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∙ Classical model for the electron.

∙ Electron mass from electromagnetic energy.
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Classical models of the electron have been predicted to have negative rest energy density in certain regions. 
Using the model of the electron by Blinder we show that there are regions containing negative energy density, 
although the integral of the energy density over all space gives the electron rest mass. If the spin of the electron is 
ignored, then all regions of space have positive energy density with the Blinder model. The existence of Poincaré 
stress for the Blinder model is also demonstrated. The classical model for the electron discussed here admittedly 
does not involve quantum electrodynamics, where the infinite self energy is made finite with renormalization 
methods.
1. Introduction

The structure of the electron has been an active topic of research 
since its discovery [1, 2]. An important question is how to avoid an in-

finite amount of energy in the electromagnetic field, and this has been 
a subject of much research over the years [3, 4, 5, 6, 7]. Certainly quan-

tum electrodynamics addresses a finite mass and charge for the electron. 
Many studies have tried to associate the electromagnetic energy of the 
electron with its rest mass [2, 8, 9].

Previous research efforts have addressed the question of classical 
models of the electron containing negative energy density [9, 10, 11, 
12, 13]. In order to keep the electromagnetic energy finite it typically 
requires regions of negative energy density. This has also introduced the 
concept of Reissner-Nordström repulsion [14, 15, 16]. Negative energy 
density and the expansion of space-time is critical for the cosmological 
theory of inflation [17, 18].

Here we address the classical model of the electron by Blinder [19, 
20, 21], and show that it contains a region of negative energy density. 
If the spin of the electron is set to zero, then the Blinder model gives 
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a positive energy density for all space. Note that there is no singular-

ity in the Blinder model of the electron, and the space-time curvature 
is always finite. Associations have been previously made between sin-

gularities and negative energy density in models for the electron [14, 
22]. Clearly classical models for the electron neglect the demonstrated 
success of quantum electrodynamics and renormalization to ensure that 
the electron mass is finite. However interesting comparisons can still be 
made with these classical models, especially when considering the limit 
when Planck’s constant goes to zero.

One can use general relativity and the Reissner-Nordström metric to 
describe space-time about a massive point charge. The integration of the 
electric field energy diverges as the radial coordinate goes to zero, as 
displayed in Eq. (6) below. This is also true for the Kerr-Newman metric 
where the massive point charge also has spin. The energy density is 
positive definite for all space with the Kerr-Newman metric. The model 
of Blinder attempts to avoid the infinite electromagnetic energy [19, 20, 
21]. However, as displayed below, it does contain a region of negative 
mass energy and has a non-electromagnetic Poincaré stress.
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Fig. 1. The energy density 𝑇 0
0 for the Blinder model, Eq. (8), for 𝜃 = 𝜋∕2.
The remainder of the paper is organized as follows. In Section 2 we 
review Blinder’s classical model for the electron [21]. This is a modi-

fication to the Kerr-Newman metric. With the new metric it is shown 
that the total electromagnetic energy and angular momentum (spin) 
matches that of the electron. Section 3 presents the concept of nega-

tive energy density. With the Blinder model there are regions of space 
containing a negative energy density. The Ricci scalar for the Blinder 
model is also presented, and shown to be finite everywhere. The concept 
of non-electromagnetic stresses to counteract the Coulomb repulsion in 
the classical electron model is presented in Section 4. A conclusion is 
given in Section 5.

2. Blinder model

We follow the notation of [21] and use cgs units. The electron has 
a mass 𝑚, charge 𝑒𝑞 , and spin 𝑠 = ℏ∕2. With Newton’s constant 𝐺 and 
speed of light 𝑐 we define 𝑀 = 𝐺𝑚∕𝑐2, 𝑄 =

√
𝐺𝑒𝑞∕𝑐2, and 𝑆 = 𝐺𝑠∕𝑐3. 

One can use the Kerr-Newman metric (Eqs. (1), (2), (3) and (4)) to 
write [23]

𝑑𝑠2 = Δ
𝜌2

[𝑑𝑡− 𝑎𝑠𝑖𝑛2𝜃𝑑𝜙]2 − 𝑠𝑖𝑛2𝜃

𝜌2
[(𝑟2 + 𝑎2)𝑑𝜙− 𝑎𝑑𝑡]2 − 𝜌2

Δ
𝑑𝑟2 − 𝜌2𝑑𝜃2 ,

(1)

where

Δ= 𝑎2 + 𝑟2 − 2𝑀𝑟+𝑄2 , (2)

𝜌2 = 𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃 , (3)

and

𝑎 = 𝑆

𝑀
= ℏ

2𝑚𝑐
. (4)

The energy density [24] is given by

𝑇 0
0 = 𝑒2(𝑎2 + 𝑟2 + 𝑎2𝑠𝑖𝑛2𝜃)

8𝜋(𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃)3
. (5)

Using Eq. (5), the total energy in the electromagnetic field

𝑊 = ∫ 𝑇 0
0 𝜌

2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜙 (6)

diverges as 𝑟 → 0.
2

In the model of Blinder [19, 20, 21] one changes the definition of 
Δ, namely

Δ= 𝑎2 + 𝑟2 − 2𝑀𝑟𝑒−𝑄
2∕2𝑀𝑟

= 𝑎2 + 𝑟2 − 2𝑀𝑟𝑒−𝑟0∕2𝑟 ,
(7)

where the classical electron radius is 𝑟0 = 𝑒2
𝑞
∕𝑚𝑐2 = 2.818 × 10−13 cm. 

This produces only a very small change in the metric compared to the 
Kerr-Newman metric, except for the smallest distances. It also renders 
the total electromagnetic energy to be finite and equal to the electron 
rest mass. For 𝑟 > 𝑟0 the electric and magnetic fields match what one 
expects for the electron. For smaller radii the fields are more complex 
and phenomenologically resemble vacuum polarization [19, 20, 21]. 
With the Blinder model the energy density is

𝑇 0
0 =

𝑎2𝑒2
𝑞
𝑒
− 𝑟0

2𝑟

8𝜋
(
𝑎2 cos2 𝜃 + 𝑟2

)3 +
𝑒2
𝑞
𝑟2𝑒−

𝑟0
2𝑟

8𝜋
(
𝑎2 cos2 𝜃 + 𝑟2

)3

+
𝑎2𝑒2

𝑞
sin2 𝜃𝑒−

𝑟0
2𝑟

8𝜋
(
𝑎2 cos2 𝜃 + 𝑟2

)3 −
𝑎2𝑒2

𝑞
𝑟0 sin2 𝜃𝑒

− 𝑟0
2𝑟

32𝜋𝑟3
(
𝑎2 cos2 𝜃 + 𝑟2

)2 .

(8)

With this the total electromagnetic energy is equal to the rest mass of 
the electron,

𝑊 = ∫ 𝑇 0
0 𝜌

2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜙=𝑚𝑐2 . (9)

Note that the volume element 𝜌2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜙 is the same and indepen-

dent of Δ. Note too that

𝑇 0
3 =

𝑎3𝑒𝑞2𝑟0 sin2 𝜃𝑒
− 𝑟0

2𝑟

32𝜋𝑟3
(
𝑎2 cos2 𝜃 + 𝑟2

)2 +
𝑎𝑒2

𝑞
𝑟0 sin2 𝜃𝑒

− 𝑟0
2𝑟

32𝜋𝑟
(
𝑎2 cos2 𝜃 + 𝑟2

)2

−
𝑎3𝑒2

𝑞
sin2 𝜃𝑒−

𝑟0
2𝑟

4𝜋
(
𝑎2 cos2 𝜃 + 𝑟2

)3 −
𝑎𝑒2

𝑞
𝑟2 sin2 𝜃𝑒−

𝑟0
2𝑟

4𝜋
(
𝑎2 cos2 𝜃 + 𝑟2

)3 .

(10)

From Eq. (10), the component of spin about the 𝑧-axis is

𝑠𝑧 =
1
𝑐 ∫ 𝑇 0

3 𝜌
2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜙= ℏ

2
. (11)

Hence with the Blinder model the electromagnetic field can describe 
the rest mass and spin of the electron.
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Fig. 2. The energy density 𝑇 0
0 for the Blinder model, Eq. (8), for 𝜃 = 0. This is displayed over the same radii as in Fig. 1.

Fig. 3. The energy density 𝑇 0
0 , integrated over 𝜙 and 𝜃, namely 𝑈 (𝑟) for the Blinder model, Eq. (12).
3. Negative energy density

We now examine the energy density 𝑇 0
0 in the Blinder model, that 

when integrated over all space gives the electron rest mass. It is in-

teresting to note that a region, near to 𝑟 = 0, actually has a nega-

tive energy densities, similar to what has been discussed in [9, 10, 
11, 12, 13]. This is demonstrated in Fig. 1, which displays 𝑇 0

0 for 
the Blinder model, Eq. (8), for 𝜃 = 𝜋∕2. As the angle 𝜃 decreases the 
amount of negative energy density also decreases. Negative energy 
density exists for all angles except for 𝜃 = 0, for which is entirely pos-

itive. This is displayed in Fig. 2. Note that if there is no spin (𝑎 = 0) 
the energy density represented by Eq. (8) is positive definite over all 
space.

One can also view the extent of the negative energy density region 
by integrating 𝑇 0, Eq. (8), over 𝜙 and 𝜃. We define
0

3

𝑈 (𝑟) =

2𝜋

∫
0

𝑑𝜙

𝜋

∫
0

𝑑𝜃𝑇 0
0 𝜌

2𝑠𝑖𝑛𝜃 . (12)

This is displayed for the electron in Fig. 3. The negative energy density 
extends from 𝑟 = 0 to 𝑟 = 7.01 ×10−14 cm ≈ 𝑟0∕4. The total energy density 
in this region is −57.9 𝑚𝑐2, where 𝑚𝑐2 = 8.187 ×10−7 erg for the electron. 
The region from 𝑟 = 7.01 ×10−14 cm ≈ 𝑟0∕4 to 𝑟 = 1.40 ×10−12 cm ≈ 4.96 𝑟0
compensates with a total energy of +57.9 𝑚𝑐2. It is then the integration 
from 𝑟 = 1.40 × 10−12 cm ≈ 4.96 𝑟0 to infinity that gives the rest mass 
energy of the electron, 𝑚𝑐2 = 8.187 × 10−7 erg.

Note that with the Blinder model the presence of negative energy 
density cannot be linked to the presence of a singularity [22], as there 
is none. The exponential term in Eq. (7) is responsible for keeping the 
curvature finite, even at 𝑟 = 0. For the Blinder model the Ricci scalar is
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Fig. 4. The Ricci scalar for the Blinder model, 𝑅 Eq. (13), for 𝜃 = 𝜋∕2.
𝑅 = 𝐺

𝑐4

𝑒2
𝑞
𝑟0𝑒

− 𝑟0
2𝑟

2𝑟3
(
𝑎2 cos2 𝜃 + 𝑟2

) . (13)

This is displayed in Fig. 4. The peak for the Ricci scalar is in the same 
region for which the energy density is negative, as displayed in Fig. 1

and Fig. 3. Note that as 𝑟 → 0, 𝑅 → 0.

Negative energy density has been previously discussed in the con-

text of Reissner-Nordström repulsion [14, 15, 16]. Various models for 
the electron have regions of negative energy density and hence gravi-

tational repulsion. The negative energy density creates an equilibrium 
with the positive energy density of the electromagnetic field. As dis-

played here, this is the case for the electron model of Blinder as well.

4. Stresses

In the Blinder model for the electron the trace of the stress energy 
tensor, Eq. (14), is non zero, specifically [21],

𝑇 𝜇
𝜇
=

𝑒2
𝑞
𝑟0𝑒

− 𝑟0
2𝑟

16𝜋𝑟3
(
𝑎2 cos2 𝜃 + 𝑟2

) . (14)

This implies that there is some other stress-energy along with that of the 
electromagnetic field. If one considers an imponderable perfect fluid, 
𝜌 = 0, with no radial pressure, 𝑝𝑟 = 0, then the tangential pressure could 
be given as

𝑝𝜃 = 𝑝𝜙 =
𝑒2
𝑞
𝑟0𝑒

− 𝑟0
2𝑟

32𝜋𝑟3
(
𝑎2 cos2 𝜃 + 𝑟2

) . (15)

Blinder proposes that this could be considered as a classical counterpart 
to the effects of vacuum polarization [21]. A similar result would oc-

cur for a perfect fluid with 𝜌 = −𝑝𝑟 [25]. This argument has also been 
proposed by Grøn [16]. The concept of non-electromagnetic stresses 
to counteract the Coulomb repulsion in an electron model dates back 
to Poincaré [26, 27]. This Poincaré stress has been addressed more re-

cently as well in models for the electron [15, 16]. For the Blinder model, 
the stresses represented by Eq. (15) are similar to the Poincaré stress.

This tangential pressure is displayed in Fig. 5 for 𝜃 = 𝜋∕2. Note that 
the peak for the tangential pressure is in the same region for which the 
energy density is negative, as displayed in Fig. 1 and Fig. 3.
4

5. Conclusion

The classical model of the electron of Blinder [19, 20, 21] has a 
number of interesting features. The metric is a slight variation from the 
Kerr-Newman metric. The total energy density sums to the rest mass 
of the electron, 𝑚𝑐2 (see Eq. (9)), while the total 𝑧-component of spin 
sums to ℏ∕2 (see Eq. (11)). The Blinder model has regions of negative 
energy density, similar to the Reissner-Nordström repulsion in other 
classical models of the electron [14, 15, 16]. The Ricci scalar is also 
shown to be finite everywhere, including 𝑟 = 0, for the Blinder model. 
The exponential term in the Blinder metric, Eq. (7), suppresses any sin-

gularity. In order compensate for the Coulomb repulsion, a Poincaré 
stress is present (see Eq. (15)). Quantum electrodynamics provides the 
comprehensive description of the electron and its electromagnetic field. 
However, the Blinder model and general relativity combine to provide 
an interesting classical description of the electron, its mass, its spin, and 
its electromagnetic field.
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Fig. 5. The tangential pressure for the Blinder model, 𝑝𝜃 = 𝑝𝜙 Eq. (8), for 𝜃 = 𝜋∕2.
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