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Abstract. First order phase transitions in the early universe could produce a gravitational-
wave background that might be detectable by the Laser Interferometer Space Antenna (LISA).
Such an observation would provide evidence for physics beyond the Standard Model. We
study the ability of LISA to observe a gravitational-wave background from phase transitions
in the presence of an extragalactic foreground from binary black hole mergers throughout
the universe, a galactic foreground from white dwarf binaries, and LISA noise. Modelling
the phase transition gravitational wave background as a double broken power law, we use
the deviance information criterion as a detection statistic, and Fisher matrix and Markov
Chain Monte Carlo methods to assess the measurement accuracy of the parameters of the
power spectrum. While estimating all the parameters associated with the gravitational-wave
backgrounds, foregrounds, and LISA noise, we find that LISA could detect a gravitational-wave
background from phase transitions with a peak frequency of 1mHz and normalized energy
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density amplitude of Ωp ' 3× 10−11. With Ωp ' 10−10, the signal is detectable if the peak
frequency is in the range 4× 10−4 to 9× 10−3 Hz, and the peak amplitude and frequency can
be estimated to an accuracy of 10% to 1%.

Keywords: Bayesian reasoning, cosmological phase transitions, gravitational waves / sources,
white and brown dwarfs
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1 Introduction

The Laser Interferometer Space Antenna (LISA) [1] will be sensitive to the millihertz gravita-
tional wave (GW) frequency range, and will simultaneously observe signals from numerous
independent sources, both astrophysical [2] and cosmological [3]. Of particular interest is a
search for a cosmological stochastic GW background, which could come from many different
processes in the early universe, such as cosmic strings, inflation, or phase transitions [4].
Here we focus on the cosmological GW background from a first order phase transition at the
electroweak scale (see e.g. [5, 6] for reviews).

Any cosmological GW background will compete with numerous foregrounds. Foregrounds
from large numbers of astrophysical objects with low signal-to-noise ratio will also produce
stochastic signals, which need to be separated from the cosmological signal of interest. A first
component to consider is the foreground from double white dwarf (DWD) binaries in our
galaxy [7], whose amplitude will be annually modulated by the orbit of the LISA constellation
around the Sun [8]. This orbital modulation aids in the separation of the galactic foreground
using the LISA data [9].

From the LIGO-Virgo observations of binary black hole (BBH) and binary neutron
star (BNS) mergers one knows that there will be a foreground created from mergers of
extragalactic compact binaries (ECB) over the history of the universe; LIGO and Virgo
predict a background at the level (normalized energy density) of ΩECB(f) = AECB(f/25Hz)2/3,
where AECB = 6.8+3.6

−2.2 × 10−10 [10]. Other studies based on the LIGO-Virgo observations
predict AECB ' 1.8× 10−9 − 2.5× 10−9 [11], and population simulations populations predict
AECB ' 5.0× 10−9 − 2.6× 10−8 [12].

An important line of study is to investigate LISA’s ability to separate a GW background
of cosmological origin from the numerous astrophysical sources and LISA noise. In this
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paper we consider GWs emitted from a first order phase transition at the electroweak energy
scale. Such a transition would have happened at around 10 picoseconds after the Big Bang,
and generated a signal which could fall within LISA’s peak sensitivity window, in the range
1–10mHz.

In the Standard Model electroweak symmetry-breaking is not associated with a first
order phase transition: there is instead a smooth crossover [13, 14]. However, in numerous
extensions to the Standard model a first order phase transition is possible (for a summary
see [15]) turning a search for GW background into a search for physics beyond the Standard
Model, which is needed for explanations for the dark matter and baryon asymmetry of
the Universe.

The production of GWs during a first order phase transition occurs via the collision of
bubbles of the stable phase, and the subsequently produced sound waves and turbulent flows.
In a first order transition driven by thermal fluctuations, sound waves created by the expanding
bubbles are the dominant source of GWs [16–18]; production by bubble collisions [19–24] can
become relevant if there is very strong supercooling [25, 26].

Here we assume that the sound wave component is dominant, and model the GW
background component with the Sound Shell Model (SSM) [27, 28]. We include an empirical
factor accounting for the kinetic energy suppression in strong transitions [29], and assume
that the transition is not so strong that the modifications to the spectrum from shocks [30]
and vortical turbulence [31] become important.

The GW power spectrum in the SSM is determined by a few key thermodynamic
parameters: the bubble nucleation temperature, Tn, the phase transition strength, α, the
bubble wall speed, vw, and the mean bubble spacing in units of the Hubble length, r∗. The
sound speeds in the two phases are also important [32, 33]. These thermodynamic parameters
are directly related to the underlying physics model.

As it is computationally intensive to calculate a power spectrum with the full SSM it is
useful to investigate LISA’s sensitivity to a parametrised spectral shape that approximates the
SSM and can be used for the rapid evaluations needed in Markov Chain Monte Carlo (MCMC)
searches. Here we use a double broken power law with four spectral parameters: the peak
amplitude, Ωp, the peak frequency, fp, the ratio rb between the peak frequency and the break
frequency and the slope between the two characteristic frequency scales b. The SSM predicts
that, where long-lived sound waves are the dominant source of GWs, the low frequency and
high frequency spectral slopes are fixed at 9 and −3. As discussed in [34] the relationship
between the spectral and thermodynamic parameters is complicated and there are numerous
degeneracies. In this work we focus on LISA’s ability to constrain the spectral parameters
and leave the connection between thermodynamic and spectral parameters for future work.

The Fisher matrix study performed in [34] estimates LISA’s sensitivity to a first order
phase transition signature described by the SSM. In that work two GW power spectra models
were considered: the SSM itself, and the double broken power law fit to the SSM. Relative
uncertainties for the thermodynamic and spectral parameters were calculated using Fisher
analysis and a data model that takes into account LISA noise, a stationary DWD foreground
and an extragalactic astrophysical background.

Another study looked at LISA’s ability to detect to a general double broken power
law that has the low and high frequency spectral slopes unspecified [35], instead of fixed at
the SSM values. The Akaike Information Criterion was used to determine whether, in the
presence of LISA instrument noise, one is able to identify the break frequencies. This work
also calculated the uncertainties in spectral parameters using MCMC simulations for several

– 2 –



J
C
A
P
0
2
(
2
0
2
3
)
0
5
6

example cases. The noise model included LISA instrument noise built out of one TDI channel
in mock data generation, but did not include any astrophysical foregrounds.

In this present paper we investigate LISA’s ability to detect a GW background from
a first order phase transition, in the presence of LISA noise, the galactic foreground, and
the foreground from extragalactic compact binaries. To do this we use the difference in the
deviance information criterion (DIC) between models with and without phase transition,
calculated using MCMC methods, as a detection statistic [36–38]. We consider a value of
∆DIC > 5 to be a detection as discussed in more detail in section 2.7. In comparison to [34, 35]
we use the AET time delay interferometery (TDI) channels to build our data model and use
the T channel to constrain the LISA instrument noise in our MCMC simulations. We then
perform a systematic scan over the spectral parameter space using Fisher matrix and MCMC
methods to determine how well the four spectral parameters of the first order phase transition
can be estimated with LISA.

The rest of this work is organised as follows. In section 2 we describe the GW background
from a phase transition, the LISA noise model, the DWD foreground and the extragalactic
compact binary foreground used in this analysis. In section 2.6 we discuss how we simulate
the data. In section 2.7 we outline how the estimates based on the Fisher matrix and DIC are
evaluated. The results and conclusions from this study are presented in section 3 and section 4.

2 Model components

The parameter estimation methods used here follow those outlined in [9], which explored
parameter estimation with GW backgrounds with spectra in the form of a simple power
law. We consider a cosmological GW background described by the double broken power law
discussed in [34] which models the signal expected from a first order phase transition. In
this section we outline our model for the combined power spectrum from a first order phase
transition, LISA noise, the DWD foreground and the extragalactic compact binary foreground.

With LISA’s triangular geometry, the interferometric phase differences can be combined
in different ways with different time delays to eliminate the laser frequency noise [39, 40],
using the technique of time delay interferometry (TDI). This leads to the construction of three
GW measurement channels known as the X,Y, Z TDI channels [41]. Here we assume that the
GW background signal, observed in the X,Y, Z channels, is stationary and uncorrelated with
the stationary LISA instrument noise. Furthermore, we make the simplifying assumption that
the instrument noise consists of two components: test mass acceleration noise and optical
path length fluctuation noise; that these instrumental noises are identical in each spacecraft,
and that arm lengths are the same so that the LISA instruments form an equilateral triangle.
Under these assumptions, the cross-spectra and response functions of the X,Y, Z channel
combinations are identical [42]. To be conservative, we ignore the annual modulation of the
galactic binary foreground.

It is possible to work with linear combinations of these channels for convenience: we
choose the two “noise orthogonal” channels A and E, and the “null” channel T which has a
reduced sensitivity to GWs, which are defined as

A = 1√
2

(Z −X),

E = 1√
6

(X − 2Y + Z),

T = 1√
3

(X + Y + Z).

(2.1)
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For ease of calculation, we use the approximation for the GW response of the A, E and T
channels given in ref. [43]:

RFit
A (f) = RFit

E (f) = 9
20 |W (f)|2

[
1 +

(
f

4f∗/3

)2]−1

, (2.2)

RFit
T '

1
4032

(
f

f∗

)6
|W (f)|2

[
1 + 5

16128

(
f

f∗

)8]−1

(2.3)

where W (f) = 1− e−2if/f∗ with f∗ = c/2πL, and we take L = 2.5× 109 m as appropriate for
the LISA arms.

2.1 Cosmological background from a first order phase transition

The GW power spectrum from a first order cosmological phase transition is thought to be
well approximated by the Sound Shell Model [28], at least for transitions which are not too
strong and have high enough wall speeds [29]. In the model there are two characteristic length
scales, the mean bubble separation and the sound shell thickness, which motivate a simplified
description in terms of a function with two frequency scales and three power law indices —
a double broken power law [28]. In this work where we address a GW background from a
first order phase transition, we use the double broken power law fit to the SSM put forward
in [34] and shown to be a good fit over a wide range of wall speeds and transition strengths.
In this fit, the power spectrum takes the form

ΩPT(f ; Ωp, fp, rb, b) = ΩpM(f ; fp, rb, b) (2.4)

where Ωp is the peak of the power spectrum, fp is the frequency corresponding to Ωp and
rb = fb/fp describes the ratio between the two breaks in the spectrum. The parameter b
defines the spectral slope between the two breaks. The spectral shape M(f, fp, rb, b) is a
double broken power law with a spectral slope 9 at low frequencies and −4 at high frequencies1

M(f ; fp, rb, b) =
(
f

fp

)9
 1 + r4

b

r4
b +

(
f
fp

)4


(9−b)/4 b+ 4

b+ 4−m+m
(
f
fp

)2


(b+4)/2

. (2.5)

Within M(f ; fp, rb, b), m has been chosen to ensure that for rb < 1 the peak occurs at f = fp
and M(fp; fp, rb, b) = 1, giving

m =
(
9rb

4 + b
)
/
(
rb

4 + 1
)
. (2.6)

There are regions of the spectral parameter space that lead to eq. (2.5) diverging. In particular,
when the denominator of the final factor becomes negative, i.e.

b+ 4−m+m

(
f

fp

)2

≤ 0. (2.7)

We restrict ourselves to working within the region of parameter space that is well-defined.
1In practice, the SSM’s predicted high-frequency power law of −3 emerges only slowly, and −4 provides a

better fit around the peak [18, 28].
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Here, we outline the key thermodynamic parameters and their connection to the spectral
ones. The first of the thermodynamic parameters is the nucleation temperature Tn, which
we define as the temperature corresponding to the peak of the globally-averaged bubble
nucleation rate. The Hubble rate at Tn sets the frequency scale of the GW spectrum.

The second thermodynamic parameter is the nucleation rate parameter β. As discussed
in [34] due to uncertainties in the calculation of β, we instead consider the related quantity,
the mean bubble spacing R∗. We note that β−1 is the time for the bubble wall to move a
distance R∗ and therefore has the interpretation of the duration of the phase transition. In
this work we refer to the Hubble-scaled mean bubble spacing r∗ = HnR∗ which contributes
to the frequency scale and amplitude of the GW power spectrum.

Our third key thermodynamic parameter is the phase transition strength α, which
we define as the ratio between the trace anomaly and the thermal energy, where the trace
anomaly describes the amount of energy available to convert to shear stress energy. A stronger
transition means more energy is converted to shear stress energy and a larger overall amplitude
for the GW signal.

The final parameter to introduce is the wall speed vw which, along with α, determines
the motion of the plasma surrounding the bubble wall. The value of the wall speed relative
to speed of sound cs determines the width of the GW power spectrum, here we assume is
the ultrarelativistic value cs = 1/

√
3 (see [32, 33] for other scenarios). For wall speeds close

to cs the power spectra are broad and rb is small, in the alternate case the power spectra
are narrow.

To summarise, the peak amplitude is controlled by the phase transition strength, the
Hubble-scaled mean bubble spacing and the bubble wall speed in rough order of efficacy from
high to low. For the peak frequency all thermodynamic parameters contribute to varying
degrees. It is worth noting the nucleation temperature only impacts the overall frequency
scale whereas all the other thermodynamic parameters play a role in numerous spectral
parameters. The break ratio and the intermediate spectral slope are related to the phase
transition strength and the wall speed parameters. Figure 3 of [34] demonstrates how changing
the thermodynamic parameters affects the shape of the GW power spectrum.

2.2 LISA noise model

We take the LISA noise model to be that given in the LISA Science Requirement Document [44]
and [45]. The model assumes constant equal noise in all channels, and has only two parameters:
the acceleration noise level Nacc = 1.44×10−48 s−4Hz−1 and the optical path length fluctuation
noise level Npos = 3.6× 10−41 Hz−1. The noise model is then specified by the spectral density
of the X channel and the cross spectral density of the channel X and Y , which areNX(f) =

(
4Ps(f) + 8

[
1 + cos2

(
f
f∗

)]
Pa(f)

)
|W (f)|2

NXY (f) = − [2Ps(f) + 8Pa(f)] cos
(
f
f∗

)
|W (f)|2.

(2.8)

We also define the functions
Ps(f) = Npos

Pa(f) = Nacc
(2πf)4

(
1 +

(0.4 mHz
f

)2
)
,

(2.9)

with Ps(f) the single optical path-length fluctuation noise (which is frequency-independent)
and Pa(f) the single test mass acceleration noise. The noise models for the AET channel
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power spectral densities are given by the diagonalization of the covariance matrix of the XY Z
channels (see e.g. [43]). The diagonal entries are then

NA(f) = NE(f) = NX(f)−NXY (f),
NT (f) = NX(f) + 2NXY (f), (2.10)

using the assumption that the correlation noise is the same for all interferometers.
Rather than comparing the detector response to a stochastic GW signal to the noise, it

is more convenient to introduce noise spectral densities SA(f) and SE(f) by dividing by the
GW response function,

SA(f) = SE(f) = NA(f)
RFit
A,E(f)

, (2.11)

where RFit
A,E(f) is given by eq. (2.2). For completeness the noise spectral density in the T

channel is
ST (f) = NT (f)

RFit
T (f)

, (2.12)

where RFit
T (f) is given in eq. (2.3). From the noise spectral densities, the equivalent energy

spectral density is given by

ΩA(f) = ΩE(f) = SA(f)4π2f3

3H2
0
. (2.13)

These power spectra have the interpretation as an isotropic GW signal which would have unit
signal-to-noise ratio at every frequency.

2.3 Double white dwarf foreground

A foreground from DWD binaries in our galaxy [7, 8, 46–51], will be observed as a modulated
waveform due to LISA’s orbit around the Sun. The large majority of the DWD will not
be resolved, and the superposition of all GWs received by LISA constitutes the galactic
foreground (see eq. (2.14)). We assume that the waveform of each binary can be modelled as a
pseudo-monochromatic signal. Thus, we can build the superposition of their GW signals s(t):

s(t) =
N∑
i=1

∑
P=+,×

hA,i(forb,i,M1i,M2i, ri, t)× FP (θ, φ, t)D(θ, φ, f)P : eP (2.14)

with i labelling the binaries. The masses of the two stars are M1i for the larger mass and
M2i for the smaller; the orbital frequency of the binary is forbi ; the Cartesian position in the
Galaxy ri and the position in the sky θ, φ; FA is the beam pattern function for the polarization
A = +,×, hA,i = hA,ieA the tensor of the amplitude of the GW; D the one-arm detector
tensor; and hA,i the dimensionless GW amplitude. An initial description has been done with
resolved sources to provide the modulation of the foreground from the LISA orbit [8].

The dimensionless energy spectral density of the DWD foreground can be approximated
by a broken power law. The broken power law model for the galactic foreground from Lambert
et al. used in Boileau et al. [52] is given by

ΩDWD(f) = A1 (f/f∗)α1

1 +A2 (f/f∗)α2 (2.15)
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with α1 − α2 = α ' 2/3 at low-frequencies and the frequency reference f∗ = c/2πL. The
spectral shape of the DWD foreground is a broken power law because at high-frequencies
(' 0.1Hz) the number of DWDs decreases due to the physical limitation from the respective
radii of the two white dwarfs in each binary.

A different model of the DWD foreground is used in ref. [53]. Here, the frequency break
is much higher, and the signal is approximated as a simple power law over the LISA frequency
range. With this model, it is important to account for the resolved binaries, which are then
removed, leaving behind a confusion noise Sc(f) from the unresolved binaries. For a LISA
mission duration of 4 years, the confusion noise from unresolved DWDs is approximated by:

Sc(f) = Af
7/3
Hz e

−fαHz+βfHz sin(κfHz) [1 + tanh(γ(fk − fHz))] (2.16)

with fHz = f/(1 Hz), α = 0.138, β = −221, γ = 1680 and fk = 0.00113.2 The corresponding
dimensionless energy spectral density is then

Ωc(f) = Sc(f)4π2f3

3H2
0
. (2.17)

2.4 Extragalactic compact binary foreground

A background from compact binaries consisting of black holes and neutron stars in other
galaxies is expected. As this background has not yet been detected at ground-based GW
observatories for this work we estimate its amplitude from the LIGO-Virgo observations, as
outlined in [11]. Our model for this energy spectral density is a power law

ΩECB(f) = AECB

(
f

fref

)αECB

. (2.18)

In our simulations we inject an extragalactic compact binary foreground with a spectral slope
αECB = 2

3 and fref = 25Hz as the reference frequency [55]. For the amplitude AECB we
use the upper value from the LIGO-Virgo O2 limit distribution, AECB = ΩECB(25 Hz) =
2.15× 10−9 [56].

2.5 Model illustration

The various contributions to the dimensionless energy density power spectrum Ωgw(f) in
the LISA observational band are displayed in figure 1. The black line is the LISA design
sensitivity [57]. We display three models for the galactic foreground: the Lamberts et al.
catalogue DWD (light blue line) [7], the Boileau et al. broken power law (dark blue) [52], and
the galactic confusion noise of Robson et al. (red line) [53]. The green line is the LIGO-Virgo
O2 observations ΩECB(25 Hz) = 8.9+12.6

−5.6 × 10−10 [56], and the yellow is the LIGO-Virgo O3
observation measurement ΩECB(25 Hz) = 7.2+3.3

−2.3 × 10−10 [10]. The pink and orange lines
are respectively the dimensionless energy power spectrum of the PT for Ωp = 3× 10−11 and
Ωp = 1× 10−10. The two curves are given by eq. (2.4) with fp = 1mHz, rb = 0.4 and b = 1.

2.6 Simulation

To simulate the data in the frequency domain, we use the fractional energy density power
spectrum of a first order phase transition ΩPT(f) (see section 2.1). The phase transition

2We note that the models for galactic confusion noise continue to be improved [54], and we will incorporate
these advances in future work.
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Figure 1. The LISA sensitivity curve [44, 57], black line, in terms of the dimensionless energy spectral
density Ωgw(f). The DWD foreground models are also presented. The light and dark blue lines are
respectively the Galactic foreground from the Lamberts et al. catalogue [7] and the analytic galactic
foreground fit of Boileau et al. [52]. The red line is the Galactic confusion noise from Robson et al. [53].
The green line is the estimated extragalactic compact binary foreground from the LIGO-Virgo 02
data [11], while the yellow curve is estimation from the LIGO-Virgo 03 data [10]. The pink and orange
lines are PT broken power law models with Ωp = 3× 10−11 and Ωp = 1× 10−10.

model is parametrised by four parameters; the peak power Ωp, the peak frequency fp, the
break ratio rb and the intermediate power law b as described in eq. (2.4). We also include the
DWD foreground ΩDWD(f) (see eq. (2.15)), and a power law for the extragalactic compact
binary foreground, ΩECB(f) (see eq. (2.18)). The total GW background is the sum

Ωgw(f) = ΩDWD(f ;A1, A2, α1, α2) + ΩECB(f ;AECB, αECB) + ΩPT(f ; Ωp, fp, rb, b). (2.19)

The total GW power spectrum model then has ten independent parameters given by
θgw = (Ωp, fp, rb, b, A1, α1, A2, α2, AECB, αECB). We also model and simulate the LISA noise
with the two magnitude parameters θLISA = (Nacc, Npos). The parameter vector θ = θgw∪θLISA
used in this study has 12 components from the GW background model and the LISA noise
model. For the MCMC runs, data are simulated in the frequency domain, with a linear
frequency vector of 100,000 points in the frequency band [1× 10−5, 1] Hz.

The data are produced in the frequency domain by generating N = 105 independent
3-component Gaussian random vectors with mean zero and covariance matrix given by
the spectral density matrix CIJ(θ, fk) defined in eq. (2.21) for equally spaced fk between
5×10−6 Hz and Nyquist frequency 1/2∆t = 0.5Hz, with a frequency resolution of 5×10−6 Hz
and a time resolution of ∆t = 1 s. CIJ(θ, fk) corresponds to the noise energy spectral density
matrix, rescaled by the factor of N/NTobs where NTobs denotes the total number of Fourier
frequencies for a time series of 4 years sampled at 1Hz. This corresponds to segmenting a
4 year long data set sampled at 1Hz into segments of 1.16 days and averaging over the spectra
of the individual segments.

The astrophysical background is derived from the non-continuous compact binary merger
signals, known as a “popcorn” background [58]. This background is non Gaussian. If the
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Nacc 1.44×10−48 s−4Hz−1

Npos 3.6× 10−41 Hz−1

A1 7.44× 10−14

A2 2.96× 10−7

α1 −1.98
α2 −2.6
αECB 2/3
AECB 2.15× 10−9

Table 1. Parameter values used in the data simulation described by eq. (2.19), excluding the four
phase transition parameters.

merger signals are long in duration and large in their rate, the signals overlap and produce
a more continuous signal. This continuous signal approaches Gaussianity via the central
limit theorem. It has previously been demonstrated that even with such a non Gaussian
background the standard GW background searches still can detect the signal [58]. For our
data in this present study we have assumed ideal stationary noise, no glitches, the absence of
instrumental lines and gaps. The galactic foreground is modulated in amplitude [9] because of
the LISA constellation orbit around the Sun. We have averaged over small segments of time
(1.16 days); it has previously demonstrated that the modulation can be assumed as constant
within small segments [9]. The phase transition GW background we considered is generated
from the overlap of many sound waves, and can be considered as Gaussian.

For the different MCMC analyses we simulate numerous different sets of data with
an independent variation on the phase transition parameters (Ωp, fp, rb, b). The goal is to
estimate the impact each phase transition parameter has on the overall observability and
parameter estimation. We use the same parameter estimation methods as in Boileau et al. [52]
treating all parameters of the GW background θgw and LISA noise θLISA as unknown and
estimating these simultaneously.

2.7 Fisher information and deviance information criterion

The likelihood function with the data D = (dA, dE , dT ) uses the Fourier transform vectors for
the channels AET . The data is in the frequency domain, given the model parameters θ, and
gives the likelihood

L(D|θ) =
N∏
k=0

1√
det (2πC(θ, fk))

e−
1
2D

∗T
k C

−1(θ,fk)Dk , (2.20)

where the product is over the of Fourier frequencies fk, and C denotes the cross powers
spectral covariance matrix with components

C(θ, f) = 3H2
0

4π2f3

 (ΩA(f) + Ωgw(f))RFit
A,E 0 0

0 (ΩE(f) + Ωgw(f))RFit
A,E 0

0 0 ΩT (f)RFit
T

 . (2.21)

The dimensionless energy spectral density of the GW signal contributes equally to channels
I = [A,E], and we neglect the response of the T channel to GWs. In this work we use a
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simple model for the T channel that contains, by definition, no GW signal. We understand
that the real data channels will not be as simple and leave the inclusion of second generation
TDI channels for future work. Here, the focus is on whether we can separate the PT GW
background from the instrument noise and astrophysical foregrounds. We note too that a
recent study of the triangular configuration for non-equal detector noise and non-equal noise
correlations changes the properties of the A and E channels [59]. Using the channels A and
E without channel T would increase the uncertainties of the parameter estimation, especially
for values near the level of detectability (Ωp ∼ 3 × 10−11, presented below). Without the
use of the T channel there would be additional confusion between the LISA noise and the
GW signals. Consequently, the limit of detectability of the GW background would increase.
To keep the notation compact we have omitted explicit notation for the sum over frequency
bins k.

The Fisher information matrix Fab is used to estimate the parameters with the uncertainty√
F−1
aa of the Fisher information (see eq. (2.22)) from the likelihood (see eq. (2.20)):

Fab = 1
2

∑
I=A,E,T

N∑
k=0

Tobs∆fk
∂ ln CII(fk)

∂θa

∂ ln CII(fk)
∂θb

. (2.22)

Here, Tobs is the time duration of observations for the LISA mission, assumed to be 4 years,
and ∆fk = fk − fk−1. To reduce the number of calculations, we can assume that parameters
from different sources are independent and that θ can be grouped into LISA noise, extra
galactic compact binary, DWD and phase transition parameters as

θ = (Nacc, Npos, AECB, αECB, A1, α1, A2, α2,Ωp, fp, rb, b). (2.23)

The Fisher information matrix is then a block diagonal matrix

Fab(θ) =


ΓLISA 0 0 0

0 ΓECB 0 0
0 0 ΓDWD 0
0 0 0 ΓPT

 , (2.24)

with respectively the Fisher information matrix of the LISA noise ΓLISA, the extragalactic
compact binary background ΓECB, the DWD foreground ΓDWD and the phase transition
background ΓPT. Thus, the inverse of the Fisher matrix is

F−1
ab (θ) =


Γ−1

LISA 0 0 0
0 Γ−1

ECB 0 0
0 0 Γ−1

DWD 0
0 0 0 Γ−1

PT

 (2.25)

The uncertainty in parameter θa is estimated as σa =
√
F−1
aa . In the following, we will

study only the sub-matrix of the phase transition parameters Γ−1
PT. As a cross check, we

also use MCMC methods to estimate the posterior distribution of the signal parameters,
p(θ|D) ∝ p(θ)L(D|θ).

The Fisher information matrix is obtained by calculating the second order partial
derivatives of the log-likelihood function with respect to unknown parameters. There will be
non-zero off-diagonal entries of the Fisher information matrix. However, for the sake of faster
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computation, we assume a block diagonal matrix where parameters within each block ΓLISA,
ΓECB, ΓDWD and ΓPT, are potentially dependent but parameters from different blocks are
independent. We refer to our MCMC results in section 3, where indeed the parameters from
different blocks have negligible posterior correlation; see figure 6 in appendix A.

The posterior distribution of the parameter vector θ is obtained by combining the
likelihood in eq. (2.20) with independent general priors for each of the parameters. We specify
independent Gaussian priors

p(θ) =
∏
i

exp
(
−(θi − µi)2

2σ2
i

)
(2.26)

for the GW background, DWD and LISA noise parameters where µi is the true value and
σi = 1. For example, for the parameter Ωp, we sample on log(Ωp) with a Gaussian prior
centred on the “true” value log(Ωp), with log(σΩp) = 1. We use log-parameters for Nacc,
Npos, AECB, A1, A2, Ωp, and fp and sample directly with α1, α2, αECB, rb and b. We use the
MCMC algorithm of [60]. This is an adaptive Metropolis-Hastings algorithm with a proposal
distribution:

Qn(θ) = (1− β)N (θ, (2.28)2Σn/d) + βN (θ, (0.1)2Id/d) , (2.27)

where Σn is the current empirical estimate of the covariance matrix of the parameter vector
θ (based on the previous MCMC samples), β = 0.01, d the number of parameters, Id the
identity matrix and N the multi-normal distribution.

The ultimate aim is to study whether the model that includes phase transitions provides
a substantially better fit than a model without phase transitions where both models include
the LISA noise, DWD foreground and the compact binary produced GW background. Within
the Bayesian framework, this model comparison could be performed by computing Bayes
factors. However, when using improper priors or even very vague priors, these are not well
defined. The sensitivity of the Bayes factor to the choice of increasingly diffuse priors is well
known and often referred to as Lindley’s paradox [61, 62]. It is illustrated for instance in [63]
for an example of a Gaussian likelihood with unknown mean θ and unknown variance σ2

where a Normal(0,τ2) prior is put on the variance parameter σ2. With increasing τ2, the
marginal likelihood of the null model θ = θ0 and that of the alternative will converge to 1
and zero, respectively, no matter the value of the data. Thus the Bayes factor for comparing
the null to the alternative model will go to infinity even if the observed data value is far away
from θ0. Therefore, we use the DIC [36, 37] which can be regarded as the Bayesian analogue
of the AIC/BIC and a Bayes factor approximation, and can be used even if improper priors
have been specified. The DIC is a very popular choice for practical model comparison as it is
easy to compute when a MCMC sample of the posterior distribution is available [38].

The DIC combines a model fit statistic with a term that penalizes the model complexity.
It is based on the deviance D(θ) defined as D(θ) = −2 logL(D|θ), and evaluated at the
posterior mean θ̄ of θ (the average of the posterior samples from the MCMC). The penalty
term is given by pD = D̄ −D(θ̄) where D̄ denotes the posterior mean of the deviance. The
DIC is given by

DIC = D(θ) + 2pD. (2.28)

We calculate the difference in DIC for the models with a phase transition and without. We
follow the general rule of thumb that a difference in the DIC of ∆DIC > 5 there is substantial
evidence for the model with a phase transition, and we have strong and decisive evidence for
∆DIC > 10 [64]. In this study we use the level of ∆DIC > 5 as the threshold for detectability.
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(a) fixed: fp = 1mHz, rb = 0.4, b = 1 (b) fixed: rb = 0.4, b = 1

Figure 2. Figure 2(a) shows the changes in the deviance information criterion (∆DIC) as the peak
amplitude Ωp is varied, when the peak frequency fp = 1× 10−3 Hz. Figure 2(b) shows the changes in
the ∆DIC as the peak frequency fp is varied, for three values of peak amplitude Ωp = 1× 10−9(red),
1× 10−10 (blue) and 1× 10−11 (green). In both cases the break ratio and the intermediate slope are
fixed to rb = 0.4, and b = 1.

3 Results

3.1 DIC results

We use the DIC to investigate LISA’s sensitivity to a GW background from a first order phase
transition in the presence of foregrounds from DWDs in the galaxy and extragalactic compact
binaries. We explore how this sensitivity varies as a function of the parameters of the fit to the
phase transition signal. The peak amplitude Ωp and the peak frequency fp are the parameters
that play the greatest role in determining whether one can distinguish between models with
or without a phase transition signature. In figure 2(a) and figure 2(b) we show ∆DIC as a
function of these parameters. For a signal peaking at 1mHz, which is the most favourable
frequency for detection by LISA, ∆DIC is above 5 for peak amplitudes Ωp & 3× 10−11, and
above 10 for peak amplitudes Ωp & 1× 10−10. A signal of with magnitude Ωp = 1× 10−10

has ∆DIC > 5 over a band from 3× 10−4 to 10−2 Hz, where we use the level of ∆DIC > 5 as
the threshold for detectability for the model with a phase transition.

In figure 3(a) and figure 3(b) we see that varying the break ratio rb and the intermediate
slope b have little impact on the overall observational prospects of the phase transition signal.
Instead we again see the importance of the peak amplitude parameter.

As discussed in section 2.1 the relationship between the spectral parameters and the
thermodynamic parameters of a first order phase transition is complicated, which makes
it challenging to say anything concrete about LISA’s sensitivity to the thermodynamic
parameters from these results alone. The DIC analysis has shown the spectral parameters
with the biggest impact on resolving a PT signature are the peak amplitude which relates to
(α, vw, r∗) and the peak frequency which all thermodynamic parameters contribute to. For a
more quantitative description of how the uncertainties in the spectral parameters translate
into uncertainties in thermodynamic parameters see Gowling et al. [65].

3.2 Fisher matrix and MCMC comparison

Here, we compare the uncertainties in the measurements of spectral parameters when calculated
with the Fisher matrix [34] to those computed with MCMC simulations. In the Fisher method,
the relative uncertainties are calculated using the Fisher matrix Fab, as outlined in eq. (2.22),
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(a) fixed: fp = 1mHz, b = 1 (b) fixed: fp = 1mHz, rb = 0.4

Figure 3. Figure 3(a) displays the changes in the deviance information criterion (∆DIC) as the
break ratio rb is varied and the intermediate slope b = 1. Figure 3(b) shows the changes in ∆DIC
as the intermediate slope b is varied; here rb = 0.4. In both cases we considered three values of
peak amplitude Ωp 1× 10−9 (red), 1× 10−10 (blue) and 1× 10−11 (green) and the peak frequency
fp = 1mHz.

and are given by
√
F−1
aa . The Fisher matrix is evaluated with 200 points in a log-frequency

band between [1× 10−5, 1] Hz according to eq. 4.3 in [34].
For the MCMC method, we use the same Adaptive-MCMC algorithm as previously

presented in [52, 66]. We define the uncertainty on a parameter to be the standard deviation
of the marginalised posterior distribution. In the following, unless stated otherwise, the total
GW model used is described by eq. (2.19). We look at each of the spectral parameters in
turn, showing the results for each of the phase transition parameters in figures 4(a), 4(b), 5(a)
and 5(b). The relative uncertainties calculated from the MCMC results are shown as dots
with a 1-σ error bar, and those from the Fisher information are denoted by continuous lines.

The Fisher information matrix is much faster to evaluate than an MCMC, and allows
us to explore LISA’s sensitivity to a wide range of parameter space associated with a first
order phase transition; to explore the same parameter space with MCMC methods would take
significantly longer. For this work we aimed to investigate the similarities (and differences)
between the Fisher information matrix and MCMC results, which gives insight into how to
interpret the Fisher information matrix results for the broader parameter space explored
in [34].

In figure 4(a), the relative uncertainties in the peak amplitude Ωp are shown, with
the other spectral parameters being fp = 1× 10−3 Hz, rb = 0.4 and b = 1. The agreement
between the two ways of estimating the relative uncertainties is very good. We also see that
for Ωp = 3× 10−11, which for this combination of parameters we found to be the threshold for
detectability in our DIC analysis (see figure 2(a)), the relative uncertainty of ∆Ωp/Ωp < 0.1 is
reached, consistent with interpreting ∆DIC > 5 as a threshold for distinguishing the models.
We see in figure 4(a) that the relative uncertainty decreases as 1/Ωp, before saturating. As
the signal-to-noise ratio (SNR) should be proportional to the peak amplitude Ωp, this is
consistent with the expectation that the relative uncertainty is inversely proportional to the
SNR. The saturation occurs when the signal dominates the noise, and there is little further
change in the Fisher matrix.

Figure 4(a) also shows the impact of the DWD foreground model on the phase transition
measurement. The nature of the DWD foreground spectral density is an open question and
as shown in figure 22 of [52] the position of the frequency break of the galactic foreground
has a large impact on the constraints one is able to place on a flat GW background. Due to
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the computationally intensive nature of MCMC computations we only evaluate the relative
uncertainties with the different foreground model using the Fisher matrix.

The two red lines in figure 4(a) are the two DWD models considered: the dashed line is
the analytic fit [52] to the galactic foreground from the Lamberts et al. catalogue [7] (eq. (2.15))
and the solid line is the galactic confusion noise model from Robson et al. [53] (eq. (2.16)).
We also show the case where all foregrounds are removed with the blue dashed line; here
the signal fluctuations are the sum of the LISA instrument noise and the fluctuations in the
phase transition GW background. As in [52] we see a drop in the limiting performance for
low values of Ωp. In this case, the drop is larger for the Robson et al. model, which can be
traced to the model having a higher amplitude at 1mHz, where the chosen phase transition
model power peaks. The difference in impact of the models decreases with amplitude, as the
phase transition signal starts to exceed the power in both foreground models. In all cases
the difference is within the 68% error posterior credible interval, which suggests that the
modelling of the DWD foreground is not quite as critical as might be expected.

For the remaining three spectral parameters fp, rb and b, as well as varying these
parameters we have studied the measurement uncertainty coming from the MCMC and Fisher
analysis for different values of Ωp, (1 × 10−9, 1 × 10−10 and 1 × 10−11) they are shown in
green, blue and red respectively in figure 4(b), figure 5(a) and figure 5(b). It is evident that
the uncertainty in all parameters increases when the amplitude is lower.

In figure 4(a) the solid line displays a total GW model that uses the Robson et al. galactic
foreground model and the dashed line is the analytic model [52] fit on the Galactic foreground
from the Lamberts et al. catalogue [7]. As one might expect, the peak frequency is less well
determined in the louder foreground model; however, the effect is not large. It appears that
the good overlap between the Fisher study and the Bayesian MCMC analysis disappears when
the amplitude Ωp decreases. Indeed, in view of the DIC study, when the peak amplitude is
below Ωp = 3 × 10−11, we are unable to state with certainty that the model including the
phase transition signal is a better fit. It is therefore not surprising that the different methods
for estimating the parameter uncertainty give different results below this value.

In figure 4(b) we show the effect of varying the peak frequency, for break ratio rb = 0.4
and intermediate slope b = 1. We see that with a peak amplitude Ωp > 1 × 10−10, we
achieve a relative uncertainty ∆fp/fp < 0.2 for peak frequency between fp = 2× 10−4 Hz and
2× 10−2 Hz. We also note an effect of the different galactic models on the measurement of
the peak frequency of the phase transition signal.

Finally, in figure 5, we display the Fisher and MCMC results for the two remaining
spectral parameters, rb (the ratio between the breaks in the power laws) and b (the intermediate
power law), for spectra with peak frequency fp = 1mHz. There is no systematic trend in
measurement performance as the parameters are varied, except at low rb, where, for this
peak frequency choice, the lower break frequency moves out of the LISA sensitivity window,
and the uncertainty quickly increases. In figure 5(a) we see a dip in sensitivity at rb = 0.7,
this feature is due to the complicated nature of the differential that goes into the Fisher
matrix, as opposed to anything special about the spectrum at this combination of spectral
parameters. When other parameter combinations are considered and rb is varied this dip
appears at different rb values.

For the parameters rb and b, when we compare the parameter estimation results with
different galactic foreground models we again see the sensitivity to rb and b is reduced for
the louder galactic foreground model. In figure 5(b) the vertical brown line shows the point
where the double broken power law, eq. (2.4), becomes ill-defined due to the limitations of
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(a) Fisher Ωp (b) Fisher fp

Figure 4. Uncertainty estimates for the peak amplitude Ωp and the peak frequency fp, calculated with
the Fisher information (continuous lines) and MCMC simulations (points). The solid line corresponds
to a model of LISA instrument noise, phase transition signal, astrophysical background and a Robson
et al. [53] DWD foreground model. The dashed lines are identical but instead consider the Lamberts
et al. model for the DWD foreground [7]. The relative uncertainties as calculated from the Fisher
matrix for Ωp when only the LISA noise and phase transition signal are considered are show in blue in
figure 4(a). In both cases rb = 0.4, b = 1 and in figure 4(a) fp = 1mHz.

(a) Fisher rb (b) Fisher b

Figure 5. Uncertainty estimates in the break ratio rb and the intermediate slope b, calculated with the
Fisher information (continuous lines) and MCMC simulations (points). The model: LISA instrument
noise, first order phase transition signal modelled as a double broken power law, astrophysical
background and a Robson et al. [53] DWD foreground model. In both figures fp = 1mHz, in figure 5(a)
b = 1 and in figure 5(b) rb = 0.4.

the double broken power law discussed in section 2.1. The relative uncertainty is ill-defined
at b = 0 so here we instead consider ∆b.

4 Conclusions

In this paper we have investigated the ability of LISA to observe a GW background produced
by a first order phase transition in the early universe. We have considered the presence of GW
foregrounds from DWD binaries in our galaxy, from compact binary mergers throughout the
universe, and LISA noise. For a phase transition GW spectrum with break ratio rb = 0.4 and
intermediate spectral slope b = 1, we show that signals with peak frequency 1mHz can be
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detected for Ωp ≥ 3× 10−11. Signals with peak amplitude Ωp = 10−10 achieve the detection
threshold ∆DIC > 5 with peak frequency between fp = 4× 10−4 to 9× 10−3 Hz. For phase
transition signals with a larger peak amplitude than Ωp = 10−10 there would be a broader
frequency window of detectability, including phase transition signals with peak frequencies
between fp ≈ 1× 10−4 to ≈ 2× 10−2 Hz.

We then used Fisher Matrix and MCMC methods to show how well the four parameters
associated with the first order phase transition could be estimated, simultaneously with noise
and GW foregrounds. For example, with a GW background of peak amplitude Ωp = 10−10

the parameter estimation accuracies are ∆Ωp/Ωp ≈ 10−2, ∆fp/fp ≈ 10−2 at fp = 3× 10−3,
∆rb/rb ≈ 0.1 at rb = 0.2, and ∆b/b ≈ 0.1 at b = 1. The Fisher Matrix and MCMC methods
give similar results for Ωp > 3× 10−11, where the signal becomes detectable.

We have modelled the GW background from a first order phase transition as a double
broken power law, which is a good fit to the GW power spectrum calculated from the
thermodynamic parameters for the majority of the thermodynamic parameter space. However,
subtleties in the characteristics of the GW power spectra from thermodynamic parameters
are not encapsulated in the double broken power law, for example the double broken power
law struggles to describe the spectra for wall speeds around the speed of sound, see figure 11
in [34]. Another challenge for the parameter estimation of first order phase transitions at
LISA is, as discussed in section 2.1, the relationship between the spectral and thermodynamic
parameters is complicated. See [65] for a discussion on the connection between the spectral
and thermodynamic parameters and how to reconstruct thermodynamic parameters from
MCMC samples on the spectral parameters (like those performed here). These differences
and challenges mean that as we improve our understanding of phase transition physics and
develop better spectral fits, the findings presented here will evolve.

We have used a basic model for the LISA noise based on only two parameters [43, 44],
and it will be important to incorporate more sophisticated noise models in order to better un-
derstand the prospects for cosmological GW background detection and parameter estimation.

We have been conservative in not using annual modulation to improve the estimation of
the DWD foreground parameters. In addition, other GW wave signals will be present in the
data, such as identifiable galactic binaries, massive black hole binaries, and extreme mass
ratio inspirals [2]. Searches may also need to allow for the presence of other cosmological GW
backgrounds in the LISA data [4], for example from inflation [67] or cosmic strings [52, 68].
More advanced parameter estimation methods will need to be developed, and realistic early-
universe signal models will need to be included in global fits for the LISA GW signals [69].
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Figure 6. Corner plot for an example adaptive MCMC with an injected phase transition signal char-
acterised by (log10(Ωp), log10(fp), rb, b) = (−9,−2, 7, 0.4, 1) and a data model described by eq. (2.19).
The vertical dashed lines on the posterior distribution represent from left to right the quantiles
[16%, 50%, 84%]. The red, green and blues lines are respectively the mean, the median of the posterior
distribution and the input parameter values on the simulation.

A Parameter correlations

When evaluating the Fisher matrix we assumed that parameters from different sources are
independent. In figure 6 we present a corner plot for the MCMC results presented in section 3.
Parameters from different sources can be grouped into different parameter blocks: ΓLISA,
ΓECB, ΓDWD and ΓPT. The parameters within a particular block can exhibit small correlations,
but parameters from different blocks are independent.
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