
Bayesian inference on EMRI signals using low frequency approximations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 Class. Quantum Grav. 29 145014

(http://iopscience.iop.org/0264-9381/29/14/145014)

Download details:

IP Address: 137.22.7.92

The article was downloaded on 29/06/2012 at 14:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0264-9381/29/14
http://iopscience.iop.org/0264-9381
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 29 (2012) 145014 (18pp) doi:10.1088/0264-9381/29/14/145014

Bayesian inference on EMRI signals using low
frequency approximations

Asad Ali1,2, Nelson Christensen3, Renate Meyer1 and Christian Röver4,5
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Abstract
Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting
gravitational wave sources to be detected with LISA. Due to their complicated
nature and weak amplitudes the detection and parameter estimation of such
sources is a challenging task. In this paper we present a statistical methodology
based on Bayesian inference in which the estimation of parameters is carried out
by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel
tempering MCMC. We analysed high and medium mass EMRI systems that
fall well inside the low frequency range of LISA. In the context of the Mock
LISA Data Challenges, our investigation and results are also the first instance
in which a fully Markovian algorithm is applied for EMRI searches. Results
show that our algorithm worked well in recovering EMRI signals from different
(simulated) LISA data sets having single and multiple EMRI sources and holds
great promise for posterior computation under more realistic conditions. The
search and estimation methods presented in this paper are general in their
nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO
and Einstein Telescope with their respective response functions.

PACS numbers: 04.80.Nn, 02.70.Uu

1. Introduction

It is likely that most of the galaxies, including our own milky way, host super massive black
holes (SMBHs) with masses of order 106 M� (M� = solar mass) or larger in their centres.
These SMBHs are surrounded by a large population of stellar mass compact objects (COs) such

5 Present address: Department of Medical Statistics, University Medical Center Göttingen, 37073 Göttingen,
Germany.
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as neutron stars, white dwarfs and small black holes with masses ∼10 M�. Due to multi-body
interactions most of these COs occasionally end up being trapped in an orbit which passes
too close to the central mass. Once captured in the strong gravitational field of an SMBH,
a CO then starts orbiting around the central mass in an eccentric orbit which decays with
time and the CO eventually spirals into the central mass. These inspirals are called extreme
mass ratio inspirals (EMRIs) because of the large difference in the masses of the two bodies.
EMRIs are considered to be one of the most important potential sources of gravitational waves
(GW’s), to be detected with the laser interferometer space antenna6 (LISA) [1]. These inspirals
may encode information about the structure of the central black hole, its evolution and other
features such as the Lense–Thirring effects [2] and spin–orbit coupling [3].

Bayesian approaches along with MCMC methods have been in use by different groups
working on the GW source detection and parameter estimation problems (see e.g. [4–7] and
many others). In the context of EMRI signals the reversible jump MCMC algorithm was
employed in [8]. Another Monte Carlo, but not rigorously Markovian, approach in which the
successive states are chosen from directed proposal distributions, was used in [9–11].

In this work we present results of the applications of the Bayesian approach using
the parallel tempering MCMC (PTMCMC) algorithm [12] for the detection and parameter
estimation of EMRI signals in LISA data. The noise spectrum is assumed to be unknown
and for this reason we used Whittle’s approximation to the Gaussian likelihood [13]. The
Whittle likelihood uses the approximate properties of discrete Fourier transform (DFT) and
assumes that the DFTs are approximately independent normally distributed with mean zero
and variance proportional to the power spectral density.

This paper is organized as follows: in section 2 we present the Bayesian statistical model,
comprising the waveform model, our assumptions for the error distribution with unknown
power spectrum, and prior distributions of the parameters. Section 3 briefly explains the
Bayesian approach to detection and parameter estimation and details the MCMC search
algorithm. The implementation of the algorithm is described in detail in section 4. Conclusions
are given in section 5.

2. Bayesian statistical model

In this section, we outline all components of our statistical model that encompasses the
waveform model and detector response, the observation error assumptions that lead to the
Whittle likelihood and the prior distribution of the parameters.

2.1. The waveform model and detector response

The EMRI sources given in MLDC [14] LISA data are generated by Barack and Cutler’s
analytic kludge waveform (AKW) approximation [15]. The waveform model is described by
14-dimensional parameter set θ = (ν0, M, μ, e0, γ̃0, �0, α0, θS, φS, λ, χ , θK , φK , DL), where
ν0 is the initial orbital frequency, μ and M are the masses of CO and SMBH, respectively,
e0 is the initial eccentricity, γ̃0, �0 and α0 are the initial orbital phase angles, θS and φS are
the ecliptic latitude and longitude, respectively, λ is the orbital inclination, χ is SMBH’s spin
with θK, φK its orientation angles and DL is luminosity distance. In the Barack and Cutler
parametrization, the log-transformed values of the parameters ν0, μ, M and DL are used.
For the MCMC searches a suitable alternative is to use the truncated AKWs [10]. These

6 We realize that the state of LISA is in limbo after NASA’s decision to leave the project, but the European Space
Agency is investigating carrying on with a scaled down version of the project, and the conclusions we reach in this
paper will certainly be applicable to that mission if it moves forward.

2



Class. Quantum Grav. 29 (2012) 145014 A Ali et al

waveforms can be computed ∼3 times faster than full AKWs and there is a typical overlap
of ∼90–95% between the two. The multiple harmonics and the complex structure of EMRIs
pose a challenge as far as their computation and the statistical estimation of their source
parameters is concerned. The likelihood surface for EMRIs contains multiple local peaks
corresponding to different harmonics, of which some are as high as 85% of the peak of the
dominant harmonic. Furthermore, the orbital evolution (over time) introduces much more
uncertainty to the likelihood surface. This means that the orbital parameters keep changing
throughout the signal life. To overcome these issues, sophisticated algorithms are needed that
can deal with multi-modality due to multiple harmonics and the increased uncertainty due to
the time-varying nature of orbital parameters. One such algorithm will be presented in the
subsequent sections.

The full descriptions of both the full AKW and truncated AKW models are extensive so
we give only the final expressions of the model which is a pair of two polarization signals
defined as

h+(t) = A+(t) cos 2ψ(t) + A×(t) sin 2ψ(t), (1)

h×(t) = −A+(t) sin 2ψ(t) + A×(t) cos 2ψ(t), (2)

where ψ(t) is the polarization angle defined as

ψ(t) = arctan

(
cos θS sin θL(t) cos(φS − θL(t)) − cos θL(t) sin θS

sin θL(t) sin(φS − θL(t))

)
, (3)

where θS and φS are ecliptic latitude and longitude, respectively, and θL(t) and φL(t) are the
time-varying angles specifying the instantaneous direction of the angular momentum.

Unlike ground-based interferometers the LISA arms are at 60◦ angles, and the
interferometers are susceptible to ‘+’ and ‘×’ polarizations. Due to its orbital dynamics,
the detector response is complicated. The detector output may be derived numerically
[16–18], while in the limit of long wavelength/low frequency approximation (LFA) the
mapping simplifies [15, 19], which is the regime we will be concerned with here. The three
spacecraft’s output may be re-combined into two variables with stochastically independent
noise components, namely the ‘A’ and ‘E’ variables [20]; data analysis in the following is
going to be based on these two time series.

Although the LFA is simpler and faster, the amplitude of the final LISA response is not
exactly the same as that of [17, 18], which we will refer to as the full LISA response throughout
this paper. While working on MLDC 4 blind data, we found that the amplitudes of the LFA
response are by a factor of ∼3 larger than those derived by full LISA response. We compared
the two responses for several (noise-less) EMRI signals posted on the MLDC webpage [21]
including those given in the training data of MLDC 4 and saw the same phenomena. This
difference in amplitudes results in an incorrect estimation of luminosity distance (DL) and sky
location angles (θS, φS) as we have found in several test MCMC searches on MLDC 1B EMRI
data sets. Particularly, during MCMC searches the chains for sky location angles used to get
locked at wrong positions and then nothing could move them from those positions. The same
phenomenon (wrong estimation of distance and sky location) was observed by another group
too [10, 22]. As an ad hoc solution we divided the overall amplitude in our signal model by
3 and used this option throughout the MLDC 4 blind searches, more investigation regarding
the exact origin is required. When the overall amplitude in LFA was divided by 3, the sampler
was able to converge to the correct values of the luminosity distance and sky location angles.
It is of interest to note that in both cases (i.e. the adjusted and unadjusted amplitudes) the other
key parameters, e.g. ν, μ, M, e and χ are almost unaffected and remain the same. Later on,
near the submission of MLDC 4 blind entries, we further found that for high mass EMRIs the
difference factor is generally rather larger than 3, it is generally ∼6.
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2.2. Prior information

In order to implement the a priori information about the parameters to be inferred, we followed
the specifications given in the MLDC Task Force’s documentation [14, 21], and for different
parameters we employed the following prior distributions: μ ∈ Uniform[9.5, 10.5]M�,
e0 ∈ Uniform[0.15, 0.25], χ ∈ Uniform[0.5, 0.7]. The range of the prior distribution of e0 was
changed to [0.10, 0.40] because of its initial values given for different MLDC EMRI sources
being beyond the range [0.15, 0.25]. The prior for SMBH mass are different for different
sources: M ∈ Uniform[0.95, 1.05] 107M� (high mass), M ∈ Uniform[4.75, 5.25] 106M�
(medium mass) and M ∈ Uniform[0.95, 1.05] 106M� (low mass). For initial azimuthal orbital
frequency ν0, the prior distribution was set to be uniform over the range [5.0 × 10−5, 0.01].
For the polar angles we assumed isotropic priors. For some parameters such as ν0, μ, M
and DL, their logarithmic values were used; as in [15], for ease of specification of proposal
distributions, the prior densities for these parameters were transformed accordingly. For the
noise power spectrum we used the conjugate Inv−χ2 prior distribution, where the prior scale
parameters were estimated based on a disjoint stretch of the same data set [23]. In the following
subsections we present some results obtained with the application of the above search and
estimation algorithm on different MLDC data sets containing single and multiple EMRI
sources.

3. Parameter estimation

In this section, we briefly describe the Bayesian approach to statistical inference and posterior
computation via MCMC. Furthermore, we give an overview of the tempering methods and the
parallel tempering strategy that we employed.

3.1. Posterior inference

We are interested in inferring a priori unknown parameters θ from measured data y. To
this end we derive the parameters’ posterior probability distribution, which expresses the
information on the actual parameter values after consideration of the observed data by assigning
probabilities to regions of the parameter space. Given the relationship between parameters and
data through the likelihood function p(y|θ ), the posterior density function is given by Bayes’
theorem as

p(θ |y) = p(y|θ ) p(θ )

p(y)
(4)

[24]. Here p(θ ) is the prior probability density, expressing any information we have about the
parameters before accounting for the measured data. The posterior distribution (4) is essentially
given by the product of prior and likelihood, while the evidence p(y) = ∫

p(y|θ ) p(θ ) dθ

is commonly of minor concern for parameter estimation purposes, as it only constitutes a
normalizing constant.

3.2. Monte Carlo integration

Bayes theorem supplies the posterior probability distribution in terms of its density function.
In order to extract information relevant for any particular purpose, one may be interested
in marginal posterior distributions, posterior expectations, quantiles, etc; what is commonly
required is the evaluation of integrals with respect to the posterior distribution. As these
integrals are rarely analytically tractable, stochastic integration methods are commonly used
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to approach posterior inference. Such Monte Carlo methods aim at approximating the desired
integrals via random sampling; instead of computing an expectation value analytically, random
draws from the distribution of interest are generated, and the expectation is then approximated
by an average. Analogous procedures are applied for other figures of interest, like quantiles or
marginal densities for example, and an arbitrary accuracy may be achieved by increasing the
sample size. A popular variety of such Monte Carlo procedures is the Metropolis(–Hastings)
algorithm [25]; what makes this particular algorithm attractive for Bayesian inference is the
fact that it only requires the unnormalized probability density function of the distribution of
interest as an input, which in this case is supplied by Bayes’ theorem (4). Instead of providing
stochastically independent samples from the distribution, the Metropolis–Hastings algorithm
will generate a Markov chain of subsequently dependent draws whose stationary distribution
is the distribution of interest. At each step in the generation of the random sequence, only ratios
of probability density values need to be considered, so that an overall normalization constant
(like p(y) in (4)) does not need to be known. To approximate a target distribution with density
function p(θ |y), the Metropolis(–Hastings) algorithm employs an acceptance–rejection rule
to construct a Markov chain from an auxiliary density q(·|·), which is referred to as proposal
density or transition probability function. Being at current state θ (t) the acceptance probability
for moving to a new state θ ′ is defined as

α = min

{
1,

p(θ ′|y)q(θ (t)|θ ′)
p(θ (t)|y)q(θ ′|θ (t))

}
. (5)

Taking q(·|·) to be symmetric, i.e. q(θ |θ ′) = q(θ ′|θ ), leads to the basic Metropolis algorithm
[26] with acceptance probability given by

α = min

{
1,

p(θ ′|y)

p(θ (t)|y)

}
. (6)

3.3. Tempering methods

In most multi-dimensional cases, the density surface of complicated target distributions turns
out to have multiple secondaries or local modes that are well separated by deep valleys of low
probability regions. The simple Metropolis(–Hastings) algorithm tends to get stuck at some of
these local modes for a prohibitively long time before reaching the global mode. Analogous
to an annealing process, temperature is used to scale the target density in order to flatten the
local modes so that the MCMC sampler moves freely towards the global maximum without
being trapped in local modes. At a given temperature T � 1, samples are generated from a
tempered version of the target density p(θ |y) defined as

pT (θ |y) ∝ p(θ |y)
1
T , (7)

where T = 1 yields the actual target distribution. This heating is equivalent to increasing the
standard deviation of the target density by a factor

√
T , therefore as T increases the heated

distribution becomes flatter and gets closer to the uniform distribution, which enables the
Markov chain to move more freely and hence faster towards higher probability regions.

Some of the most popular tempering methods are simulated annealing [27], simulated
tempering [28] and PTMCMC aka Metropolis coupled-MCMC. PTMCMC introduced in
[12], is a powerful optimization of the simple Metropolis(–Hastings) algorithm which is very
effective in improving the mixing of MCMC chains and in particular in escaping the local
modes. The algorithm works by running multiple MCMC chains in parallel, each simulating
a separate target density characterized by a different temperature and occasionally attempting
swaps of its current states. As stated above, in principle, a high temperature chain sees

5
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the density of the target distribution as more flattened relative to a low temperature chain,
which means that the high temperature chain can move more freely across the valleys of low
probability regions in between modes. In order to make the low temperature chain benefit
from the high temperature chain that may be sampling near another mode, an exchange of
information about the current states is attempted by proposing a swap of the current states using
an additional Metropolis acceptance–rejection step. Detailed descriptions of this algorithm can
be found in [7, 29, 30].

3.4. The likelihood function

The data, which is sampled at discrete time steps, can be represented by the following signal
plus noise model,

y(t) = s(t, θ ) + ε(t) t = 1, . . . , N, (8)

where the deterministic component s(t, θ ) is the true signal model depending on parameters
θ and ε(t) is a zero-mean stationary time series with unknown spectral density [23].

When the data are in (discrete) frequency domain for an unknown noise spectral density
the likelihood function is defined as

p(ỹ|θ ) = K × exp

⎡
⎣−

ν∑
j=0

(
log(S( f j)) + |ỹ( f j) − s̃( f j, θ )|2

S( f j)

)⎤
⎦ , (9)

where ν = 	(N − 1)/2
 is the greatest integer less than or equal to (N − 1)/2, ỹ( f j) and
s̃( f j, θ ) are Fourier transformed observables and model signal, respectively, S( f j) is the one-
sided power spectral density and K is the normalizing constant.

When the noise spectrum is assumed known then one can omit the constant term,
log(Sn( f j)), from equation (9) to obtain

p(ỹ|θ ) = K × exp

⎡
⎣−

ν∑
j=0

|ỹ( f j) − s̃( f j, θ )|2
S( f j)

⎤
⎦ . (10)

In the literature, equation (9) is known as Whittle’s approximation to the Gaussian likelihood
or simply Whittle likelihood [31]. The Whittle likelihood assumes that the DFTed residuals are
approximately independent complex normally distributed with mean zero and power spectrum
S( f j). The complete description of the Bayesian estimation of the noise spectral density is
explained in [23]. The likelihood computation is commonly simplified by restricting the
summation to the limited frequency range relevant to the signals of interest. Furthermore, as
mentioned in section 2, the two TDI observables A and E are independent, their joint likelihood
is just the product of their individual likelihoods.

4. Implementation

Although LFA is much more time efficient compared to full LISA response, EMRI waveforms
are still computationally expensive and hence we had to use only shorter data segments
ranging in length from one to four weeks. We used heavy-tailed Student-t proposals which
are very useful for good mixing. The parallel computation on multiple processors or cores
is accomplished by including the message passing interface library [32] with the relevant
additional programming scripts in the main analysis code. In all of our searches we used eight
or ten chain PTMCMC.
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Figure 1. A typical (initial) shorter MCMC run. The trace plots of marginal posterior MCMC
samples for some key parameters for the EMRI training source MLDC 1B.3.2. The grey dashed
lines indicate the true values.

4.1. Single EMRI sources: example searches

In the simplest scenario the algorithm was applied to two EMRI data sets taken from earlier
MLDC rounds; 1B.3.2 and 1C.3.1. 1B.3.2 contains a single medium mass EMRI source
and 1C.3.1 contains a high mass EMRI source buried in the LISA instrument noise only. In
these attempts the adjusted LFA was used and there was no problem in recovering the signal
parameters using the true values as the starting points for the MCMC search, thus we used
completely blind searches on two weeks long stretches of the data, to test the performance
of our algorithm. In both cases the blind searches were conducted in multiple stages, i.e. first
several shorter MCMC chains were run in parallel without a swapping step from random
starting points and those chains were chosen that showed stability and for which the SNR
and likelihood values were larger than others. The modes of those chains were then set as
the starting points in the next MCMC run. These steps were repeated for a few times to
narrow down the search range. This approach is somewhat similar to that used in [9]. In the
following, summaries of the posterior distribution of the parameters of the EMRI sources
given in MLDC 1B.3.2 (medium mass) and MLDC 1C.3.1 (high mass) are given. Figure 1
display a typical shorter MCMC run demonstrating how the chains for different parameters
find their true modes. Table 1 and figure 2 presents the posterior summary of the parameters
for source 1B.3.2. Similarly, table 2 and figure 3 show the results for source 1C.3.1. From
these results it is clear that both signals were recovered with a great accuracy. The widths of
different marginal posterior densities show that almost the whole prior range was searched
before convergence.
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Figure 2. Kernel density estimates of the marginal posterior densities for all 14 parameters for the
EMRI source MLDC 1B.3.2. The solid lines indicate the true values.

Table 1. Posterior results and true parameter values for the recovered medium mass EMRI signal
given in actual MLDC 1B.3.2 training data set.

Parameters Mean Std. dev. Mode 95% BCI True values Prior range

log(ν0) −7.961 883 0.001 556 −7.962 237 (−7.962 645, −7.959 406) −7.962 205 log[5.0 × 10−5, 0.01]Hz
log(μ) 2.108 143 0.137 913 2.122 627 (1.853 307, 2.323 680) 2.290 258 log[9.5, 10.5]M�
log(M) 15.429 324 0.014 565 15.432 732 (15.401 371, 15.460 317) 15.431 952 log[4.75, 5.25] 106M�
e0 0.208 397 0.015 804 0.210 424 (0.183 391, 0.229 404) 0.215 401 [0.10, 0.40] units
γ̃0 4.384 615 1.229 447 4.845 658 (1.232 442, 5.543 105) 2.033 2973 [0, 2π ] rad
�0 4.682 341 0.695 824 5.011 981 (3.201 36, 5.340 058) 5.999 900 [0, 2π ] rad
θS 0.862 168 0.531 047 0.649 613 (0.492 233, 2.114 493) 1.222 330 [0, π ] rad
φS 2.710 713 1.905 070 1.580 461 (1.092 997, 6.237 064) 2.934 625 [0, 2π ] rad
λ 2.331 862 0.068 092 2.302 875 (2.251 945, 2.463 038) 2.289 951 [0, π ] rad
α0 2.884 914 2.493 591 0.649 972 (0.087 803, 6.210 357) 1.609 215 [0, 2π ] rad
χ 0.589 667 0.039 206 0.578 192 (0.515 752, 0.659 08) 0.574 818 [0.5, 0.7] M2

θK 2.478 239 0.773 029 2.870 962 (0.597 917, 3.096 335) 1.403 416 [0, π ] rad
φK 3.373 622 2.155 152 5.050 124 (0.223 237, 6.042 101) 6.223 129 [0, 2π ] rad
log(DL) −0.538 350 1.128 170 −0.135 892 (−2.721 751, 0.832 533) −0.584 778 log[0, ∞] log(GPC)

4.2. Multiple EMRIs

4.2.1. MLDC 4 results. The approach was applied to detect signals generated by EMRI
sources given in both training and blind data sets issued in the revised MLDC round 4.
Looking at the amount of noise in these data, we attempted to recover signals from high mass
EMRI systems only. Moreover, there were no medium mass sources in the training data set.
Some preliminary results were presented at GWPAW (January 26–29, 2011, Milwaukee, WI,

8
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Figure 3. Kernel density estimates of the marginal posterior densities for all 14 parameters for the
EMRI source MLDC 1C.3.1 (high mass source). The solid lines indicate the true values.

Table 2. Posterior results and true parameter values for the recovered high mass EMRI signal given
in actual MLDC 1C.3.1 training data set.

Parameters Mean Std. dev. Mode 95% BCI True values Prior range

log(ν0) −8.592 307 0.005 407 −8.591 044 (−8.604 332, −8.584 98) −8.591 472 log[5.0 × 10−5, 0.01]Hz
log(μ) 2.026 831 0.185 767 2.209 483 (1.741 593, 2.322 630) 2.320 877 log[9.5, 10.5]M�
log(M) 16.110 918 0.001 331 16.114 347 (16.090 741, 16.132 173) 16.119 304 log[0.95, 1.05] 107M�
e0 0.205 405 0.014 601 0.204 826 (0.181 549, 0.226 693) 0.195 337 [0.10, 0.40] units
γ̃0 3.425 854 2.011 777 2.116 807 (0.189 037, 6.143 949) 4.381 526 [0, 2π ] rad
�0 3.948 827 1.273 087 3.366 273 (0.966 292, 5.721 986) 3.441 184 [0, 2π ] rad
θS 0.616 343 0.537 823 0.406 881 (0.063 561, 1.823 876) 1.235 677 [0, π ] rad
φS 2.944 769 1.580 446 2.915 200 (0.817 490, 6.224 024) 4.054 785 [0, 2π ] rad
λ 1.652 216 0.605 062 2.291 762 (0.719 750, 2.352 924) 2.358 963 [0, π ] rad
α0 2.610 697 1.849 872 1.261 552 (0.361 536, 5.797 795) 2.158 356 [0, 2π ] rad
χ 0.612 676 0.051 827 0.650 991 (0.502 682, 0.662 555) 0.636 644 [0.5, 0.7] M2

θK 1.887 538 0.871 457 2.464 749 (0.472 588, 2.974 532) 2.036 360 [0, π ] rad
φK 2.827 086 2.093 720 1.124 890 (0.152 617, 6.081 997) 1.260 128 [0, 2π ] rad
log(DL) −1.943 526 0.763 724 −1.795 853 (−3.843 257, −0.939 327) −1.518 042 log[0, ∞] log(GPC)

USA). The MLDC notation for a high mass EMRI sources are EMRI-1-0, EMRI-1-1 and so
on, and for a medium mass EMRI sources are EMRI-2-0, EMRI-2-1 and so on, whereas we
denote the corresponding estimated sources (in the blind data) simply by High-0, High-1 and
Med-0.

4.2.2. Training data. The training data contains three high mass EMRI sources which are
somewhat similar to each other, therefore a joint MCMC search was conducted to recover
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Figure 4. Kernel density estimates of the marginal posterior densities for all 14 parameters of
the first three EMRI sources in MLDC 4 training set. In these plots the solid lines indicate the
true parameter values of the source EMRI-1-0, whereas the dashed and dashed-dot-dashed lines
indicate the true parameter values for sources EMRI-1-1 and EMRI-1-2, respectively, in MLDC 4
training data.

them. In an eight chain MCMC search on two weeks long data segments, three chains were
started from the true parameter values of the three signals while the rest of the chains were
started from the values in the vicinity of the true parameters. Figure 4 displays the results
of this joint search. In the plots of kernel density estimates, different types of vertical lines
denote the true values of the parameters of the three different high mass EMRI signals, named
EMRI-1-0, EMRI-1-1 and EMRI-1-2 in MLDC 4 training keys, that can be found at the
challenge webpage [33]. After running for a sufficiently large number of iterations (∼ 4×106)
it was observed that the third signal (dashed-dot-dashed vertical lines) was dominating the
other two as can be seen in figure 4, even though the overall mean swap acceptance rate
between chains was ∼ 35%. Thus the code was restarted with the starting values of different
chains somewhat similar to the true parameter values of the third signal. These results are
given in table 3 and figure 5. We can see that all the parameters, except the luminosity
distance, DL, and some of the angles, are estimated with great accuracy and most of the
parameters’ chains show stability. From the MCMC trace plots the distance parameter seemed
to be over estimated and the sky location (θS, φS) seemed to have been locked at a different
position. The wrong sky location was attributed to the fact that we were using LFA and are
experiencing the same problem as was observed in [10], which also used the LFA [15]. At this
stage, the problem of amplitude differences between the full LISA response and LFA was not
known to us.

It was also evident that after some 800 000 iterations one of the neighbouring chains of
the true (T = 1) chain found some other mode; however, overall the true chain was unaffected.
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Figure 5. Kernel density estimates of the marginal posterior densities for all 14 parameters of the
third EMRI (EMRI-1-2) signal in MLDC 4 training data. The solid lines indicate the true parameter
values.

Table 3. Posterior results for the third EMRI (EMRI-1-2) signal given in MLDC 4 training data
set.

Parameters Mean Std. dev. Mode 95% BCI True values Prior range

log(ν0) −8.615 057 0.008 435 −8.618 036 (−8.624 964, −8.593 739) −8.616 096 log[5.0 × 10−5, 0.01]Hz
log(μ) 2.247 796 0.519 295 2.185 567 (1.433 541, 3.218 01) 2.350 281 log[9.5, 10.5]M�
log(M) 16.152 486 0.002 285 16.152 319 (16.148 756, 16.156 314) 16.153 307 log[0.95, 1.05] 107M�
e0 0.184 634 0.019 464 0.195 090 (0.145 334, 0.203 263) 0.186 712 [0.10, 0.40] units
γ̃0 3.830 427 1.407 267 4.734 815 (1.089 336, 5.408 43) 5.138 873 [0, 2π ] rad
�0 3.770 239 1.079 385 3.244 351 (2.128 266, 5.591 350) 2.084 779 [0, 2π ] rad
θS 2.455 871 0.434 043 2.611 267 (1.311 937, 2.755 807) 2.305 033 [0, π ] rad
φS 3.901 775 0.485 260 3.780 766 (3.583 514, 4.948 959) 4.707 928 [0, 2π ] rad
λ 1.115 781 0.224 159 1.180 035 (0.572 802, 1.395 177) 1.155 677 [0, π ] rad
α0 1.965 982 1.351 007 1.372 157 (0.521 520, 5.008 045) 1.708 861 [0, 2π ] rad
χ 0.573 573 0.024 460 0.576 902 (0.540 204, 0.616 836) 0.579 723 [0.5, 0.7] M2

θK 1.235 264 0.685 402 1.127 951 (0.096 748, 2.711 275) 1.429 748 [0, π ] rad
φK 1.719 245 2.280 232 0.380 733 (0.088 012, 5.899 353) 0.745 268 [0, 2π ] rad
log(DL) −1.262 741 0.596 673 −1.216 699 (−2.187 479, −0.196 473) −2.299 291 log[0, ∞] log(GPC)

This second mode could either correspond to, most probably, a low strength harmonic of this
same EMRI signal as such a close harmonic usually corresponds to higher frequencies than
the true one, or to a harmonic of another EMRI signal. This sort of overlapping and sharing of
characteristics between different signals will be quite common in such complicated cases and
will result in confusions among different EMRI signals.
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Figure 6. Kernel density estimates of the marginal posterior densities for all 14 parameters for the
detected EMRI source in MLDC 4 blind data. The solid lines indicate the true solutions of high
mass source EMRI-1-1 in MLDC 4 blind data.

Table 4. Posterior results for the detected high mass EMRI signal given in MLDC 4 blind data set
in the first step.

Parameters Mean Std. dev. Mode 95% BCI Prior range

log(ν0) −8.573 457 0.003 015 −8.573 259 (−8.574 035, −8.572 342) log[5.0 × 10−5, 0.01]Hz
log(μ) 1.409 599 0.623 259 1.179 280 (0.589 129, 2.263 096) log[9.5, 10.5]M�
log(M) 16.133 081 0.008 141 16.134 940 (16.132 126, 16.136 896) log[0.95, 1.05] 107M�
e0 0.154 880 0.014 667 0.152 115 (0.139 163, 0.166 299) [0.10, 0.40] units
γ̃0 1.584 359 0.708 484 1.486 492 (0.859 918, 2.269 012) [0, 2π ] rad
�0 4.197 498 0.336 251 4.147 553 (3.834 165, 4.592 633) [0, 2π ] rad
θS 2.534 345 0.098 177 2.540 198 (2.507 845, 2.579 459) [0, π ] rad
φS 3.822 423 0.097 805 3.809 877 (3.744 967, 3.886 976) [0, 2π ] rad
λ 0.298 106 0.365 414 0.249 978 (0.150 734, 0.347 221) [0, π ] rad
α0 3.072 884 2.491 800 5.761 360 (0.150 223, 6.189 003) [0, 2π ] rad
χ 0.499 902 0.009 253 0.501 648 (0.488 186, 0.508 558) [0.5, 0.7] M2

θK 2.218 992 0.075 129 2.207 951 (2.161 368, 2.274 100) [0, π ] rad
φK 1.046 394 0.370 040 0.986 633 (0.870 475, 1.121 522) [0, 2π ] rad
log(DL) −0.928 824 0.803 5100 −0.986 087 (−1.974 076, −0.018 514) log[0,∞] log(GPC)

4.2.3. Blind data. For the MLDC 4 blind data as a first step an eight chain MCMC search
was conducted on the first two weeks in which all the eight chains were started from random
values corresponding to a high mass EMRI source. Table 4 shows a summary of the posterior
estimates and figure 6 shows the kernel density estimates of the marginal posterior densities.
The MCMC chains for all parameters showed great stability except for the CO’s mass μ

and distance log DL the chains were showing somewhat oscillatory and correlated behaviour.
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Figure 7. Kernel density estimates of the marginal posterior densities for all 14 parameters for the
high mass EMRI source ‘High-3’ in MLDC 4 blind data. The dashed and solid lines corresponds
to the true solutions of two high mass sources EMRI-1-0 and EMRI-1-1, respectively, in MLDC 4
blind data.

The empirical correlation between these two parameters was ∼0.92, which is quite high. It
could not be deciphered why this (high correlation) happened as such a phenomenon was
found neither in earlier nor in subsequent searches. The chains for all the angles were also
stable except for the parameter α0, which was vibrating between two different modes. An
interesting result which was observed in our earlier searches, in which the LFA response was
not adjusted (dividing by 3), is that for all time regions the joint plots of the sky location angles
indicated a similar behaviour, though in the plots of the kernel density estimates of these two
angles obtained for different time regions the (strongest) modes were different. For different
time regions the joint plots of the two sky location angles are shown in figure 8. These sky
locations remained the same despite using different proposal distributions. At this stage we
realized that amplitudes of LFA response are in general by a factor of ∼3 larger than full
LISA response amplitudes. As an ad hoc solution to this problem, due to time limitation, the
LFA amplitudes were divided by 3, which, in single source searches such as MLDC 1B (as
shown in section 4.1), resulted not only in the correct estimation of distance and sky location
parameters but also, in MLDC 4 searches, the sky location angles never got locked on wrong
positions.

In order to search the entire two years of the blind data several more MCMC searches
were conducted on different time regions (data segments). In these searches we used a week
long data segments chosen at regular gaps (generally six weeks) covering the entire two years
duration of the data or till the anticipated plunge time of a typical EMRI signal (for most of the
EMRI sources given in earlier rounds of MLDC the plunge generally occurs during [1 1

2 − 1 3
4 ]

years, although in some cases the plunges are occurred in the last month of the two years
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Figure 8. The joint plots of sky location angles for different time regions demonstrate that there are
four most probable sky positions either of the same source or there are two or more EMRI sources
located in different sky regions. The dashed lines indicate the maximum a posteriori values.

duration). Each time region was searched individually by running eight or ten chain MCMCs.
The search strategy was the same as explained in section 4.1. Attempts were made to recover
both types of EMRI signals (high mass and medium mass) in these searches. In the end, for
each type of EMRI source four possible best fits were chosen on the basis of high SNRs, to
be submitted to MLDC 4. Among the submitted entries, the posterior results for a medium
mass source ‘Med-2’ and a high mass source ‘High-3’ are presented in tables 5 and 6 and
figure 7. The rest of our entries and solutions can be found on MLDC 4 webpage [33]. The
kernel density estimates of the marginal posterior densities for most of the parameters show
multi-modality. However, in most cases the strongest modes can be clearly recognized. In all
these searches the average rates of the regular Metropolis acceptance were in 20–40% while
the average swap acceptance rates were in 16%–30%. The recovered medium EMRI source
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Table 5. Posterior results for the detected EMRI signal ‘Med-2’ given in MLDC 4 blind data set.

Source Med-2 SNR-A = 62.921 SNR-E = 70.950 SNR-AE = 103.708
Parameters Mean Mode Std. dev. Mean ± 2StdDev Prior range

ν0 0.000 341 1537 0.000 340 9980 9.80e−7 (0.000 339 0515, 0.000 342 9558) [5.0 × 10−5, 0.01] Hz
μ 13.036 900 58 10.505 164 49 3.21e+0 (6.603943913, 16.710 996 09) [9.5, 10.5]M�
M 4840 967.8525 4838 561.9866 6.93e+4 (4706 125.2326, 4974 725.6905) [0.95, 1.05] 107M�
e0 0.218 266 0.217 780 2.23e−2 (0.173 1910, 0.262 3679) [0.10, 0.40] units
γ̃0 4.691 678 5.305 615 1.23e+0 (2.840 7054, 7.770 524) [0, 2π ] rad
�0 5.176 204 4.961 252 8.86e−1 (3.189 7754, 6.732 728) [0, 2π ] rad
θS 1.382 196 1.408 894 2.88e−1 (0.833 3279, 1.984 459) [0, 2π ] rad
φS 4.412 142 4.646 086 9.16e−1 (2.814 0819, 6.478 091) [0, 2π ] rad
λ 0.694 621 0.681 557 2.78e−1 (0.126 5363, 1.236 579) [0, 2π ] rad
α0 2.624 212 0.261 676 2.68e+0 (−5.101 531, 5.624 883) [0, 2π ] rad
χ 0.581 468 0.578 720 2.12e−2 (0.536 2277, 0.621 211) [0.5, 0.7] M2

θK 1.588 288 1.562 271 3.12e−1 (0.938 9395, 2.185 603) [0, 2π ] rad
φK 2.572 490 2.615 519 5.01e−1 (1.612 6596, 3.618 377) [0, 2π ] rad
DL(GPC) 0.079 2323 0.090 8401 3.62e−2 (0.016 161 34, 0.510 5964) [0, ∞] GPC

Table 6. Posterior results for the detected EMRI signal ‘High-3’ given in MLDC 4 blind data set.

Source High-3 SNR-A = 19.777 SNR-E = 17.406 SNR-AE = 26.346
Parameters Mean Mode Std. dev. Mean ± 2SthDev Prior range

ν0 0.000 192 9449 0.000 192 7831 8.81e−7 (0.000 191 0318, 0.000 194 5503) [5.0 × 10−5, 0.01] Hz
μ 8.816 421 59 10.126 919 09 1.24e+0 (7.479 619 72, 13.711 190 41) [9.5, 10.5]M�
M 9362 002.4476 9462 096.5945 2.86e+5 (8901 852.0130, 10 057 600.5800) [0.95, 1.05] 107M�
e0 0.184 721 0.198 859 2.89e−2 (0.148 464, 0.249 254) [0.10, 0.40] units
γ̃0 2.247 122 1.133 451 1.59e+0 (−2.049 031, 4.315 933) [0, 2π ] rad
�0 3.681 986 4.570 893 1.38e+0 (1.791 032, 7.350 754) [0, 2π ] rad
θS 1.864 284 2.062 0089 5.55e−1 (0.952 001, 3.172 016) [0, π ] rad
φS 3.088 018 0.309 6088 2.44e+0 (−4.581 664, 5.200 881 77) [0, 2π ] rad
λ 2.147 808 2.472 5720 8.12e−1 (0.848 402, 4.096 742 41) [0, π ] rad
α0 2.908 103 0.541 1894 2.13e+0 (−3.719 176, 4.801 554 57) [0, 2π ] rad
χ 0.626 321 0.573 2350 4.31e−2 (0.486 933, 0.659 537 07) [0.5, 0.7]
θK 1.466 041 1.656 5712 6.97e−1 (0.262 243, 3.050 899 78) [0, π ] rad
φK 2.621 246 1.278 5729 1.58e+0 (−1.894 009, 4.451 155) [0, 2π ] rad
DL (GPC) 0.112 901 98 0.094 923 33 3.15e−2 (0.066 4814, 0.135 5331) [0, ∞] GPC

‘Med-2’, had a very high SNR but the estimated parameters are somewhat away from the true
ones, demonstrating that these are probably the secondaries of the true densities. The ‘High-3’
has a lower SNR but the estimated parameters are quite close to the true ones.

4.3. Overlaps and SNRs

4.3.1. True signals: LFA versus full LISA response. When the true solutions for the MLDC
4 blind EMRIs were released, we tried to assess the performance of LFA and, in particular, the
performance of the full AKW and TAKW in LFA regime by comparing the overlaps of their
A (≡ hI), E (≡ hII) channels with those obtained with full LISA response. For this purpose all
the true signals (noiseless) were generated using both lisatools package and our model codes.
To calculate the overlap the following formula was used

O = 〈a, b〉√〈a, a〉〈b, b〉 , (11)

where 〈a, b〉 = ∫ ∞
−∞

a( f )b∗( f )
S( f ) d f , the noise weighted inner product of two functions a, b. All

these quantities are in frequency domain. The lisatools package uses the full AKW model to
generate the polarization signals (h+, h×) of EMRIs and then employs the full LISA response
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Table 7. True signals: overlaps of the AKW and TAKW in LFA against AKW in full LISA response.

AKW+LFA versus AKW+LISA TAKW+LFA versus AKW+LISA

Signals EMRI-1-0 EMRI-1-1 EMRI-2-0 EMRI-1-0 EMRI-1-1 EMRI-2-0

Overlap A 0.238 0.750 0.893 0.978 0.886 0.986
Overlap E 0.191 0.844 0.913 0.952 0.874 0.977
Combined overlap 0.214 0.795 0.903 0.965 0.880 0.981

Table 8. Overlaps and SNRs of the detected signals for different sources.

Med-0� Med-1 Med-2� Med-3�

EMRI-2-0� Overlap A 0.501 0.102 0.219 0.185
Overlap E 0.664 0.161 0.134 0.115
Combined overlap 0.577 0.128 0.171 0.146
SNR A 38.133 1.647 65.307 62.921
SNR E 42.003 1.190 80.562 70.950
Combined SNR 56.731 2.032 103.708 94.831

High-0 High-1� High-2 High-3♣

EMRI-1-0♣ Overlap A 0.021 0.114 0.017 0.055
Overlap E 0.018 0.084 0.041 0.125
Combined overlap 0.019 0.098 0.027 0.083

EMRI-1-1� Overlap A 0.018 0.199 0.018 0.031
Overlap E 0.007 0.286 0.024 0.057
Combined overlap 0.012 0.238 0.021 0.042
SNR A 11.173 11.262 2.688 19.777
SNR E 15.589 10.227 3.303 17.406
Combined SNR 19.180 15.213 4.258 26.346

function to generate TDI variables X , Y and Z, that can then be transformed to A, E channels.
Similarly, our codes can generate h+ and h× polarizations using AKW or TAKW and then
compute hI , hII using LFA. The overlap statistics are given in tables 7 and 8. These results
demonstrate that in the LFA regime the TAKW model gives better results than the full AKW.
Therefore, with the LFA, it makes sense to use TAKW model for estimating the EMRI signals
buried in LISA data.

4.3.2. True versus detected signals. Overlaps of the estimated signals (TAKW + LFA) with
true signals (AKW + full LISA response) and their SNRs are shown in table 8. Different
symbols indicate the correspondence between the best matches of estimated signals with true
signals. The estimated medium mass signal ‘Med-2’ is believed to have a best match with the
only medium mass source in MLDC 4 blind data. The low degree of overlaps and SNRs of
the estimated high mass signals is due to the fact that for these sources the difference factor
between the LFA and full LISA response is ∼6 rather than ∼3.

5. Conclusion

In this paper we report on the application of a Bayesian approach to statistical inference on the
highly challenging problem of detecting and estimating parameters of GW signals produced by
EMRI’s in the data from a future space-based interferometric mission such as LISA. The LFA
is used to model the LISA response and the Whittle likelihood as a realistic approximation to
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the unknown error distribution. Differences in the amplitudes of LFA and the LISA response
function were found and temporarily fixed. Further investigations are required to overcome
these discrepancies. We assume the noise power spectrum to be unknown and formulate an
Inv-χ2 posterior with a conjugate prior distribution for the unknown noise parameters. We have
implemented a parallel tempering MCMC algorithm to sample from the posterior distribution
of all 14 unknown parameters, the first instance of a fully Markovian algorithm for EMRI
detection and characterization in the context of MLDC LISA data analysis challenges. This
algorithm has the potential to sample from multi-modal distributions and thus to avoid getting
trapped in local modes. Our simulation results using single as well as multiple EMRI sources
in MLDC training and blind data should be seen as a snapshot of an investigation still in
progress. However, they show that this strategy holds great promise for posterior computation
under more realistic conditions and hints at areas where the algorithm could be refined and
tuned.
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