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Abstract
Gravitational-wave signals from inspirals of binary compact objects (black
holes and neutron stars) are primary targets of the ongoing searches by ground-
based gravitational-wave (GW) interferometers (LIGO, Virgo and GEO-600).
We present parameter estimation results from our Markov-chain Monte Carlo
code SPINSPIRAL on signals from binaries with precessing spins. Two data sets
are created by injecting simulated GW signals either into synthetic Gaussian
noise or into LIGO detector data. We compute the 15-dimensional probability-
density functions (PDFs) for both data sets, as well as for a data set containing
LIGO data with a known, loud artefact (‘glitch’). We show that the analysis
of the signal in detector noise yields accuracies similar to those obtained using
simulated Gaussian noise. We also find that while the Markov chains from
the glitch do not converge, the PDFs would look consistent with a GW signal
present in the data. While our parameter estimation results are encouraging,
further investigations into how to differentiate an actual GW signal from noise
are necessary.
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1. Introduction

Among the sources of gravitational waves (GWs), inspiralling binary systems of compact
objects, neutron stars (NSs) and/or black holes (BHs) in the mass range ∼1 M�–100 M� stand
out as likely to be detected and relatively easy to model. For ground-based laser interferometers
currently in operation (Cutler and Thorne 2002), LIGO (Abbott et al 2009a), Virgo (Acernese
et al 2008) and GEO-600 (Willke et al 2004), the current detection-rate estimates for BH-NS
binaries range from 2 × 10−4 to 0.2 yr−1 for first-generation instruments (e.g. O’Shaughnessy
et al 2008, Abadie et al 2010). Although the estimates are quite uncertain, detection rates
are expected to increase with the upgrade to Enhanced LIGO/Virgo, up to ∼40 yr−1 with
Advanced LIGO/Virgo.

The detection of a gravitational-wave event is challenging and will be a rewarding
achievement by itself. After such a detection, measurement of source properties holds
major promise for improving our astrophysical understanding and requires reliable methods
for parameter estimation. This is a complicated problem because of the large number of
parameters (15 for spinning compact objects in a quasi-circular orbit) and the degeneracies
between them (Raymond et al 2009), the significant amount of structure in the parameter
space and the particularities of the detector noise.

In this paper we use an example to illustrate the capabilities of our Markov-chain
Monte Carlo (MCMC) algorithm SPINSPIRAL (Van der Sluys et al 2008a) for parameter
estimation of binary inspirals with two spinning components, using ground-based GW
interferometers. In these proceedings we focus on the effects of using LIGO detector
data versus synthetic Gaussian noise. Earlier studies (e.g. Jaranowski and Krolak 1994,
Cutler and Flanagan 1994, Poisson and Will 1995, Van den Broeck and Sengupta 2007)
computed the potential accuracy of parameter estimation (e.g. by using the Fisher matrix),
but without performing a parameter estimation in practice. Also, Röver et al (2006), (2007),
(2006), (2008a) explored parameter estimation for binaries without spins, described by nine
parameters.

We present the gravitational-wave template used for this study in section 2, and the
Bayesian framework we employ here in section 3. In section 4.1 we describe the three data
sets that we analyse in this study: a simulated GW signal injected into synthetic Gaussian
noise, a GW signal injected into LIGO detector data and a raw LIGO data set containing a
known artefact of terrestrial origin (‘glitch’). We describe the details of the MCMC simulations
in section 4.2. The analyses of the first two data sets are compared in section 4.3, and we
present our results on the glitch in section 4.4.

2. Gravitational-wave signal and observables

We analyse the signal produced during the inspiral phase of two compact objects of masses
M1,2 in quasi-circular orbit. We focus on a black hole binary system with M1 = 10 M�
and M2 = 1.4 M�, where unlike in some of our previous studies (e.g. Van der Sluys et al
2008b), we do not ignore the second spin to explore the single-spin approximation. During
the orbital inspiral, the general-relativistic spin–orbit and spin–spin couplings (dragging of
inertial frames) cause the binary’s orbital plane to precess and introduce amplitude and phase
modulations of the observed gravitational-wave signal (Apostolatos et al 1994).

A circular binary inspiral with both compact objects spinning is described by a 15-
dimensional parameter vector �λ ∈ �. Our choice of independent parameters with respect to a
fixed geocentric coordinate system is
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�λ = {M, η, log dL, tc, φc, α, cos δ, sin ι, ψ,

aspin1, cos θspin1, φspin1, aspin2, cos θspin2, φspin2}, (1)

where M = (M1M2)
3/5

(M1+M2)1/5 and η = M1M2
(M1+M2)2 are the chirp mass and symmetric mass ratio,

respectively; dL is the luminosity distance to the source; φc is an integration constant that
specifies the GW phase at the time of coalescence tc, defined with respect to the centre of the
Earth; α (right ascension) and δ (declination) identify the source position in the sky; ι defines
the inclination of the binary with respect to the line of sight; and ψ is the polarization angle of
the waveform. The spins are specified by 0 � aspin1,2 ≡ S1,2

/
M2

1,2 � 1 as the dimensionless
spin magnitude, and the angles θspin1,2,φspin1,2 for their orientations.

Given a network comprising ndet detectors, the data collected at the ath instrument (a =
1, . . . , ndet) are given by xa(t) = na(t)+ha(t; �λ), where ha(t; �λ) = Fa,+(t, α, δ, ψ) ha,+(t; �λ)+
Fa,×(t, α, δ, ψ) ha,×(t; �λ) is the GW strain at the detector (see equations (2)–(5) in Apostolatos
et al (1994)) and na(t) is the detector noise. The astrophysical signal is given by the linear
combination of the two independent polarizations ha,+(t; �λ) and ha,×(t; �λ) weighted by the
antenna beam patterns Fa,+(t, α, δ, ψ) and Fa,×(t, α, δ, ψ).

The waveform we use includes terms up to 3.5-post-Newtonian (pN) order in phase
and uses Newtonian amplitudes, with spin effects up to 2.5 pN in phase. We generate
the waveform templates using the routine LALGenerateInspiral() with the approximant
SpinTaylor from the injection package in the LSC Algorithm Library (LAL) (LIGO Scientific
Collaboration 2007), which closely follows the first section of Buonanno et al (2003).

3. Parameter estimation: methods

In our Bayesian analysis we use MCMC methods to determine the multi-dimensional posterior
probability-density function (PDF) of the unknown parameter vector �λ in equation (1), given
the data sets xa collected by a network of ndet detectors, a model M of the waveform and the
prior p(�λ) on the parameters. Our priors are uniform in the parameters of equation (1) (see
Van der Sluys et al (2008a) for details). One can compute the probability density via Bayes’
theorem

p(�λ|xa,M) = p(�λ|M)p(xa|�λ,M)

p(xa|M)
, (2)

where

L ≡ p(xa|�λ,M) ∝ exp
(〈xa|ha(�λ)〉 − 1

2 〈ha(�λ)|ha(�λ)〉) (3)

is the likelihood function, which measures how well the data fit the model M for the parameter
vector �λ. The term p(xa|M) is the marginal likelihood or evidence. In the previous equation

〈x|y〉 = 4Re

(∫ fhigh

flow

x̃(f )ỹ∗(f )

Sa(f )
df

)
(4)

is the overlap of signals x and y, x̃(f ) is the Fourier transform of x(t) and Sa(f ) is the noise
power-spectral density in the detector a. The likelihood computed for the injection parameters
Linj = p(xa|�λinj,M) is then a random variable that depends on the particular noise realization
na in the data xa = h(�λinj) + na . The injection parameters are the parameters of the waveform
template added to the noise. We define the signal-to-noise ratio (SNR) of the injection to be

SNR = 〈x|h(�λinj)〉√
〈h(�λinj)|h(�λinj)〉

. (5)
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From here on, we use the expected value of the SNR, which is equal to the square root of
twice the expectation value of logLinj:

SNR =
√

〈h(�λinj)|h(�λinj)〉. (6)

To combine observations from a network of detectors with uncorrelated noise realizations
(this is the case in this paper as we use two non-co-located detectors), we have the likelihood
p(�x|�λ,M) = ∏ndet

a=1 p(xa|�λ,M) , for �x ≡ {xa : a = 1, . . . , ndet}, and

p(�λ|�x,M) = p(�λ|M)p(�x|�λ,M)

p(�x|M)
. (7)

The numerical computation of the PDF involves the evaluation of a large multi-modal,
multi-dimensional integral. Markov-chain Monte Carlo (MCMC) methods (e.g. Gilks et al
1996, Gelman et al 1997, and references therein) have proved to be especially effective in
tackling this numerical problem. We developed an adaptive (see Figueiredo and Jain 2002,
Atchadé and Rosenthal 2005) MCMC algorithm to explore the parameter space � efficiently
while requiring the least amount of tuning for the specific signal analysed; the code is an
extension of the one developed by some of the authors to explore MCMC methods for binaries
without spin (Röver et al 2006, 2007). We implemented parallel tempering (Hukushima
and Nemoto 1996, Hansmann 1997, Röver 2007) to improve the sampling. It consists of
running several MCMC chains in parallel, each with a different ‘temperature’, which can
swap parameters under certain conditions. Only the T = 1 chain is currently used for
post-processing.

In equation (7) we applied Bayes’ theorem to obtain the probability of a specific parameter
vector value (�λ) given the observed data �x and the model M. The theorem can also be applied
to compute the probability of a specific model Mi given the observed data:

p(Mi |�x) = p(Mi)p(�x|Mi)

p(�x)
. (8)

We compare the two models Mi and Mj by computing the odds ratio

Oi,j = p(Mi |�x)

p(Mj |�x)
= p(Mi)p(�x|Mi)

p(Mj)p(�x|Mj)
= p(Mi)

p(Mj)
Bi,j , (9)

where

Bi,j = p(�x|Mi)

p(�x|Mj)
(10)

is the Bayes factor of the two models, and we recognize the evidence p(�x|Mi) from
equation (7). The evidence must be marginalized over the parameters of the model in order to
compute the Bayes factor:

p(�x|Mi) =
∫

�

p(�λ|Mi)p(�x|�λ,Mi) d�λ. (11)

There are existing algorithms dedicated to the computation of this integral, and of the Bayes
factor. For instance, nested sampling (Skilling 2006) has been shown to be very efficient in
the case of non-spinning gravitational-wave sources (Veitch and Vecchio 2009), and can in
addition be used to produce PDFs of the parameters. As a by-product of the exploration of
the parameter space with MCMC, it is possible to compute the evidence of the models used.
We have implemented the harmonic-mean method (Newton and Raftery 1994), in which the
evidence is approximated by

p(�x|Mi) ≈
N∑

k=1

p(�λk|Mi)p(�x|�λk,Mi)V�λk
, (12)
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where {�λk : k = 1, . . . , N} is the set of N points sampled by the MCMC, and V�λk
is the

volume of parameter space associated with the point �λk . Since the MCMC algorithm samples
according to the posterior (and, up to a proportionality constant, converges towards posterior
PDF), the density of points in the chain at a certain location �λk in the parameter space � will
become proportional to the posterior for large N. It follows that

lim
N→∞

V�λk
= αi

p(�λk|Mi)p(�x|�λk,Mi)
, (13)

where αi a proportionality constant. We then have p(�x|Mi) ≈ ∑N
k=1 αi = N αi , and obtain

the estimate for αi by considering the whole parameter space volume Vt:

Vt ≈
N∑

k=1

V�λk
=

N∑
k=1

αi

p(�λk|Mi)p(�x|�λk,Mi)
. (14)

Finally,

p(�x|Mi) ≈ NVt

[
N∑

k=1

1

p(�λk|Mi)p(�x|�λk,Mi)

]−1

, (15)

which is the harmonic mean of the posterior values sampled by the MCMC. The issue with
this method is that it gives too much weight to low-posterior points, which lie in a part of the
parameter space that is badly sampled, by design, by the MCMC. The estimate of the evidence
is then very sensitive to the quality of the sampling of a particular run. We are looking
into other algorithms in order to remedy this problem, e.g. by using the higher temperature
chains produced by parallel tempering (Earl and Deem 2005) (we currently use the T = 1
chain only), or by using a well-sampled subset of points (Van Haasteren 2009) to estimate the
probability constant αi . A summary of the methods used in our MCMC code was published
in Van der Sluys et al (2008a): a more complete technical description of the SPINSPIRAL code
will be available in Van der Sluys et al (in preparation).

4. Parameter estimation: results

4.1. Data sets

For these proceedings, we analyse three different data sets, each containing the data for the
4 km LIGO detectors at Hanford (H1) and Livingston (L1):

DS1: a coherent software injection with a total SNR of 11.3 into synthetic Gaussian, stationary
noise, simulated for the H1 and L1 detectors;

DS2: a coherent software injection of the same signal, with a total SNR of 11.3, into ‘quiet’
LIGO detector data from H1 and L1;

DS3: raw LIGO data from H1 and L1, containing a known, coincident glitch of seismic origin,
with a total SNR of 11.3.

For the data sets DS1 and DS2, the injected signal is that of a 10 M� spinning BH and a 1.4 M�
spinning NS in an inspiralling binary system. A low-mass Compact Binary Coalescence Group
search (Abbott et al 2009b) does not produce a GW trigger for the data segment DS2; hence we
designate it ‘quiet’. The distance of each of the injections is scaled to obtain an SNR of 11.3,
equal to that of the glitch in DS3, but computed with different waveforms: a SpinTaylor
waveform (see section 2) for DS1 and DS2, and a non-spinning, 2-pN waveform (see

5
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section 4.4) for DS3. The other parameters of the injection are

�λ = {M = 2.99 M�, η = 0.107, dL, tc, φc = 85.9◦, α = 17.4 h, δ = 61.6◦,
i = 52.8◦, ψ = 11.6◦, aspin1 = 0.6, θspin1 = 78.5◦, φspin1 = 63.0◦,
aspin2 = 0.4, θspin2 = 120.0◦, φspin2 = 315.1◦}, (16)

where we assigned a spin of 0.4 to the neutron star, which is higher than astrophysically
plausible, for testing purposes only. In DS3, no signal is injected. For our analyses, we use
the data of both 4 km LIGO detectors H1 and L1.

4.2. MCMC simulations

The MCMC analysis that we carry out on each data set consists of ten independent Markov
chains, each with a length of about a million iterations and composed of five chains at different
temperatures for parallel tempering. From now on, we will refer to the T = 1 chain as the
chain, since the hotter chains were not used in the post-processing. The part of the chains that
is analysed is that after the burn-in period (see e.g. Gilks et al (1996)), the length of which
is determined automatically as follows: we determine the absolute maximum likelihood
log(Lmax), defined as the highest value for log[p(�x|�λ,M)] obtained over the ensemble of
parameter sets �λ in any of our individual Markov chains. Then for each chain we include all
the iterations after the chain reaches a likelihood value of log(Lmax) − 2 for the first time.
This results in a convergence test as well, since some of the independent chains may not
reach this threshold value. Typically, we demand that more than 50% of our chains meet this
condition before we consider the MCMC run as converged, although we consider results as
robust if they have a convergence rate of 80% or more. This convergence test is a measure
of the quality of our sampling in a given number of iterations. All our Markov chains start at
values that are randomly offset from the injection values. The starting values for M and tc are
drawn from a Gaussian distribution centred on the injection value, with a standard deviation of
0.025 M� and 10 ms respectively. In real analysis, the two Gaussian distributions are centred
on the values from the template bank-based search of the Compact Binary Coalescence group
(Abbott et al 2009b) which will have triggered the MCMC followup. The other 13 parameters
are drawn uniformly from their allowed ranges. SPINSPIRAL needs to run for typically a few
days in order to show the first results and a week or two to accumulate a sufficient number of
iterations for good statistics, each chain using a single 2.8 GHz CPU.

4.3. Analysis of data sets DS1 and DS2

We analysed the data sets DS1 and DS2 as described in section 4.1 and the results of both
analyses passed the convergence test described in section 4.2 with convergence rates of 70%
and 80%, respectively. The resulting one-dimensional marginalized PDFs from both analyses
are shown in figure 1.

Table 1 shows the median and the width of the 95%-probability ranges for each parameter.
The differences we find between the results for DS1 and DS2 may be attributed to the particular
noise realizations in this example, and most parameters yield similar PDFs and accuracies.

The PDFs of the parameters that describe the spin of the NS follow the prior distributions
in both runs. This justifies ignoring the NS spin (by fixing aspin2 to 0.0 in the recovery template)
for this mass ratio (Van der Sluys et al 2008b). For each of the two data sets, DS1 and DS2,
we computed the Bayes factor to compare the evidence for the following two models: M1:
a 3.5-pN inspiral waveform embedded in Gaussian noise and M2: Gaussian noise only. The
values are listed in table 2. In both cases, the Bayes factor is large, providing strong evidence

6
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Figure 1. One-dimensional marginalized PDFs for all 15 parameters from our analysis of data sets
DS1 (hatched upward; red online) and DS2 (hatched downward; blue online). The vertical dashed
lines mark the injection values.

for a GW signal in the data. The difference in the Bayes factor between DS1 and DS2 is
attributed to an inherent spread due to different noise realizations, and the uncertainties of our
method to estimate the Bayes factor (section 3). The results in this section show an illustrative
example, but cannot be used to draw firm conclusions. However, it is clear that they warrant
a larger, systematic study of these phenomena with the methods described here.

4.4. Analysis of data sets DS2 and DS3

On 2 November 2006, seismic activity at Hanford and Livingston resulted in a coincident
‘glitch’ in the data from the H1 and L1 LIGO detectors. These glitches were recovered by the
Compact Binary Coalescence detection pipeline at an SNR of 11.3, using non-spinning,
stationary-phase-approximation templates, Newtonian in amplitude and 2.0 pN in phase
(Abbott et al 2009b). We defined the corresponding data set as DS3 in section 4.1 and
analysed the data as if they had yielded a GW trigger. The convergence test from section 4.2
yields a 20% convergence rate, which results in our rejection of the results as not converged.
However, when we nevertheless construct the marginalized one-dimensional PDFs from the

7
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Figure 2. One-dimensional marginalized PDFs of a few selected parameters from our analysis of
data set DS3. The vertical dashed lines indicate the median of each PDF.

Table 1. Median and width of the 95%-probability ranges for each parameter of the analyses of
data sets DS1 and DS2. The column recovered indicates whether or not the 95% range includes
the injection value.

DS1 (synthetic noise) DS2 (detector noise)

Injection Median 95% width Recovered Median 95% width Recovered

M (M�) 2.99 3.006 0.294 Yes 3.041 0.122 Yes
η 0.107 0.133 0.145 Yes 0.183 0.144 Yes
dL (Mpc) 28.615 21.240 20.764 Yes 24.144 17.238 Yes
tc (s) 0.000 −0.013 0.024 Yes 0.006 0.019 Yes
φc (◦) 85.944 189.745 342.398 Yes 185.482 343.175 Yes
α (h) 17.380 11.684 5.349 No 17.786 6.320 Yes
δ (◦) 61.642 49.326 64.346 Yes 58.390 39.796 Yes
i (◦) 52.753 67.056 110.735 Yes 46.850 122.787 Yes
ψ (◦) 11.459 93.162 176.358 Yes 88.706 173.869 Yes
aspin1 0.600 0.658 0.594 Yes 0.804 0.478 Yes
θspin1 (◦) 78.463 85.490 83.110 Yes 89.225 85.787 Yes
φspin1 (◦) 63.025 57.171 335.592 Yes 263.014 345.700 Yes
aspin2 0.400 0.532 0.945 Yes 0.475 0.940 Yes
θspin2 (◦) 120.000 94.687 150.544 Yes 89.406 146.101 Yes
φspin2 (◦) 315.127 181.959 327.603 Yes 184.681 339.071 Yes
M1 (M�) 10.002 8.533 8.849 Yes 6.421 6.536 Yes
M2 (M�) 1.400 1.598 1.277 Yes 2.036 1.564 Yes

data of the two converged chains (because of the small number of data points, the resulting
PDFs may not be very accurate), they are similar in appearance to those from DS2 (see
figure 2). The Bayes factors in table 2 even suggest that the data set DS3 is more consistent
in containing a GW signal than DS2 (with the caveat that the SNRs of DS2 and DS3 were
not computed the same way). On the other hand, the low value for the median of η (0.05)
corresponds to a mass ratio of 18, which is near the limit of the regime where post-Newtonian
expansions are valid. In particular, a small value for eta suggests a slow frequency evolution
which may indicate a spike in the frequency spectrum that dominates the signal. In addition,
we find that the sky map for DS3 does not display the (parts of a) sky ring that is expected
for an analysis using two non-co-located detectors (see e.g. Raymond et al (2009)). These
results indicate that we should thoroughly verify our tests, such as the convergence criterion
described here, using a large number of different glitches.

8
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Table 2. Bayes factors B1,2 between the models M1: a 3.5-pN inspiral waveform embedded
in Gaussian noise and M2: Gaussian noise only (section 4.3) for data sets DS1 and DS2 (see
section 4.1).

DS1 (Gaussian noise) DS2 (detector data) DS3 (glitch)

loge B1,2 52.9 43.5 68.5

5. Conclusions

We have developed the code SPINSPIRAL which can do a complete parameter analysis of the
gravitational-wave signals from quasi-circular compact-binary inspirals. We presented an
example of the analysis of software injections into both simulated Gaussian noise (DS1) and
LIGO-detector data (DS2). We also presented an analysis of a data set containing no injection,
but a ‘glitch’ coincident in two LIGO interferometers (DS3). These examples demonstrate
a remarkable similarity between the results obtained from a GW signal injected in Gaussian
noise and a similar signal in detector data. The Bayes factors are also similar, where we note
that our present technique for computing the Bayes factor yields estimates with significant
variance, and more precise estimates should be possible in the future. In addition, we find that
although the Markov chains in the analysis of a coincident glitch in LIGO data do not converge,
the resulting PDFs could look remarkably consistent with a simulated GW signal. We plan to
run our code on a very large number of coincident triggers from the LIGO Compact Binary
Coalescence search pipeline (noise events that are somehow being registered as resembling a
binary inspiral) in order to get a good sense of how to distinguish them from actual inspirals.
We conclude that further, detailed investigations are necessary to ensure that we can rely on
the robustness of our tests.
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