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Abstract. We experimentally investigate decoherence by spontaneous emission in the quantum
delta kicked rotor. Caesium atoms in a magneto-optic trap are initially cooled, and then subjected
to a pulsed standing wave of near resonant light. As the detuning from the atomic transition is
varied, we observe a change in the momentum diffusion after the quantum break time.

1. Introduction

The mechanism of decoherence plays a significant role in contemporary quantum physics,
because it has the potential to solve the long-standing problems in measurement theory.
However controversial, the most promising attempts to explain the act of measurement
from within quantum mechanics rely on environment-induced decoherence [1] or some sort
of coarse graining [2]. Furthermore, a coupling to extrancous degrees of freedom is an
essential element in various, more experimentally motivated approaches using stochastic
Schrodinger equations; an example of this kind is the quantum-state diffusion model [3],
which mimics individual quantum systems rather than tracking a whole ensemble.

It has long been thought that, at least for all practical purposes, macroscopic
superposition states only arise when quantum measurements are performed. However,
after the discovery [4] of exponentially unstable wavefunctions in quantum systems with a
chaotic classical limit, this picture had to be revised. Chaotic semiclassical systems develop
phase space structures of order % in logarithmically short times ~ In(1/%), which can be
comparable to typical dynamical times. This poses questions pertaining to the quantum-—
classical correspondence principle. However, as correspondence is closely connected to
quantum measurements, it is expected that the ultimate answer will involve decoherence.
This is why it is interesting to study open quantum systems which are chaotic in their
classical limit.

The standard map, which describes the dynamics of the classical delta kicked rotor
(DKR), is indisputably the most studied system in Hamiltonian chaos. For an ensemble
of classical particles, a chaotic phase space entails diffusion in momentum space. A
similar diffusion is observed in the quantum DKR up to the break time, but then dynamical
localization sets in [5]. This effect has recently been observed by Moore et al [6], who
experimentally realized the DKR by exposing a cloud of ultracold sodium atoms to a one-
dimensional optical potential which was pulsed on periodically in time. Incoherent photon
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scattering processes were negligible due to a large detuning between the laser light and the
atomic transition.

In this paper we report on the experimental observation of decoherence in the open
quantum DKR. Dynamical localization is a coherent effect and as such it will be influenced
by a coupling of the system to its environment [7-10]. In the atom optics realization of
the DKR, the dynamics becomes susceptible to decoherence by spontaneous emission. An
important experimental feature is the fact that its rate, and thus the coupling strength between
the atoms and the vacuum fluctuations (the environment), can be controlled by varying the
detuning between the atomic transition and the optical field frequency. Measurements of
the momentum distribution of atoms in the pulsed lattice, as a function of the detuning, thus
provide a direct examination of the loss of coherence in a quantum system.

2. DKR model

In order to establish the connection between the experimental parameters and those appearing
in the well known DKR model, we consider an atom (transition frequency wq) suspended
in a standing wave of near resonant light (frequency w;). We will see later that in
order to destroy dynamical localization one does not have to introduce a large amount
of spontaneous emission. Therefore, the atomic dynamics will be predominantly coherent
and we consequently neglect spontaneous emission for the moment. Under the further
assumption of a large detuning compared with the Rabi frequency, the atoms’ excited-state
amplitude can adiabatically be eliminated. Then the resulting Hamiltonian governing the
coherent time evolution reads [6]
2 N
=P P cos(2kix) Y f(t —qT), )
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where Qefr = Q2(545/845 + Saa/8as + 513 /843) and /2 is the resonant Rabi frequency
corresponding to a single beam. The terms in brackets take account of the different dipole
transitions between the relevant hyperfine levels in caesium (F = 4 — F' = 5,4,3).
The 84; are the corresponding detunings and, assuming equal populations of the Zeeman
sublevels, the numerical values for the s4 ; are S45 = ;—;, S4q4 = 37—6, S43 = 17@. The sum in
the Hamiltonian (1) describes the temporal modulation of the potential. The function f(t)
represents the shape of the kicks, which in this work is close to rectangular: f(¢) = 1 for
0 <t < 7, and zero otherwise. The pulses repeat with period T, and in the limit where
7, becomes smaller they can be approximated by delta functions. The dimensionless DKR
Hamiltonian is then recovered as

N
H=p2/2—xcos¢28(t—q) 2)
gq=1
where ¢ = 2kix, p = 2Tp/m, t' = t/T and H' = (4k?T%/m)H; the primes are
subsequently dropped. The classical stochasticity parameter is ¥ = QerwprTT,, and

wR = hk,2 /2m is the recoil frequency. The quantum features of the DKR enter through the
commutation relation [¢, p] = ik, where k = 8wgT.

3. Experimental details

Our experimental set-up is similar to that of Moore et al [6]. Caesium atoms are initially
trapped and cooled in a standard magneto-optic trap (MOT) within a glass cell of internal
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pressure of 10710 Torr. Anti-Helmholtz coils yield a magnetic field gradient of up to
15 G cm™!. Two laser diodes at 852 nm are frequency stabilized via saturated absorption
spectroscopy [11], and each beam is passed through a 70-90 MHz variable acousto-optic
modulator (AOM). The trapping beam is held at approximately 20 MHz to the red of
the (6Sy/2, F = 4) to (6P3;;, F' = 5) transition, while the repumping beam is locked to
the (6Sy/2, F = 3) to (6P3;, F/ = 4) transition to prevent the accumulation of atoms in
the F = 3 ground state. Each beam is spatially filtered by passing it through a single-
mode optical fibre. The collimated outputs are divided into three pairs of ot & o~
counterpropagating beams. Approximately 10° caesium atoms are initially captured in the
MOT. A 20 ms cooling phase reduces the atomic gas’ temperature to as low as 5 K by
further detuning (another 10 MHz) and decreasing the intensity of the trapping beam [12].
After this cooling phase, the position distribution of the trapped atoms has a FWHM of
approximately 200 pm.

The modulated periodic potential is produced by a third laser diode. The beam passes
through an 80 MHz AOM and a single-mode optical fibre. The collimated beam with a
measured waist of 26 = 1 mm is then retro-reflected from a mirror outside the vacuum
cell to generate the one-dimensional potential. Note that the finite width of the beam
waist together with the non-zero width of the atomic cloud entails a (reasonably narrow)
distribution of x values with kpean & 0.9k max, Where kg is the kicking strength on the beam
axis. In the following, when specifying &, this always refers to kmean. Taking reflection
losses at the windows of the containing glass cell into account, the Rabi frequency in the
centre of the MOT is /2 = 27 - 154 MHz (rms). The temporal modulation is achieved via
the radio frequency supply to the AOM; 40 ns is observed as the rise and fall time for the
optical pulses. The pulse spacing used is T = 20 us (k = 2.1). The optical detuning is to
the blue of the F =4 to F' = 5 transition and is monitored by overlapping fractions of the
kicking and trapping beams and measuring the beating frequency using a fast photodiode
and a spectrum analyser. Note that both the Rabi frequency £2/2 and the pulse spacing T
are held constant throughout this work. Varied are the pulse width (r, = 90-500 ns) and
the detuning (845/27 = 0.62—4.0 GHz) with the constraint that the classical stochasticity
parameter remains constant at x = 12.5. Therefore, only the spontaneous emission rate will
change.

After trapping and cooling, the trapping beam is turned off leaving the atoms in the
F = 4 ground state. They have at most a 1:6 chance per spontaneous scattering to fall
into the F = 3 ground state, in which they would experience a much weaker potential.
As this would considerably disturb the measurements, we leave the repumping beam on
throughout the experiment. This produces a small additional heating, which however is
of no importance as for our parameters heating effects are negligible. To measure the
momentum distribution of the atoms we use a time-of-flight technique as follows. After
subjecting the atoms to the pulsed periodic potential we let the cloud expand for 10 ms.
Then the trapping laser is switched on, while the magnetic field gradient remains off. The
atoms are frozen in place within a few ms by the created optical molasses, and the cloud
is imaged on a CCD camera. The atomic motion during the CCD’s integration time (some
tens of ms) is negligible compared with the spatial extent of the cloud. The experimental
sequence and data acquisition are computer controlled.

Note that the rectangular shape of the kicking pulses causes KAM boundaries in classical
phase space even in the case of large « values. This is because the pulse frequency spectrum
has zeros at integer multiples of 2 /,,. For the longest pulses used in this work 7, = 500 ns,
the first boundary appears at a dimensionless momentum of n = p/2hk; =~ 120. We
have observed this regular region, so it was easy to make sure that it did not affect the
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measurements. We also mention that we operated well away from quantum resonances, the
first of which (a half-resonance [6]) we experimentally observe at T = 7 /dwg = 61 us.

4. Experimental results

For sufficiently low spontaneous emission rates, the atomic momentum distribution initially
diffuses, followed by the onset of dynamical localization (an important experimental
observation reported by Moore et al [6]). Figure 1(a) displays the CCD measured image
of the trapped caesium atoms before the kicking commences, while figure 1(b) depicts the
frozen cloud after a series of 30 kick cycles and the subsequent free expansion (figure 1(b)
therefore corresponds to a momentum distribution, as opposed to figure 1(a)). The elliptic
shape is due (o the interaction with the pulsed lattice. It is interesting to note that by
blocking the retro-reflected beam, thus turning the standing wave into a travelling wave,
the effect disappears. This confirms that we are indeed dealing with coherent two-photon
processes and, moreover, that heating effects are negligible. In figure 2 the image of the
cloud is projected onto one dimension (i.e. integrated over the direction perpendicular to the
beam axis). One can clearly see the signature of dynamical localization. The characteristic
exponential distribution ~ exp(—2|n|/[;) has a localization length of I; &~ 19. This agrees
well with the theoretical prediction I; &~ 2& ~ «2/2k? ~ 18, where & is the localization
length of the participating Floquet states.

Spontaneous emission introduces decoherence to the DKR [7-10]. This destroys
dynamical localization and results in quantum diffusion, namely the momentum diffusion
after the quantum break time. Figure 3 displays the measured growth of the atoms’ kinetic
energy for different detunings. The initial diffusion rate is held constant by choosing
smaller pulse widths for smaller detunings. For the three displayed traces, the probabilities
for spontaneous emission per kick are n = 0.76 x 1072, 2.3 x 1072 and 4.6 x 1072,
respectively. The initial ‘classical-like’ diffusion can clearly be distinguished from the
quantum diffusion. Although 0.76 x 1072 seems to be a small scattering probability, it is
apparent that there is considerable quantum diffusion even in this case of large atom—laser
detuning (845/2m = 4.0 GHz). This reflects the vulnerability of quantum ccherences, which
is expected to be enhanced by the underlying classical chaoticity. It should be mentioned
that we could not increase the detuning any further while maintaining a high chaoticity
because of the limited power provided by the kicking beam laser diode. It is perhaps worth
noting that we observe exponentially localized momentum distributions not only for the
situation displayed in figure 2, but also in the case of small detunings. This is somewhat
surprising considering the high quantum diffusion rate. However, based on an analytic
calculation, a similar behaviour has been found in the case of a phase-modulated potential
{10], where it has been shown that the shape becomes Gaussian only for atomic momenta
much larger than the localization length.

In order to try to understand the atoms’ kinetic energy growth for the different scattering
probabilities 7, we heuristically derive an analytical expression for the quantum diffusion
coefficient Dy, = limy_, o0 (n?)/N as follows. Let us assume that one spontaneous scattering
event causes complete decoherence between the atomic wavefunction and the Floquet
states [10]. Realizing that the measured diffusion at a given instant will be a mixture of
contributions from different atoms at different stages of their time evolution, the diffusion
coefficient can be written as Do = ) _po g (1 — m¥*D(k), where D(k) is the time-dependent
diffusion coefficient in the absence of spontaneous emission. Using D (k) = Dgexp(—k/N*)
[8], we arrive at Do, = nN*Dg/(1 + nN*), where the parameters Dy and N* denote the
initial diffusion coefficient and the crossover time, respectively (N* > 1 has been used).
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Figure 1. A display of the CCD measured image of the trapped atoms (a) before the kicking
commences and (b) the cloud in the molasses after a series of 30 kicks and subsequent free
expansion (10 ms). The kicking beam axis is horizontal, and the experimental parameters

are k = 12.5, k = 2.1 and 845/27 = 4.0 GHz. The numbers denote pixels; the scaling is
19 pixels mm~! (horizontal) and 26 pixels mm~! (vertical).
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Figure 2. The exponentially localized momentum (n = p/2hk.) distribution after 30 kicks
on a logarithmic scale. The parameters are the same as in figure 1. The localization length
corresponding to the broken curve is s = 19.
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Figure 3. Kinetic energy (n2/2) as a function of number of kicks N. The experimental (circles)
results are for k = 12.5, k = 2.1 and (a) n=076x10"2,(b)np =2.3x1072, (¢) n=46x10"2,
The corresponding detunings are 845/27 = 4 GHz, 1.3 GHz and 0.62 GHz, respectively. The
parameters for the analytical (broken) traces are Do = 13 and N* = 14 (y values as above).

Along similar lines, one can derive an expression for the time-dependent diffusion coefficient
and, by a summation over the number of kicks, the time dependence of the kinetic energy
E = (n?/2). The final result can be expressed as

E(N) = DooN /2 + (Do ~ Do) /2] - [(1 — ™) /(1 — )], 3)

where g = (1 — n) exp(—1/N*). The energy growth described by this heuristic formula is
displayed in figure 3. We find consistency between the measured data (each point being the
average of 25 individual runs) and the analytical expressions for Dy & 13 and N* ~ 14.
These values imply a saturation energy in the absence of spontancous emission of Eg =
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(n%/2)sa = DoN* /2 ~ 90, which is consistent with the experimental data. Note that the
approximate formula for the diffusion coefficient Dy & «2/2k? yields Dy ~ 17.7, which is
somewhat larger than our measured Dy =~ 13. The measured energies have an estimated 20%
uncertainty, due primarily to the fact that most of the atom’s kinetic energy is contained in
the wings of the momentum distribution, where the signal-to-noise ratio of the CCD is small.

We plan to continue the study of decoherence via spontaneous emission in the
atomic DKR. Especially intriguing in this context is the quantum—classical correspondence
principle. We have seen that the quantum diffusion rate tends towards the classical rate
with an increasing degree of decoherence. In the literature, this is often referred to as
‘driving the system back to the classical behaviour’. This notion certainly seems to be
sensible when considering the remarks in the introduction, according to which decoherence
is considered to be a necessary condition for quantum—classical correspondence (in the limit
k — 0). Whether it is also a sufficient condition in the system studied here (k = constant),
Le. whether a larger quantum diffusion rate implies a higher degree of classicality, requires
further studies and will be addressed in a forthcoming publication.

5. Conclusion

Using laser-cooled caesium atoms we have observed dynamical localization in the atom
optics realization of the DKR. This builds on the previous observation of the effect with
sodium atoms [6]. The introduction of spontaneous emission destroys localization which
gives rise to a kinetic energy growth after the quantum break time. The exponentially shaped
momentum distribution characteristic for dynamical localization is observed even for ‘large’
spontaneous emission rates up to 4.6% per kick. We have demonstrated that the quantum
diffusion rate tends towards the classical rate with an increasing degree of decoherence.
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