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Abstract
We present a new Bayesian nonparametric approach to estimating the spectral density of a stationary time series. A nonpara-
metric prior based on a mixture of B-spline distributions is specified and can be regarded as a generalization of the Bernstein
polynomial prior of Petrone (Scand J Stat 26:373–393, 1999a; Can J Stat 27:105–126, 1999b) and Choudhuri et al. (J Am
Stat Assoc 99(468):1050–1059, 2004). Whittle’s likelihood approximation is used to obtain the pseudo-posterior distribution.
This method allows for a data-driven choice of the number of mixture components and the location of knots. Posterior samples
are obtained using a Metropolis-within-Gibbs Markov chain Monte Carlo algorithm, and mixing is improved using parallel
tempering. We conduct a simulation study to demonstrate that for complicated spectral densities, the B-spline prior provides
more accurate Monte Carlo estimates in terms of L1-error and uniform coverage probabilities than the Bernstein polynomial
prior. We apply the algorithm to annual mean sunspot data to estimate the solar cycle. Finally, we demonstrate the algorithm’s
ability to estimate a spectral density with sharp features, using real gravitational wave detector data from LIGO’s sixth science
run, recoloured to match the Advanced LIGO target sensitivity.

Keywords B-spline prior · Bernstein polynomial prior · Whittle likelihood · Spectral density estimation · Bayesian
nonparametrics · LIGO · Gravitational waves · Sunspot cycle

1 Introduction

Useful information about a stationary time series is encoded
in its spectral density, sometimes called the power spec-
tral density (PSD). This quantity describes the variance (or
power) each individual frequency component contributes to
the overall variance of a time series and forms a Fourier trans-
form pair with the autocovariance function. More formally,
assuming an absolutely summable autocovariance function
(
∑∞

h=−∞ |γ (h)| < ∞), the spectral density function f (.) of
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a zero-mean weakly stationary time series exists, is continu-
ous and bounded, and is defined as:

f (λ) = 1

2π

∞∑

h=−∞
γ (h) exp(−ihλ), λ ∈ (−π, π ], (1)

where λ is angular frequency.
Spectral density estimationmethods can be broadly classi-

fied into twogroups: parametric andnonparametric. Paramet-
ric approaches to spectral density estimation are primarily
based on autoregressive moving average (ARMA) models
(Brockwell andDavis 1991;Barnett et al. 1996), but they tend
to give misleading inferences when the parametric model is
poorly specified.

A large number of nonparametric estimation techniques
are based on smoothing the periodogram, a process that ran-
domly fluctuates around the true PSD. The periodogram,
In(.), is easily and efficiently computed as the (normalized)
squaredmodulus of Fourier coefficients using the fast Fourier
transform. That is,

In(λ) = 1

2πn

∣
∣
∣
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n∑

t=1

Yt exp(−itλ)
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∣
∣

2

, λ ∈ (−π, π ], (2)
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where λ is angular frequency, and Yt is a stationary time
series with discrete time points, t = 1, 2, . . . , n.

Though the periodogram is an asymptotically unbiased
estimator of the spectral density, it is not a consistent esti-
mator (Brockwell and Davis 1991). Smoothing techniques
such as Bartlett’s method (Bartlett 1950), Welch’s method
(Welch 1967), and the multitaper method (Thomson 1982)
aim to reduce the variance of the periodogram by dividing a
time series into (potentially overlapping) segments, calculat-
ing the periodogram for each segment, and averaging over all
of these. Unfortunately, these techniques are sensitive to the
choice of smoothing parameter (i.e. the number of segments),
resulting in a variance/bias trade-off. Reducing the length of
each segment also leads to lower frequency resolution.

Another common nonparametric approach to spectral
estimation involves the use of splines. Smoothing spline
techniques are not new to spectral estimation (see, e.g. Cog-
burn and Davis 1974 for an early reference). Wahba (1980)
used splines to smooth the log-periodogram, with an auto-
matic data-driven smoothing parameter, avoiding the difficult
problem of having to choose this quantity. Kooperberg et al.
(1995) used maximum likelihood and polynomial splines to
approximate the log-spectral density function.

Bayesian nonparametric approaches to spectrum estima-
tion have gainedmomentum in recent times. In the context of
splines, Gangopadhyay et al. (1999) used a fixed low-order
piecewise polynomial to estimate the log-spectral density of a
stationary time series. They implemented a reversible jump
Markov chain Monte Carlo (RJMCMC) algorithm (Green
1995), placing priors on the number of knots and their loca-
tions, with the goal of estimating spectral densities with
sharp features. Choudhuri et al. (2004) placed a Bernstein
polynomial prior (Petrone 1999a, b) on the spectral density.
The Bernstein polynomial prior is essentially a finite mix-
ture of beta densities with weights induced by a Dirichlet
process. The number of mixture components is a smooth-
ing parameter, chosen to have a discrete prior. Zheng et al.
(2010) generalized this and constructed a multi-dimensional
Bernstein polynomial prior to estimate the spectral density
function of a random field. Also extending the work of
Choudhuri et al. (2004), Macaro (2010) used informative
priors to extract unobserved spectral components in a time
series, andMacaro and Prado (2014) generalized this to mul-
tiple time series.

Other interesting Bayesian nonparametric approaches
include Carter and Kohn (1997) inducing a prior on the
log-spectral density using an integrated Wiener process, and
Tonellato (2007) placing a Gaussian random field prior on
the log-spectral density. Liseo et al. (2001), Rousseau et al.
(2012) and Chopin et al. (2013) used Bayesian nonparamet-
ric methods to estimate spectral densities from long memory
time series, and Rosen et al. (2012) focused on time-varying
spectra in nonstationary time series.

The majority of the Bayesian nonparametric methods (for
short memory time series) mentioned heremake use ofWhit-
tle’s approximation to the Gaussian likelihood, often called
the Whittle likelihood (Whittle 1957). The Whittle likeli-
hood, Ln(.), for amean-centredweakly stationary time series
Yt of length n and spectral density f (.) has the following for-
mulation:

Ln(y| f ) ∝ exp

⎛

⎜
⎝−

� n−1
2 �∑

l=1

(

log f (λl) + In(λl)

f (λl)

)
⎞

⎟
⎠ , (3)

where λl = 2πl/n are the positive Fourier frequencies, �(n−
1)/2� is the greatest integer value less than or equal to (n −
1)/2, and In(.) is the periodogram defined in Eq. (2).

The motivation for the work presented in this paper is to
apply it in signal searches for gravitational waves (GWs)
using data from Advanced LIGO (Aasi et al. 2015) and
Advanced Virgo (Acernese et al. 2015). These interferomet-
ric GW detectors have time-varying spectra, and it will be
important in future signal searches to be able to estimate
the parameters describing the noise simultaneously with the
parameters of a detected gravitational wave signal. In a previ-
ous study (Edwards et al. 2015), we utilized themethodology
of Choudhuri et al. (2004) to estimate the spectral density
of simulated Advanced LIGO (Aasi et al. 2015) noise, while
simultaneously estimating the parameters of a rotating stellar
core collapse GW signal. The method, based on the Bern-
stein polynomial prior, worked extremely well on simulated
data, but we found that it was not well-equipped to detect
the sharp and abrupt changes in an otherwise smooth spec-
tral density present in real LIGO noise (Christensen 2010;
Littenberg and Cornish 2015). Under default noninformative
priors, themethod tended to over-smooth the spectral density.
As detailed in Sect. 2.2, this unsatisfactory performance is
only partly due to the well-known slow convergence of order
O(r−1/2), where r is the degree of the Bernstein polynomi-
als (Perron and Mengersen 2001), but mainly due to a lack
of coverage of the space of spectral distributions by Bern-
stein polynomials. This can be overcome by using B-splines
with variable knots instead of Bernstein polynomials, yield-
ing a much improved approximation of order of O(k−1) in
the number of knots k and adequate coverage of the space of
spectral distributions.

The focus of this paper is to describe a new Bayesian
nonparametric approach to modelling the spectral density
of a stationary time series. Similar to Gangopadhyay et al.
(1999), our goal is to estimate spectral density functions with
sharp peaks, but the method is not limited to these special
cases. Here we present an alternative nonparametric prior
using a mixture of B-spline densities, which we will call the
B-spline prior.
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Following Choudhuri et al. (2004), we induce the weights
for each of the B-spline mixture densities using a Dirich-
let process prior. Furthermore, in order to allow for flexible,
data-driven knot placements, a second (independent) Dirich-
let process prior is put on the knot differences which, in turn,
determines the shape and location of the B-spline densities,
and hence the structure of the spectral density. Crandell and
Dunson (2011) applied a similar approach in the context of
functional data analysis.

A noninformative prior on the number of knots allows
for a data-driven choice of the smoothing parameter. The B-
spline prior could naturally be interpreted as a generalization
of the Bernstein polynomial prior, as Bernstein polynomials
are indeed a special case of B-splines where there are no
internal knots.

B-splines have the useful property of local support, where
they are only nonzero between their end knots. We will
demonstrate that if knots are sufficiently close together, then
the property of local support will allow us to model sharp
and abrupt changes to a spectral density.

Samples from the pseudo-posterior distribution are
obtained by updating the B-spline prior with theWhittle like-
lihood (Whittle 1957). This is implemented as a Metropolis-
within-Gibbs Markov chain Monte Carlo (MCMC) sampler
(Metropolis et al. 1953; Hastings 1970; Geman and Geman
1984; Gelman et al. 2013). To improve mixing and conver-
gence, we use a parallel tempering scheme (Swendsen and
Wang 1986; Earl and Deem 2005).

We will demonstrate that the B-spline prior is more flex-
ible than the Bernstein polynomial prior and can better
approximate sharp peaks in a spectral density. We will show
that for complicated PSDs with noninformative priors, the
B-spline prior gives sensible Monte Carlo estimates and
outperforms the Bernstein polynomial prior in terms of inte-
grated absolute error (IAE) and frequentist uniform coverage
probabilities. Furthermore, the placement of these knots is
based on the nonparametric Dirichlet process prior, mean-
ing trans-dimensional methods such as RJMCMC (Green
1995) can be avoided. This is useful as RJMCMC is often
fraught with implementation difficulties, such as finding
an efficient jump proposal when there are indeed no nat-
ural choices for trans-dimensional jumps (Brooks et al.
2003).

The paper is organized as follows. Section 2 sets out the
notation and defines B-splines and B-spline densities. After
briefly reviewing the Bernstein polynomial prior, we explain
the rationale for the B-spline prior, extending it to a prior for
the spectral density of a stationary time series. We discuss
the MCMC implementation in Sect. 3. Section 4 details the
results of the simulation study, and in Sect. 5, we apply the
method to two different astronomy problems. This includes
the annual mean sunspot data set to estimate the duration of
the solar cycle, and real gravitational wave detector data to

estimate a PSD with sharp features. Concluding remarks are
then given in Sect. 6.

2 The B-spline prior

In this section, the B-spline prior for the spectral density of
a stationary time series will be defined. To this end, we first
set the notation and define B-splines and B-spline densities.
We review the Bernstein polynomial prior and extend this
approach to the B-spline prior with variable knots.

2.1 B-splines and B-spline densities

A spline function of order r + 1 is a piecewise polynomial
of degree ≤ r with so-called knots where the piecewise
polynomials connect. A spline is continuous at the knots (or
continuously differentiable to a certain order depending on
the multiplicity of the knots). The number of internal knots
must be ≥ r . Any spline function of order r + 1 defined on
a certain partition can be uniquely represented as a linear
combination of basis splines, B-splines, of the same order
over the same partition (Powell 1981; Cai and Meyer 2011).
B-splines can be parametrized either recursively (de Boor
1993), or by using divided differences and truncated power
functions (Powell 1981; Cai andMeyer 2011). We will adopt
the former convention.Without loss of generality, assume the
global domain of interest is the unit interval [0, 1].

For a set of k B-splines of degree ≤ r for some integer
r ≥ 0, define a nondecreasing knot sequence

ξ = {0 = ξ0 = ξ1 = · · · = ξr ≤ ξr+1 ≤ · · ·
≤ ξk−1 ≤ 1 = ξk = ξk+1 = · · · = ξk+r }

of k + r + 1 knots, comprised of k − r + 1 internal knots
and 2r external knots. The external knots outside or on the
boundary of [0, 1] (i.e. ξ0 ≤ · · · ≤ ξr−1 ≤ ξr = 0 and 1 =
ξk ≤ ξk+1 · · · ≤ ξk+r ) are required forB-splines to constitute
a basis of spline functions on [0, 1]. Here we assume that
the external knots are all exactly on the boundary. The knot
sequence ξ yields a partition of the interval [0, 1] into k − r
subsets.

For j = {1, 2, . . . , k}, each individual B-spline of degree
r , Bj,r (.; ξ), depends on ξ only through the r + 2 consecu-
tive knots (ξ j−1, . . . , ξ j+r ). The number of internal knots is
equal to the degree of the B-spline Bj,r if there are no knot
multiplicities. There can be a maximum of r + 1 coincident
knots for (right) continuity. These knots determine the shape
and location of each B-spline.

A B-spline with degree 0 is the following indicator func-
tion
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Bj,0(ω; ξ) =
{
1, ω ∈ [ξ j−1, ξ j ),

0, otherwise.
(4)

Note that if ξ j−1 = ξ j , then Bj,0 = 0.
Higher degree B-splines can then be defined recursively

using

Bj,r (ω; ξ) = υ j,r B j,r−1(ω; ξ)

+ (1 − υ j+1,r )Bj+1,r−1(ω; ξ), (5)

where r > 0 is the degree and

υ j,r =
{

ω−ξ j−1
ξ j+r−1−ξ j−1

, ξ j−1 	= ξ j+r−1,

0, otherwise.
(6)

B-spline densities are the usual B-spline basis functions,
normalized so they each integrate to 1 (Cai andMeyer 2011).
The recursive B-spline parametrization used in this paper
allows us to easily analytically integrate eachB-spline,which
we thenuse as normalization constant for theB-spline density
defined as

b j,r (ω; ξ) = Bj,r (ω; ξ)
∫ ξ j+r
ξ j−1

Bj,r (ω; ξ)dω
. (7)

2.2 Bernstein polynomial prior and B-spline prior

The Bernstein polynomial prior of Petrone (1999a, b) and
Choudhuri et al. (2004) is based on the Weierstrass approx-
imation theorem that states that any continuous function on
[0, 1] can be uniformly approximated to any desired accu-
racy by Bernstein polynomials. Let G denote a cumulative
distribution function (cdf) with continuous density g(.) on
[0, 1], then the following mixture

Ĝ(ω) =
r∑

j=1

G

(
j − 1

r
,
j

r

]

Iβ(ω; j, r − j + 1)

=
r∑

j=1

w j,r Iβ(ω; j, r − j + 1)

converges uniformly toG(ω), whereG(u, v] = G(v)−G(u)

and Iβ(ω; a, b) and β(ω; a, b) denote the cdf and density of
the beta distribution with parameters a and b, respectively.

Define F = {F : F is a cdf on [0, 1]} and Fr =
{F : F is a mixture of Iβ( j, r − j + 1) distributions, j =
1, . . . , r}. Also define the loss function by

l(F ,Fr ) = sup
G∈F

inf
F∈Fr

ρ(G, F),

where ρ(G, F) = supx∈[0,1] |G(x) − F(x)|. As shown by
Perron and Mengersen (2001), the loss associated with the

approximation of F by the r − 1 dimensional space Fr with
respect to loss function l(.) cannot be made arbitrarily small.
Thus the mixture of beta cdfs does not provide an adequate
coverage of the space of cdfs on [0, 1]. However, Perron
and Mengersen (2001) showed that if one replaces the beta
distributions by B-spline distributions of fixed order (shown
for order 2, i.e. triangular distributions) but with variable
knots, the loss can be made arbitrarily small by increasing
the number of knots. This is the rationale for using a mixture
of B-spline distributions with variable knots in the following
specification of a sieve prior.

The B-spline prior has the following representation as a
mixture of B-spline densities:

sr (ω; k,wk, ξ) =
k∑

j=1

w j,kb j,r (ω; ξ), (8)

where k is the number of B-spline densities of fixed degree
≤ r in the mixture, wk = (w1,k, . . . , wk,k) is the weight
vector, and ξ is the knot sequence. Rather than putting a
prior on the wk’s whose dimension changes with k, we fol-
low the approach of Choudhuri et al. (2004) and assume
that the weights are induced by a cdf G on [0, 1]. Simi-
larly, we assume that the k − r internal knot differences

Δ j = ξ j+r − ξ j+r−1 = H

(
j − 1

k − r
,

j

k − r

]

for j =
{1, . . . , k − r} are induced by a cdf H on [0, 1]. Or equiva-
lently, ξ j+r = H(

j
k−r ) for j = {1, . . . , k − r}, yielding the

B-spline prior parametrized in terms of k,G, and H :

sr (ω; k,G, H) =
k∑

j=1

G

(
j − 1

k
,
j

k

]

b j,r (ω; H). (9)

IndependentDirichlet process priors are thenplacedonG and
H , and a discrete prior is placed on the number of mixture
components k.

The B-spline prior is similar in nature to the Bern-
stein polynomial prior introduced by Petrone (1999a, b) and
applied to spectral density estimation by Choudhuri et al.
(2004). The primary difference is that the B-spline prior is a
mixture of B-spline densities with local support rather than
beta densities with full support on the unit interval. This dif-
ference is illustrated in Fig. 1.

When there are no internal knots, the B-spline basis
becomes a Bernstein polynomial basis. Bernstein polyno-
mials are thus a special case of B-splines, and the B-spline
prior could be regarded as a generalization of the Bernstein
polynomial prior.

Figure 2 demonstrates that it is possible to construct curves
(B-spline mixtures) with sharp peaks if knots are sufficiently
close together. The top panel shows a set of B-spline den-
sity functions, and the bottom panel displays a mixture of
these with random weights. The local support property of B-
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Fig. 1 Top panel: Eight cubic B-spline densities with equidistant knots
atω = {0, 0.2, 0.4, 0.6, 0.8, 1}. Notice the local support. Bottom panel:
Eight beta densities with full support on the entire unit interval. (Color
figure online)
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Fig. 2 Top panel: Cubic B-spline densities with many knots close to
each of the locations ω = {0.25, 0.5, 0.75}. Bottom panel: A random
mixture of these B-spline densities. It is possible to construct a B-spline
mixture with abrupt, sharp peaks. (Color figure online)

splines is the reason the B-spline prior will be instrumental
in estimating a spectral density with sharp features.

2.3 Prior for the spectral density

To place a prior on the spectral density f (.) of a stationary
time series definedon the interval [0, π ],weuse the following
reparametrization:

f (πω) = τ × sr (ω; k,G, H), ω ∈ [0, 1], (10)

where τ = ∫ 1
0 f (πω)dω is the normalization constant, and

sr (.) is the B-spline prior defined in Eq. (9).
The prior for f (.) therefore has the following hierarchical

structure:

– G determines the weights (i.e. scale) for each of the k B-
spline densities. Let G ∼ DP(MG ,G0), where MG > 0

is the precision parameter and G0 is the base probability
distribution function with density g0.

– H determines the location of knots and hence the
shape and location of the B-spline densities. Let H ∼
DP(MH , H0), where MH > 0 is the precision parameter
and H0 is the base probability distribution function with
density h0.

– k is the number of B-spline densities in the mixture (i.e.
smoothness) and has discrete probability mass function
p(k) ∝ exp(−θkk2) for k = 1, 2, . . . , kmax. Here kmax

is the largest possible value we allow k to take. We limit
the maximum value of k for computational reasons and
do pilot runs to ensure a larger kmax is not required. A
smaller k implies smoother spectral densities.

– τ is the normalizing constant. Let τ ∼ IG(ατ , βτ ).

Assume all of these parameters are a priori independent.

3 Implementation usingMarkov chain
Monte Carlo

As Dirichlet process priors have been placed on G and H ,
we require an algorithm to sample from these distributions.
To sample from a Dirichlet process, we use Sethuraman’s
stick-breaking construction (Sethuraman 1994), an infinite-
dimensional mixturemodel. For computational purposes, the
number of mixture components for the Dirichlet process rep-
resentations ofG andH is truncated to largebut finite positive
integers (LG and LH respectively). A larger choice of LG

and LH will yield more accurate approximations, but at the
expense of increasing the computation time.

To set up the stick-breaking process, reparametrize G to
(Z0, Z1, . . . , ZLG , V1, . . . , VLG ) such that

G =
⎛

⎝
LG∑

l=1

plδZl

⎞

⎠ +
⎛

⎝1 −
LG∑

l=1

pl

⎞

⎠ δZ0 , (11)

p1 = V1, (12)

pl =
⎛

⎝
l−1∏

j=1

(
1 − Vj

)
⎞

⎠ Vl , l ≥ 2, (13)

p0 = 1 −
LG∑

l=1

pl , (14)

Vl ∼ Beta(1, MG), l = 1, . . . , LG , (15)

Zl ∼ G0, l = 0, 1, . . . , LG , (16)

and H to (X0, X1, . . . , XLH ,U1, . . . ,ULH ) such that

H =
( LH∑

l=1

qlδXl

)

+
(

1 −
LH∑

l=1

ql

)

δX0 , (17)
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q1 = U1, (18)

ql =
⎛

⎝
l−1∏

j=1

(
1 −Uj

)
⎞

⎠Ul , l ≥ 2, (19)

q0 = 1 −
LH∑

l=1

ql , (20)

Ul ∼ Beta(1, MH ), l = 1, . . . , LH , (21)

Xl ∼ H0, l = 0, 1, . . . , LH , (22)

where δa is a probability density, degenerate at a, i.e. δa = 1
at a and 0 otherwise.

Conditional on k, the above hierarchical structure provides
a finite mixture prior for the spectral density of a stationary
time series

f (πω) = τ

k∑

j=1

w j,kb j,r (ω; ξ), (23)

with weights

w j,k =
LG∑

l=0

pl I

{
j − 1

k
< Zl ≤ j

k

}

, (24)

and knot differences

Δ j = (ξ j+r − ξ j+r−1) (25)

=
LH∑

l=0

ql I

{
j − 1

k − r
< Xl ≤ j

k − r

}

, (26)

for j = {1, . . . , k − r} and k > r . The denominator k − r
in the latter comes from assuming the exterior knots are the
same as the boundary knots. Note also that we assume the
lower internal boundary knot ξr = 0, meaning the first knot
difference is Δ1 = ξr+1 − ξr = ξr+1. The subsequent knot
placements are determined by taking the cumulative sum of
the knot differences.

Abbreviating the vector of parameters to θ = (v, z,u, x,
k, τ ), the joint prior is

p(θ) ∝
⎛

⎝
LG∏

l=1

MG(1 − vl)
MG−1

⎞

⎠

⎛

⎝
LG∏

l=0

g0(zl)

⎞

⎠

×
(LH∏

l=1

MH (1 − ul)
MH−1

) (LH∏

l=0

h0(xl)

)

× p(k)p(τ ).

To produce the unnormalized joint pseudo-posterior, this
joint prior is updated using the Whittle likelihood defined in
Eq. (3).

We implement a Metropolis-within-Gibbs algorithm to
sample points from the pseudo-posterior, using the same
modular symmetric proposal distributions forB-splineweight
parametersV and Z as described by Choudhuri et al. (2004).
That is, say for Vl , propose a candidate from a uniform distri-
butionwith [Vl−εl , Vl+εl ],modulo the circular unit interval.
If the candidate is greater than 1, take the decimal part only,
and if the candidate is less than 0, add 1 to put it back into
[0, 1]. This is done for all of theV and Z parameters. Choud-
huri et al. (2004) found that εl = l/(l + 2

√
n) worked well

for most cases, and we also adopt this. The same approach
is used analogously for the B-spline knot location parame-
ters U and X. Parameter τ has a conjugate inverse-gamma
prior and may be sampled directly. Smoothing parameter k
could be sampled directly from its discrete full conditional
(as done by Choudhuri et al. 2004), though this can be com-
putationally expensive for large kmax, so we use aMetropolis
proposal centred on the previous value of k, such that there
is a 75% chance of jumping according to a discrete uniform
on [− 1, 1], and a 25% chance of boldly jumping according
to a discretized Cauchy random variable.

There is a common tendency towards multimodal pos-
teriors in finite/infinite mixture models. If there are many
isolatedmodes separated by lowposterior density, it is impor-
tant to use a sampling technique that mixes Markov chains
efficiently, rather than relying on the randomwalk behaviour
of the Metropolis sampler. In order to mitigate poor mix-
ing and to accelerate convergence of Markov chains, we use
parallel tempering or replica exchange (Swendsen andWang
1986; Earl and Deem 2005) for the gravitational wave appli-
cation in Sect. 5.2.

The idea of parallel tempering is borrowed from physi-
cal chemistry, where a system may be replicated multiple
times at a series different temperatures. Higher temperature
replicas are able to sample larger volumes of the parameter
space,whereas lower temperature replicasmay become stuck
in local modes. The method works by allowing the exchange
of information between neighbouring systems. Information
from the high-temperature replicas can trickle down to the
low-temperature systems (including the posterior distribu-
tion of interest), providing more representative posterior
samples.

In the context of MCMC, parallel tempering involves
introducing an auxiliary variable called inverse-temperature,
denoted T−1

c for chains c = {1, 2, . . . ,C}. This variable
becomes an exponent in the target distribution for each par-
allel chain, pc(.). That is, pc(θ |y)T−1

c , where θ are the model
parameters, and y is the time series data vector. If T−1

c = 1,
this is the posterior distribution of interest. All other inverse-
temperature values produce tempered target distributions. As
Tc → ∞, the target distribution flattens out. Each chain
moves on its own in parallel and occasionally swaps states
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between chains according to the followingMetropolis accep-
tance ratio:

� =
(
p(θ j )p(y|θ j )

p(θ i )p(y|θ i )
)T−1

i −T−1
j

, (27)

where information is exchanged between chains i and j and
i < j .

We use cubic B-splines (r = 3) for all of the examples
in the following sections. The serial version of the (cubic)
B-spline prior algorithm is available as a function called
gibbs_bspline in the R package bsplinePsd (Edwards et al.
2017). This is available on CRAN. The parallel tempered ver-
sion is implemented in R using the Rmpi library but is not
publicly available. Please contact the first author for access
to this code.

4 Simulation study

In this section, we run a simulation study on two autoregres-
sive (AR) time series of different order: AR(1) and AR(4).
For the first scenario, an AR(1) with first-order autocorre-
lation ρ1 = 0.9 (a relatively simple spectral density) is
generated. In the second scenario, an AR(4) with parame-
ters ρ1 = 0.9, ρ2 = −0.9, ρ3 = 0.9, and ρ4 = −0.9 is
generated, such that the spectral density has two large peaks.
Let each time series have lengths n = {128, 256, 512} with
unit variance Gaussian innovations.

We simulate 1000 different realizations of AR(1) and
AR(4) data and model the spectral densities by running the
Bernstein polynomial prior algorithm of Choudhuri et al.
(2004) and the B-spline prior algorithm defined in Sect. 3
on each of these. The MCMC algorithms (without parallel
tempering as mixing is satisfactory for these toy examples)
run for 400,000 iterations, with a burn-in period of 200,000
and thinning factor of 10, resulting in 20,000 stored samples.

For both spectral density estimation methods, we choose
default noninformative priors. That is, for the B-spline
prior, let MG = MH = 1,G0 ∼ Uniform[0, 1], H0 ∼
Uniform[0, 1], θk = 0.01, ατ = βτ = 0.001. For compa-
rability, we let the Bernstein polynomial prior have exactly
the same prior set-up as the B-spline prior, but obviously
without knot location parameter MH and distribution H0.

We set kmax = 500 for both algorithms. This may seem
unnecessarily large for the B-spline prior algorithm as these
simple cases converge to a low k. However, it is large enough
to ensure the Bernstein polynomial algorithm converges to
an appropriate k, without being truncated at kmax.

Based on the suggestions by Choudhuri et al. (2004), we
set the stick-breaking truncation parameters to LG = LH =
max{20, n1/3}. This provides a reasonable balance between
accuracy and computational efficiency.

Table 1 Median L1-error for the estimated spectral densities using B-
spline prior and Bernstein polynomial prior on simulated AR(1) and
AR(4) data

n = 128 n = 256 n = 512

AR(1)

B-spline 0.901 0.756 0.592

Bernstein 0.830 0.706 0.518

AR(4)

B-spline 3.242 2.371 1.886

Bernstein 3.427 2.920 2.656

The (cubic) B-spline prior algorithm is run using the
gibbs_bspline function in the R package bsplinePsd
(Edwards et al. 2017). The Bernstein polynomial prior algo-
rithm is run using the gibbs_NP function in the R package
beyondWhittle (Kirch et al. 2017; Meier et al. 2017). Both
packages are available on CRAN.

An AR(p) model has theoretical spectral density,

f (λ) = σ 2

2π

1
∣
∣
∣1 − ∑p

j=1 ρ j exp(−iλ)

∣
∣
∣
2 , (28)

where σ 2 is the variance of the white noise innovations and
(ρ1, . . . , ρp) are the model parameters. We can compare
estimates to this true spectral density to measure relative
performance of the nonparametric priors. One measure of
closeness and accuracy is the integrated absolute error (IAE),
also known as the L1-error. This is defined as:

IAE = ‖ f̂ − f ‖1 =
∫ π

0
| f̂ (ω) − f (ω)|dω, (29)

where f̂ (.) is the Monte Carlo estimate (posterior median)
of the spectral density f (.). We calculate the IAE for each
replication and then compare the average IAE over all 1000
replications. The results are presented in Table 1.

Table 1 compares the median IAE of the estimated spec-
tral densities under the two different nonparametric priors.
For the AR(1) cases, the median IAE is only marginally
higher for the B-spline prior than the Bernstein polynomial
prior. As the AR(1) has a simple spectral structure, this is a
case where the global support of the Bernstein polynomials
makes sense. However, when estimating the more compli-
cated AR(4) spectral density, we see that the B-spline prior
yields more accurate estimates than the Bernstein polyno-
mial prior in terms of IAE. We also see that for both priors,
as n increases, median IAE decreases.

For each simulation, we calculate two different credible
regions: the usual equal-tailed pointwise credible region, and
the uniform (or simultaneous) credible band (Neumann and
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Table 2 Coverage probabilities based on 90% uniform credible bands

n = 128 n = 256 n = 512

AR(1)

B-spline 1.000 1.000 0.998

Bernstein 1.000 0.987 0.499

AR(4)

B-spline 0.936 0.979 0.907

Bernstein 0.000 0.000 0.000

Polzehl 1998;Neumann andKreiss 1998;Lenhoff et al. 1999;
Sun and Loader 1994). Uniform credible bands are very use-
ful as they allow the calculation of coverage levels for entire
curves (spectral densities in this case) rather than pointwise
intervals. To compute a 100(1−α)% uniform credible band,
we use the following form:

f̂ (λ) ± ζα × mad( f̂i (λ)), λ ∈ [0, π ], (30)

where f̂ (λ) is the pointwise posterior median spectral den-
sity, mad( f̂i (λ)) is the median absolute deviation of the
posterior samples f̂i (λ) kept after burn-in and thinning
(which are used as the estimate of dispersion of the sam-
pling distribution of f̂ (λ)), and we choose the ζα such that

P

{

max

{
| f̂i (λ) − f̂ (λ)|
mad( f̂i (λ))

}

≤ ζα

}

= 1 − α. (31)

Based on these uniform credible bands, uniform coverage
probabilities over all 1000 replications of the simulation can
be computed. That is, calculate the proportion of times that
the true spectral density is entirely encapsulated within the
uniform credible band. Computed coverage probabilities are
shown in Table 2.

It can be seen in Table 2 that the B-spline prior has higher
coverage than the Bernstein polynomial prior in all examples
[apart from the AR(1) with n = 128, where it is the same].
The B-spline prior produces excellent coverage probabilities
for theAR(1) cases. TheBernstein polynomial prior also per-
forms well in this regard, apart from the n = 512 case, where
half are not fully covered. An example from one of the 1000
replications of the AR(1) with n = 512 is given in Fig. 3.
Here, the uniform credible band fully contains the true PSD
for the B-spline prior but not for the Bernstein polynomial
prior (the true PSD falls outside the uniform credible band
at the highest frequencies). The pointwise credible region
and posterior median log-PSD for both priors are also very
accurate. This is not surprising as the AR(1) has a relatively
simple spectral structure.

Coverage of the AR(4) spectral density under the B-spline
prior is above 90% for each sample size. However, the Bern-
stein polynomial prior has extremely poor coverage in the
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Fig. 3 Estimated log-spectral densities for an AR(1) time series using
the B-spline prior (left) and Bernstein polynomial prior (right). The
solid line is the true log-PSD; the dashed line is the posterior median
log-PSD; the dark shaded region is the pointwise 90% credible region;
and the light shaded region is the uniform 90% credible band
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Fig. 4 Estimated log-spectral densities for an AR(4) time series using
the B-spline prior (left) and Bernstein polynomial prior (right). The
solid line is the true log-PSD; the dashed line is the posterior median
log-PSD; the dark shaded region is the pointwise 90% credible region;
and the light shaded region is the uniform 90% credible band

AR(4) case, where none of the 1000 replications are fully
covered by the uniform credible band for each sample size.
An example of this performance (for n = 512) can be seen in
Fig. 4. The Bernstein polynomial prior (under the noninfor-
mative prior set-up) tends to poorly estimate the second large
peak of the PSD and introduces additional incorrect peaks
and troughs throughout the rest of estimate. These false peaks
and troughs are present due to the Bernstein polynomial prior
algorithm converging to large k in an attempt to approximate
the two large peaks of the AR(4) PSD. The B-spline prior
gives a much more accurate Monte Carlo estimate. The pos-
terior median log-PSD is close to the true AR(4) PSD, the
90% pointwise credible region mostly contains the true PSD,
and the 90% uniform credible band fully contains it.

Of course, the Bernstein polynomial prior could perform
better on spectral densities with sharp features if significant
prior knowledge was known in advance. This can, however,
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Table 3 Median absolute run-times (h) and their associated relative
run-times

n = 128 n = 256 n = 512

AR(1)

B-spline 2.967 3.186 3.659

Bernstein 1.423 1.572 1.844

B-spline/Bernstein 2.086 2.026 1.985

AR(4)

B-spline 4.044 4.422 5.174

Bernstein 1.443 1.694 2.281

B-spline/Bernstein 2.802 2.610 2.268

be a formidable task and is not very generalizable to other
time series. A benefit of using the B-spline prior is its ability
to estimate a variety of different spectral densities using the
default noninformative priors used in this paper. We will see
more examples of this in Sect. 5.

One slight drawback of the B-spline prior algorithm is its
computational complexity relative to the Bernstein polyno-
mial prior. B-spline densities must be evaluated many times
per MCMC iteration (when sampling k,U, andX) due to the
variable knot placements, whereas beta densities can be pre-
computed and stored in memory, saving much computation
time.

Table 3 displays the median run-time (over each 1000
replication) for each of the six AR simulations.

It can be seen in Table 3 that theB-spline prior algorithm is
approximately 2–3 times slower than the Bernstein polyno-
mial prior algorithm for these examples. Due to the noted
advantages that the B-spline prior has over the Bernstein
polynomial prior (such as accuracy and coverage), partic-
ularly for PSDs with complicated structures, the increased
computation time is an acceptable trade-off, though for sim-
ple spectral densities, the Bernstein polynomial prior should
suffice.

5 Applications in astronomy

5.1 Annual sunspot numbers

In this section, we analyse the annual mean sunspot numbers
from 1700 to 1987. Sunspots are darker and cooler regions
of the Sun’s surface caused by magnetic fields penetrating
the surface from below. Sunspots are linked to various solar
phenomena such as solar flares and the auroras.

Previous analyses have shown that the sunspot (or solar)
cycle reaches a solarmaximumapproximately every 11 years
(see, e.g. Schwabe 1843 for the original reference andChoud-
huri et al. 2004 for analysis using the Bernstein polynomial
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Fig. 5 Estimated log-PSD for the annual mean sunspot numbers from
1700 to 1987. The posterior median log-PSD (dashed black) along with
the 90% pointwise credible region (shaded blue) are overlaid with the
log-periodogram (grey). (Color figure online)

prior). The analysis in this section is consistent with this
claim.

As done by Choudhuri et al. (2004), we first transform the
data by taking the square root of the original 288 observa-
tions to make the data stationary. We then mean-centre the
resulting data.

The serial version of the B-spline prior MCMC algorithm
is run for 100,000 iterations, with a burn-in period of 50,000
and thinning factor of 10, resulting in 5000 stored samples.
This takes approximately 40 min to run. All other specifica-
tions are the same as in Sect. 4. An estimate of the PSD is
displayed in Fig. 5.

It can be seen in Fig. 5 that a spectral peak occurs at
the frequency of 0.0903 cycles per year. This is equivalent
to a solar cycle every 11.07 years, consistent with existing
knowledge.

5.2 Recoloured LIGO gravitational wave data

Gravitational waves (GWs) are ripples in the fabric of
spacetime, caused by the most exotic and cataclysmic astro-
physical events in the cosmos, such as binary black hole or
neutron star mergers, core collapse supernovae, pulsars, and
even the Big Bang. They are a consequence of Einstein’s
general theory of relativity (Einstein 1916).

On14September 2015, the breakthroughfirst direct detec-
tion of GWs was made using the Advanced LIGO detectors
(Abbott et al. 2016a). The signal, GW150914, came from a
pair of stellar mass black holes that coalesced approximately
1.3 billion light years away. This was also the first direct
observation of black hole mergers. Four subsequent detec-
tions of pairs of stellar mass black holes have been made
(Abbott et al. 2016b, 2017b, c, d), as well as the first binary
neutron star detection with an electromagnetic counterpart

123



Statistics and Computing

(Abbott et al. 2017a), signalling a new era of astronomy is
now upon us.

Advanced LIGO is a set of two GW interferometers in the
USA (one in Hanford, Washington, and the other in Liv-
ingston, Louisiana) (Aasi et al. 2015). Data collected by
these observatories are dominated by instrument and back-
ground noise—primarily seismic, thermal, and photon shot
noise. There are also high power, narrow band, spectral noise
lines caused by the AC electrical supplies and mirror suspen-
sions, among other phenomena. Though GW150914 had a
large signal-to-noise ratio, signals detected by these obser-
vatories will generally be relatively weak. Improving the
characterization of detector/background noise could there-
fore positively impact signal characterization and detection
confidence.

The default noise model in the gravitational wave liter-
ature assumes instrument noise is Gaussian, stationary, and
has a known PSD. Real data often depart from these assump-
tions, motivating the development of alternative statistical
models for detector noise. In the literature, this includes
Student-t likelihood generalizations by Röver et al. (2011)
and Röver (2011), introducing additional scale parameters
and marginalization by Littenberg et al. (2013) and Vitale
et al. (2014), modelling the broadband PSD with a cubic
spline and spectral lines with Cauchy random variables by
Littenberg and Cornish (2015), and the use of a Bernstein
polynomial prior by Edwards et al. (2015).

We found that due to the undesirable properties of the
Bernstein polynomial prior, it was not flexible enough to
estimate sharp peaks in the spectral density of real LIGO
noise. This, coupled with the fact that B-splines have local
support, provided the rationale for implementing theB-spline
prior instead.

In the following example, using the parallel tempered B-
spline prior algorithm, we estimate the PSD of a 1 s stretch
of real LIGO data collected during the sixth science run (S6),
recoloured to match the target noise sensitivity of Advanced
LIGO (Christensen 2010). LIGO has a sampling rate of
16,384 Hz. To reduce the volume of data processed, a low-
pass Butterworth filter (of order 10 and attenuation 0.25)
is applied, and then the data are downsampled to 4096 Hz
(resulting in a sample size of n = 4096). Prior to downsam-
pling, the data are differenced once to become stationary,
mean-centred, and then Hann windowed to mitigate spec-
tral leakage. Though a 1 s stretch may seem small in the
context of GW data analysis, this time scale is important
for on-source characterization of noise during short-duration
transient events, called bursts (Abadie et al. 2012). This is
particularly true since LIGO noise has a time-varying spec-
trum, and systematic biases could occur if off-source noise
was used to estimate the power spectrum of on-source noise.

We run 16 parallel chains (each at different tempera-
tures) of the MCMC algorithm for 400,000 iterations, with a

−45.0

−42.5

−40.0

0.0 0.5 1.0 1.5 2.0
Frequency [kHz]

lo
g 

PS
D

Fig. 6 Estimated log10-PSD for a 1 s segment of recoloured LIGO
S6 data. The posterior median log-PSD (dashed black) along with the
90% pointwise credible region (shaded blue) are overlaid with the log-
periodogram (grey). The log transform is base 10 here. (Color figure
online)

burn-in of 200,000 and thinning factor of 5, yielding 40,000
stored samples.We propose swaps (of all parameters blocked
together) between adjacent chains on every tenth iteration.
For each chain c, we found the following inverse-temperature
scheme gave reasonable results:

T−1
c = T−Δc

min , (32)

where Tmin = 0.005 is the minimum inverse-temperature
allowed,Δc = c−1

C−1 , andC = 16 is the number of chains. The
stick-breaking truncation parameters are set to LG = LH =
20 and all of the other prior specifications are exactly the
same as used in the AR simulation study of Sect. 4. Note that
as the sample size for this example is very large (n = 4096),
the algorithm took several hours to run.

As demonstrated in Sect. 4 (e.g. Fig. 4), the Bernstein
polynomial approach would have struggled to estimate the
abrupt changes of power present in real detector data. Figure6
shows that the B-spline approach estimates the log-spectral
density verywell. The estimated log-PSD follows the general
broadband shape of the log-periodogram well, and the pri-
mary sharp changes in power are also accurately estimated.
The method, however, seems to be less sensitive to some of
the smaller spikes.

6 Conclusions and outlook

In this paper, we have presented a novel approach to spectral
density estimation, using a nonparametricB-spline priorwith
a variable number and location of knots. We have demon-
strated that for complicated PSDs, this method outperforms
the Bernstein polynomial prior in terms of IAE and uniform
coverage probabilities.
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The B-spline prior provides superior Monte Carlo esti-
mates, particularly for spectral densities with sharp and
abrupt changes in power. This is not surprising as B-splines
have local support and better approximation properties than
Bernstein polynomials. However, the favourable estima-
tion qualities of the B-spline prior come at the expense of
increased computation time.

The posterior distribution of the B-spline mixture param-
eters with variable number and location of knots could be
sampled using the RJMCMC algorithm of Green (1995);
however, RJMCMC methods are often fraught with imple-
mentation difficulties, such as finding efficient jump propos-
als when there are no natural choices for trans-dimensional
jumps (Brooks et al. 2003). We avoid this altogether by
allowing for a data-driven choice of the smoothing param-
eter and knot locations using the nonparametric Dirichlet
process prior. This yields a much more straightforward sam-
pling mechanism.

TheB-spline prior was applied to the annualmean sunspot
data set. We got a reasonable estimate of the log-PSD and
estimated that the solar cycle occurs every 11.07 years. This
is consistent with existing knowledge and previous analyses.

We have demonstrated that the B-spline prior provides
a reasonable estimate of the spectral density of real instru-
ment noise from the LIGO gravitational wave detectors. In a
future paper, we will focus on characterizing this noise while
simultaneously extracting a GW signal, similar to Edwards
et al. (2015). As the algorithm is computationally expensive,
it will be well-suited towards the shorter burst-type signals
(of order 1 s or less) like rotating core collapse supernovae.
Using a large enough catalogue of waveforms, estimation
of astrophysically meaningful parameters could be done by
sampling from the posterior predictive distribution, simi-
lar to Edwards et al. (2014). Another future initiative is to
analyse the impact of informative priors on the LIGO PSD
estimates.

Though we have only presented the B-spline prior in
terms of spectral density estimation, it could be used in a
much broader context, such as in density estimation. A paper
using this approach for density estimation is in preparation
and could yield a more flexible, alternative approach to the
triangular-Dirichlet prior function TDPdensity in the R pack-
age DPpackage (Jara et al. 2011).
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