East–
West magnetometers. A 1 Hz high-pass filter has been applied to the data. The vertical 
axes are in units of pT. The strongest discharge has been identified as occurring at 2015-
06-09 at 10:17:20:563 UTC in China with latitude �= 23.942  , longitude �= 110.990  , 
with a peak current of 149 kA and positive polarity.
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Hz. Like these signals, many of the observed coincident magnetic transients had amplitudes 
of hundreds of pT. Using the VAISALA GLD360 Global Lightning Dataset [45, 46] and the 
WWLLN lightning data [47] we were able to identify the sources of these signals. The stron-
gest of the impulses shown in figures 7 and 8 has been identified as occurring at 2015-06-09 
at 10:17:20:563 UTC in China with latitude   �= 23.942 , longitude   �= 110.990 , with a peak 
current of 149 kA and positive polarity. The signal shown in figures 9 and 10 occurred on the 

Figure 9. Displayed here is an example of a magnetic transient event that was 
observed simultaneously in the low-noise magnetometers in Poland and Colorado. 
The top figure displays the time-frequency spectrogram from the Poland North–South 
magnetometer data, while the bottom figure gives the time-frequency spectrogram for 
the Colorado North–South magnetometer data. Note the simultaneity and similarity of 
the signals. A 1 Hz high-pass filter has been applied to the data. This event has been 
identified as occurring at 2015-06-09 at 15:24.29.599 UTC in India UTC with latitude 

�= 23.00  , longitude �= 88.42  .
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same day at 15:24.29.599 UTC in India (latitude   �= 23.00 , longitude   �= 88.42 ). Other coin-
cidently detected events were also examined, and the source locations span the globe. These 
two events illustrate that it is possible to have globally coincident magnetic transient events 
with magnitudes in excess of hundreds of pT that happen multiple times each day.

It is interesting to note that the coincident measurements of very low frequency (3 kHz–
30 kHz) transients from lightning are the basis of the global lightning detection networks, 
such as WWLLN [47] and GLD360 [45, 46]. In terms of the extremely low frequency band (3 
Hz–30 Hz), coincident distant global measurements have been made rarely, and only on occa-
sion have they been compared directly in the time domain. For example [22] documents the 
December 12, 2009 Corsica Gigantic Jet using data from various separated magnetometers. 
Before GPS timing, unambiguous simultaneous measurements were very difficult to conduct. 
Recently, the WERA network [30] is unique in terms of continuous data logging at multiple 
sites with the same set of hardware. WERA has also displayed the radiolocation capabilities 
of the system [48].

Figure 10. Displayed here are the time series for the same magnetic event as in figure 9 
that was observed simultaneously in the low-noise magnetometers in Poland and 
Colorado. The top figure displays the time series from the Poland North–South and 
East–West magnetometers, while the bottom plot is from the Colorado North–South 
and East–West magnetometers. A 1 Hz high-pass filter has been applied to the data. The 
vertical axis is in unit of pT. This event has been identified as occurring at 2015-06-09 
at 15:24.29.599 UTC in India UTC with latitude �= 23.00  , longitude �= 88.42  .
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6. Conclusions

One of the reasons why a global network of gravitational-wave detectors is needed is to be 
confident that there is not any common noise that could mimic a gravitational-wave sig-
nal. This has been the assumption used when analyzing LIGO and Virgo data in the past. 
However, it has been recently demonstrated that the magnetic fields associated with the 
Schumann resonances could corrupt the LIGO–Virgo effort to observe a stochastic back-
ground of gravitational waves [15, 16]. What we have shown in the present paper is that 
magnetic transient events can be observed in coincidence on global distances. These events 
are caused by large lightning strikes where the produced electromagnetic waves propagate 
around the world. The magnetic fields associated with these electromagnetic waves can 
couple into the interferometers, and create noise events that could appear to be similar to 
gravitational-wave signals. We have targeted magnetic transient events in the 6–25 Hz band 
because this is where Advanced LIGO and Advanced Virgo will eventually have good sensi-
tivity to gravitational waves, and it is also the region where the magnetic noise coupling to 
the interferometer test masses in the largest. As such, these sorts of coincident noise events 
should merit careful monitoring for LIGO–Virgo for their short duration transient searches 
[19, 20]. Note that KAGRA’s underground location does not shield it from magnetic noise 
from the Schumann resonances [49].

Going forward, Advanced LIGO and Advanced Virgo should have low noise magnetom-
eters installed in electromagnetically quiet areas at each observatory site. It will be important 
to use the magnetometer data to identify coincident magnetic transient events, and veto those 
times. In fact, since these events are global in extent, it would also be prudent to use data from 
low noise magnetometers in low electromagnetic noise environments (such as the Poland and 
Colorado magnetometer used in this present study) to also identify globally coincident magn-
etic transients, and develop vetoes from those results. As the advanced detectors approach 
their design sensitivities it will be necessary to account for sources of correlated noise (short 
and long duration) between different sites. Correlated noise will be a real and legitimate con-
cern for gravitational-wave searches using ground based detectors.
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