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Abstract
A common technique for detection of gravitational-wave (GW) signals is
searching for excess power in frequency–time (ft)-maps of GW detector data.
In the event of a detection, model selection and parameter estimation will be
performed in order to explore the properties of the source. In this paper, we
develop a Bayesian statistical method for extracting model-dependent para-
meters from observed GW signals in ft-maps. We demonstrate the method by
recovering the parameters of model GW signals added to simulated advanced
LIGO noise. We also characterize the performance of the method and discuss
prospects for future work.

Keywords: gravitational waves, parameter estimation, time–frequency maps
PACS numbers: 95.75.-z, 04.30.-w

(Some figures may appear in colour only in the online journal)

1. Introduction

The Laser Interferometer Gravitational-wave Observatory (LIGO) [1], Virgo [2], and
GEO600 [3] detectors are part of a network of gravitational-wave (GW) detectors seeking to
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make direct observations of GWs. Previous analyses of the data have included searches
targeting the coalescence of neutron stars or black holes [4, 5], short-duration bursts [6],
isolated neutron stars [7], and a stochastic background of GWs [8, 9]. LIGO and Virgo are
currently upgrading to Advanced LIGO (aLIGO) and Advanced Virgo (AdV), which will
improve their strain sensitivities by one order of magnitude over the strain sensitivites
achieved during previous science runs [10, 11]. These will be joined by GEO-HF [12] and
KAGRA [13]. To date, none of the above searches have resulted in a GW detection, although
with the current upgrades, the chances will increase significantly. In the event of a detection,
one can perform model selection and parameter estimation in order to further explore the
properties of the sources. Model selection and parameter estimation are topics of great interest
in the GW community (see e.g. [14–20]).

The binary coalescence of compact objects are well-studied sources of GWs, and the
most up-to-date models for the waveforms produced in these systems include most of the
physical effects that influence the signals, including tidal and spin effects [21]. Searches and
parameter estimation for these sources rely on matched filtering of the signal seen by detectors
using models of the signals. Because models for these sources are thought to be reliable, a full
Bayesian analysis utilizing matched filtering is possible for these sources, and the ability to
precisely estimate injected waveform parameters for these sources has been demon-
strated [18].

On the other hand, GW bursts cannot be modeled precisely (by assumption). GW
emission by core-collapse supernovae is one such example. A number of competing models
for the mechanism that drives the core-collapse exist, and each model produces qualitatively
different waveforms. Logue et al demonstrated that a principal component analysis can be
used to determine the correct model of injected GW waveforms by the computation of the
Bayesian odds ratio [19]. Principle component analysis has also been used to reconstruct the
stellar core-collapse GW signal after finding the amplitude of the individual principle com-
ponents and arrival times [20].

Parameter estimation of signal models requires, at first, GW detection with high sig-
nificance. For cases of well-modeled burst sources, such as cosmic strings, matched filtering
has been used to perform searches [22]. A common technique for detection of unmodeled
bursts is searching for excess power in frequency–time (ft)-maps of GW detector data
[23–25]. Matched filtering is not used for these signal types because the precise waveforms
are unknown. Excess power searches provide an effective alternative to matched filtering for
such signals. Although these pipelines use generic search algorithms when searching for
GWs, they utilize signal models that have the features of expected GW signals to tune their
analyses. Some signals can be well-approximated by parameterized spectrogram curves
which incorporate the salient features of the signals, and these curves can be used to focus the
search with a ‘phase-less template bank’ [26, 27]. These unmodeled burst analyses mostly use
ft-maps. However, there are modeled burst searches such as the cosmic string search that use
other methods.

In this paper, we present a method for parameter estimation using GW tracks in ft-maps.
We explore the possibility of performing parameter estimation and model selection, assuming
that a search has been performed and a signal detected. We seek to address the question of
how to fit the model parameters. As a concrete example, we show the recovery of parameters
of an r-mode signal injected into simulated detector data. These GW sources are unstable
oscillation modes which dampen the rotation of neutron stars by the emission of GWs [28].
We show how to estimate parameters such as the r-mode saturation amplitude, which is the
amplitude above which the emitting neutron star will collapse into a black hole.
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The remainder of this paper is organized as follows. We discuss the methods used to
extract waveform parameters from tracks in ft-maps in section 2. To demonstrate the method
and performance of parameter recovery, we perform sample injections into simulated aLIGO
colored Gaussian noise and recover their parameters in section 3. We conclude with a
discussion of topics for further study in section 4.

2. Formalism

In this section, we discuss the methods used to extract waveform parameters from tracks in ft-
maps. To begin, we review the data products used in the detection of unmodeled GW
transients.

2.1. ft-maps

Many searches for GW bursts rely on searching for excess power in ft-maps of GW detector
data [23–25]. The maps are computed by dividing detector strain time series into segments
and computing a Fourier transform of each segment. Each column in the map corresponds to
one of these segments. Searches for long-duration GW bursts in particular use the cross-
correlation of two GW strain channels from spatially separated detectors to construct ft-maps
of cross-power signal-to-noise ratio (SNR), ρ t f( ; ) [25]

ρ σ≡ ˆ ˆt f Y t f t f( ; ) ( ; ) ( ; ), (1)

where t is the time of the segment, f is the frequency, Ŷ t f( ; ) is an unbiased estimator for GW
power and σ̂ t f( ; )2 is its variance. Arrays of ρ t f( ; ) are visualized as ft-maps.

GWs appear as tracks or blobs on ft-maps. The morphology of the GW track depends on
the source. If the signal is sufficiently loud, compact binaries appear as chirps of increasing
frequency. Continuous-wave isolated neutron star sources appear as narrowband, nearly
horizontal lines with a small change in frequency with time due to Doppler shifting. Figure 1
shows ft-maps of example sine-Gaussian injections with different durations (top row) and r-
mode injections with different saturation amplitudes (bottom row).

Given an ft-map, GW searches employ pattern recognition algorithms to identify
potentially significant clusters of pixels [25]. Next, the pattern-recognition algorithms are run
repeatedly on noise-only maps to generate background statistics. These noise-only maps are
created using GW detector strain data with a time-shift that removes any potential GW signal.
Using time shifts to study noise and injections to study detection efficiency, false alarm and
false dismissal rates can be estimated, and detections can potentially be made.

2.2. Waveform models

A metric perturbation, hab, can be written as a combination of two polarizations, +h and ×h .

⎛
⎝⎜

⎞
⎠⎟=

−
+ ×

× +
h

h h

h h
. (2)ab

Far from an elliptically polarized source, we can write the metric pertubation as

ι ψ= ++ ( )h t h t t( ) ( ) 1 cos cos ( ), (3)amp
2
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and

ι ψ=×h t h t t( ) 2 ( ) cos sin ( ), (4)amp

where hamp is the strain amplitude, ι is the inclination of the angular momentum axis of the
object to the line of sight of the observer and ψ is the polarization angle. In the analysis below,
we assume that we have a face-on source, so ι = 0. We also assume that ψ = 0. This is for the
sake of simplicity; in theory, one may estimate ι and ψ as well, but an analysis involving these
parameters is beyond the scope of this paper.

GW detectors measure strain, h t( )0 ,

= ++ + × ×h t h t F t h t F t( ) ( ) ( ) ( ) ( ), (5)0

where +F t( ) and ×F t( ) are the detector antenna response functions to the two polarizations
[32]. GW amplitudes are sometimes characterized by the root-sum-square amplitude, hrss,
defined as

Figure 1. ft-maps of ρ t f( ; ) with injected signals. The top row consists of sine-Gaussian
injections [6]; on the left is an injection with f0 = 1100 Hz and τ = 100 s and on the right
is f0 = 1105 Hz and τ = 80 s. The bottom row consists of r-mode injections [29]; on the
left is an injection with f0 of 705 Hz and a saturation amplitude α = 0.3, and on the right
is an injection with f0 of 695 Hz and a saturation amplitude α = 0.1. The injections are
performed at a distance at which a GW signal can be observed above threshold with
false alarm probability = 0.1% and false dismissal probability = 50% using a seed-
based clustering algorithm [30]. This corresponds to a matched filter SNR of about 20
for the sine-Gaussian injections and about 30 for the r-modes [31].
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⎡⎣ ⎤⎦∫= ++ ×h h t h t t( ) ( ) d . (6)rss
2 2 2

Each GW burst creates a specific pattern in ft-maps which depends on astrophysical
parameters. In this study, three different models of GW signals are used. The models are
designed to have the salient features of the types of burst signals expected to be detected,
while being general enough to capture a variety of potential phenomena. The first is a sine-
Gaussian, which is commonly used in searches for GW bursts [6]. This model depends on
four parameters: the waveform duration, τ, the start frequency, f0, the signal distance, D, and
the time of the maximum of burst, t0. It has the following form

⎜ ⎟⎛
⎝

⎞
⎠π

πτ
=

− + −
τ

−( )
( )

h t k
t t f

D
( )

exp 2 i( )

2
, (7)

t t

0

( )

4 0 0

2 1 4

0
2

2

= =+ ×[ ] [ ]h t e h t h t m h t( ) R ( ) , ( ) I ( ) , (8)0 0

where k is a constant and i is the imaginary unit. The second waveform represents a simple r-
mode model, based on a model by Owen et al [29]. This model depends on three parameters:
the saturation amplitude, α, the start frequency, f0, and the signal distance, D. It has the
following form

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

−−f t
f kt

( )
1

6
, (9)

0
6

1 6

π π= =+ ×h t h f t t h t h f t t( ) cos (2 ( ) ), ( ) sin (2 ( ) ), (10)0 0

where

⎜ ⎟⎛
⎝

⎞
⎠α= × −h

f t
D3.6 10

( )

1000
, (11)0

23
3

α= − × − −k 1.8 10 Hz . (12)21 2 5

The third waveform is a slowly varying sinusoid waveform with a time-varying fre-
quency, = + ˙f f f t0 . This model is chosen here as its morphology is similar to the r-modes.
This model depends on three parameters: the time derivative of signal frequency, ḟ , the start
frequency, f0, and the signal distance, ∝D h1 rss.

π
=

+ ˙( )( )
h t c

f f t t

D
( )

exp 2 i
, (13)0

0

where c is a constant. +h and ×h are calculated in the same way as the sine-Gaussian.

2.3. Likelihood

We use the above models to illustrate our method. Figure 1 shows two pairs of ft-maps of
cross-power with sine-Gaussian and r-mode injections. Our goal is to determine, based on the
map structure, the parameters which best fit the models. In order to estimate the parameters,
we employ a likelihood formalism.

The first step is to compute the probability distribution of ρ t f( ; )B due to background,
ρf ( )B . A distribution valid for Gaussian and stationary noise is derived in appendix A. In

cases for which an analytic distribution is impractical to construct, it can be estimated from
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time-shifted data. In the analysis below, we assume Gaussian noise for simplicity; the use of
time-shifted distributions will be explored in a future study. It is likely that this distribution
would be necessary in the case of glitchy or non-stationary data. We also assume that ρ t f( ; )B
of each pixel is drawn from the same distribution. The second step is to determine the
contribution to ρ from a signal. We denote the expected ρ value due to a signal with
parameters θ by ρ θ( )S . We calculate the expected contribution using an approximation
described in appendix B. The assumption leads to an approximate formulation, which can be
made more accurate by performing injection studies and computing the distributions with
signals present.

Armed with both the distribution of ρ t f( ; )B due to background as well as that of the
waveform models, ρ t f( ; )S , we are able to construct our likelihood. The idea is to subtract
ρ θ( )S from ρ, which would just leave detector noise if ρ θ( )S was the correct waveform model.
Minimizing the residuals maximizes the likelihood function. The probability density function
describing the residuals is ρ ρ θ−p ( ( ))S , which is calculated by finding the probability that
ρ ρ θ− ( )S is due to noise, as given by ρf ( )B . The likelihood is

ρ θ Π ρ ρ θ θ= −= ( )( )L p{ } ( ) , (14)i i
N

i s1 i

where i is the pixel index and N is the number of pixels in the ft-map. The goal is to maximize
the likelihood in order to determine confidence intervals for θ.

Ideally, one would produce an ft-map of the GW signal and evaluate equation (14) for
every set of possible parameters. In this way, we could generate the posterior density func-
tions (PDFs) for the relevant model parameters. Because this is computationally intractable,
we use algorithms that efficiently sample the posterior while minimizing the computational
burden. In the examples below, we use flat, non-informative priors on the parameters of
interest. This could be modified, for example, in the event of an r-mode detection, where
models predict a small value of α.

There are three main algorithms presently used to rapidly evaluate the posterior in GW
parameter estimation and model selection: Markov Chain Monte Carlo [14, 18], Nested
Sampling [15, 33], and MultiNest [16, 17, 34]. Nested Sampling and MultiNest calculate the
Bayesian evidence for a given set of parameters, which can be used to assign relative
probabilities to different models. We use a MATLAB implementation of Nested Sampling
and MultiNest [35], which implements the MultiNest algorithm, as described in [34], and
Nested Sampling, as described in [33].

3. Demonstration

In this section, we present two examples of parameter estimation of toy model waveforms.
We inject GW signals into simulated aLIGO colored Gaussian noise and create ft-maps based
on the resulting timeseries. We use the design sensitivity aLIGO noise curve [10]. We
perform injections at the waveform models’ detection distance, which we define as the
distance at which a GW signal can be observed above threshold with false alarm prob-
ability = 0.1% and false dismissal probability = 50% using a seed-based clustering algorithm
[30]. We have many ft-maps that contain both GW signals and noise. In order to construct
parameter posterior distributions, we produce ft-maps containing only GW signals for various
sets of waveform parameters. Equation (14) is evaluated repeatedly for each set of parameters
by subtracting the GW signal maps from those that contain signals and noise. From the
equation, the likelihood is maximized for those parameters that best minimize the residuals.
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Parameter posterior distributions are constructed for parameter sets of equal likelihood that
maximize this likelihood.

3.1. Sine-Gaussian burst

Figure 2 shows the distribution of posterior samples for both f0 and τ for one of the injections.
The posteriors of the parameters are consistent with the injected values. In general, the
recoveries for f0 are within a fraction of a percent of the true value for all injections. The
recoveries for τ are within a few percent.

3.2. r-mode

We perform injections of the r-mode waveforms with f0 = 705 Hz and α = 0.3, as well as an
injection of f0 = 695 Hz and α = 0.1. Figure 3 shows the performance of the parameter
recoveries. In general, the recoveries for α and f0 are within a few percent for all injections.

Figure 2. PDFs of distributions for injected sine-Gaussian signals. Each injection is
performed into ten simulated aLIGO colored Gaussian noise realizations. The
injections are performed at a distance at which a GW signal can be observed above
threshold with FAP = 0.1% and FDP = 50%. This corresponds to a matched filter SNR
of about 30 for these injections. The PDF for each injection is plotted in a different
color. The red dotted line shows the true injected value. The plot on the left is the PDF
of f0. The plot on the right is the PDF of τ. The top row corresponds to an injection of
f0 = 1100 Hz and τ = 100 s, while the bottom row corresponds to an injection of
f0 = 1095 Hz and τ = 80 s. f0 is recovered to within a fraction of a percent, while the τ
sampling is within a few percent.
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We can ask whether the r-mode or the varying sinusoidal model is a better description of the
ft-map for the r-mode signal. This can be done by evaluating the Bayes factor, which is the
ratio of the evidences for the two models. The evidence computed by the search algorithm for
the r-mode model was 278, while the evidence for the CW model was 12, meaning the Bayes
factor is 23. The evidences are similar across noise realizations as well as injection para-
meters. This implies that the r-mode model is strongly favored over the varying sinusoidal
model. This is despite the fact that the varying sinusoid is a good fit for the linear portion of
the r-mode parameter space.

It is a well-documented fact that in the parameter estimation of compact binary coa-
lescences non-Gaussian noise can significantly affect the posterior recoveries [36]. Therefore,
it is worthwhile to test the algorithm when the noise background is non-Gaussian and non-
stationary and thus violates the approximations that go into deriving the noise model used in
this analysis. For this reason, we repeat the test with initial LIGO noise which has been
recolored to match the design sensitivity of aLIGO [1, 10]. We introduce an artificial time-

Figure 3. PDFs of distributions for injected r-modes signals. Each injection is
performed into ten simulated aLIGO colored Gaussian noise realizations. The
injections are performed at a distance at which a GW signal can be observed above
threshold with FAP = 0.1% and FDP = 50%. This corresponds to a matched filter SNR of
about 20 for these injections. The PDF for each injection is plotted in a different color.
The red dotted line shows the true injected value. The plot on the left is the PDF of f0. The
plot on the right is the PDF of α. The top row corresponds to an injection of f0 = 705 Hz
and α = 0.3, while the bottom row is an injection of f0 = 695 Hz and α = 0.1.
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shift in the initial LIGO data to remove any potential GW signals present7. This has the
benefit of preserving non-stationary noise artifacts while using the expected spectrum.
Figure 4 shows the performance of the recoveries for injections into the recolored noise, using
the noise model that assumes Gaussian noise. We find that for these injections, the perfor-
mance is similar to that of the Gaussian noise case. To fully understand the effects of glitches,
it will be necessary to perform more comprehensive injection studies. Because the data
segments analyzed and waveforms are long, it is likely that our pipeline is less susceptible to
noise transients than the compact binary case, which has most of its SNR in the last second
before coalescence.

4. Conclusion

In this paper, we have demonstrated the ability to perform basic parameter estimation on GW
signals from their signature in ft-maps. We described the likelihood method used and showed
that these methods correctly recovered the parameters of waveform models and were able to
differentiate between two similar models.

In the future, we will move beyond the generic models presented here to more com-
plicated models. This will be necessary to identify the physics underlying a particular GW

Figure 4. Same as figure 3 for initial LIGO noise recolored to advanced LIGO noise.
The parameter recoveries are similar to the Gaussian noise case.

7 The data are taken in between GPS times 822917487 and 847549782.
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source by distinguishing between different variations of similar models. Also, further studies
of the assumptions made in the paper will be conducted. We have assumed that the noise is
Gaussian and stationary and ignore the correlation between pixels in the maps. We have also
assumed that the cross terms when multiplying the noise and waveform signals are zero.
There are three complicating assumptions involved in the use of the likelihood here. The first
is that in reality the cross-terms of the noise and signal are non-zero (see appendix B). The
second is that the cross-power statistic uses adjacent PSDʼs for the purpose of estimating σ
(from quation (1)), meaning there is a correlation between adjacent pixels (see appendix A).
As such, the multiplication of the pixel probabilities in the ft-map, which requires that the
probabilities are all independent if one wants a true cumulative probability, is not valid. The
third is that real detectors have noise transients and non-stationary noise, which violate some
of the approximations used here. One way to rectify this is to perform many injections and
measure θf ( )S empirically (this distribution would change for each signal model). These
issues will be explored in the future.

The use of ft-maps to perform parameter estimation has the natural advantage over
matched filtering in terms of the speed at which it can be done. Because we fit the amplitude
of the waveform to the track in the ft-map (removing the phase information), it also means
that our signal models do not need to be quite as exact as for parameter estimation relying on
matched filtering. It is easier to match the amplitude of the signal than the phase, which is
required by matched filtering. We can estimate the potential performance of matched filtering
parameter estimation using the Fisher Information Matrix (FIM), which is a tool that has been
used to estimate the potential accuracy of parameter estimates for GW signals [37, 38]. In the
limit of high SNR, the inverse of the FIM is the variance–covariance matrix of the estimated
signal parameters. It provides a first-order estimate of the errors when measuring parameters.
Applying this technique to the r-mode model discussed above, this technique finds that the
errors would be of order 0.1% for f0 and 1% for α, which is about an order of magnitude better
than for the ft-map based technique. This seems reasonable as the matched filtering technique
includes phase information and includes none of the approximations. We also expect this to
be a reasonable estimate for the signals used above because of the high matched filtering
SNRs. This is important as it has been previously shown that the FIM is biased for near-
threshold SNR signals [39]. Further study may include a detailed comparison between
matched filtering and ft-map perform parameter estimation.
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Appendix A. Distribution of cross-power SNR

Cross-power SNR ρ is defined as

ρ ≈
( )s f s f

P f P f

Re ( ) ( )

1 ( ) 2 ( )
, (A.1)

1 2

adj adj

where s f( )1 and s f( )2 are Fourier transforms of times series from two detectors (hence
complex numbers) and P f1 ( )adj and P f2 ( )adj are the (averaged) PSDs calculated from
adjacent segments [25]. Up to a scaling factor, the numerator is known as Y, the signal
estimate, and the denominator σY , its error. s f( )1 and s f( )2 are each Gaussian variables with
mean 0 and variance σ2. The distribution of a new variable z defined as z = s f s f( ) ( )1 2 , known
as a normal product, is given by the expression [40]

⎛
⎝⎜

⎞
⎠⎟σ σ

=f z K
z

( )
1

, (A.2)
2 0 2

where K x( )0 is the modified Bessel function of the second kind. As s f( )1 and s f( )2 are
complex vectors, this is actually the sum of two normal products, which is known as a double
exponential or Laplace distribution. This has a distribution of the form

⎛
⎝⎜

⎞
⎠⎟σ σ

= −
f y

y
( )

1

2
exp . (A.3)Y 2 2

This is the distribution of Y. The second step is to calculate the distribution of σY . P1adj
and P2adj are the average PSDs calculated from segments on either side of the segment used
to calculate Y

Figure A1. Probability density function of the pixels in a ft-map of cross-power SNR
with the theoretical distribution given by equation (A.7) overlaid.
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∑ ∑= =
= =

P
N

P P
N

P1
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2 . (A.4)
j
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j
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N

jadj

1

adj

1

In the frequency domain, each P1j and P2j are chi-squared distributed variables, the sum
of which have distributions of the form

⎛
⎝⎜

⎞
⎠⎟σ Γ σ

= ⩾−f z
N

N

Nz
z z( )

2 ( )
exp

2
( 0). (A.5)P

N

N N
N

2 2
1

The distribution for σY is then

⎛
⎝⎜

⎞
⎠⎟σ Γ σ

=σ −
−f z

N

N
K

Nz
z( )

2 ( ( ))
. (A.6)

N

N N
N

2

2 2 4 2 0 2
2 1

Y

The final step is to combine the distributions for Y and σY

⎛
⎝⎜

⎞
⎠⎟∫

σ Γ σ
= σ

− +

∞ − −f z
N

N
x K

Nx
x x( )

2 ( ( ))
e d . (A.7)

N

N N

xz
N

SNR

2

2 1 4 2 2 0
0 2

2 12

Figure A1 shows the probability density function of the pixels of cross-power SNR used
in this analysis overlaid with a distribution of ρ t f( ; ) calculated from actual data.

Appendix B. Error approximation

If the timeseries of two detectors, h1 and h2, are composed of the sum of a signal and a noise
part, (i.e., = +h s n1 1 1 and = +h s n2 2 2), when the two data streams are multiplied, the result
will be in the form of

= + + +h h s s s n s n n n . (B.1)1 2 1 2 1 2 2 1 1 2

The quantity h h1 2 is proportional to ρ t f( ; ). The expectation values of the cross-terms, s n1 2

and s n2 1, are 0 because signal and noise are uncorrelated. To test the approximation that on

Figure B1. Probability density function of the percentage error of using +s s n n1 2 1 2 as
an approximation for h h1 2. The width is the percentage error within which 90% of the
distribution is contained.
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average the cross-terms, s n1 2 and s n2 1, will sum to zero, sets of 100 pixels with different total
SNRs associated with them are generated. The SNR for each set is computed by performing a
sum of the individual pixel SNRs. This process seeks to imitate the total error accumulated
due to the assumption above. In this case, the total error is the sum of s n1 2 and s n2 1 for all of
the pixels.

Figure B1 shows the percent difference between h h1 2 and +s s n n1 2 1 2. For pixel sets with
moderate total SNR, 90% of the time, this approximation is within 25% of its true value.
Extremely high SNR events, which are an order of magnitude larger, yield errors on the order
of 100%. Examining the cross-terms, their contribution becomes more significant as the
magnitude of the signal increases and the approximation breaks down in the high SNR
regime. Conversely, the bias when using signals of moderate SNR is shown to be small in
section 3.
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