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Measurements of Diffusion Resonances for the Atom Optics Quantum Kicked Rotor
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We present experimental observations of diffusion resonance s for the quantum kicked rotor with
weak decoherence. Cold caesium atoms are subject to a pulsed standing wave of near-resonant
light, with spontaneous emission providing environmental coupling. The mean energy as a function
of the pulse period is determined during the late-time diffusion period for a constant probability of
spontaneous emission. Structure in the late-time energy is seen to increase with physical kicking
strength. The observed structure is related to Shepelyansky’s predictions of the initial quantum
diffusion rates. Additional results of diffusion rates as a function of the effective Planck’s constant
are given, showing non-trivial behaviour in the quantum-to-classical transition regime.

PACS numbers: 05.45.Mt, 03.65.Yt, 32.80.Lg, 42.50.Lc

I. INTRODUCTION

The atom-optics realization of the kicked rotor has en-
abled the experimental study of the transition between
quantum and classical behaviour for this fundamental
non-linear system. For example, the effects of decoher-
ence, the mechanism whereby quantum interference ef-
fects are destroyed via environmental coupling [1], have
been studied in the quantum system. More classical be-
haviour is observed when decoherence is added, either
by spontaneous emission events [2, 3, 4] or amplitude
noise [5, 6]. However, recent theoretical studies have
concentrated on what is perhaps a more direct approach
of studying the quantum-to-classical transition - vary-
ing the action of the system and thereby the effective
Planck’s constant, i.e., increasing the action to inves-
tigate the limit in which ‘h̄’→ 0 [7, 8]. Of particular
interest in these studies is the behaviour found for inter-
mediate values of ‘h̄’, where pronounced diffusion “reso-
nances” are predicted to exist.

In this paper we present experimental observations of
such diffusion resonances, the structure of which can be
traced to a scaling formula for the initial quantum dif-
fusion rate derived by Shepelyansky [9] and confirmed
experimentally by Klappauf et al. [10]. An effective
“locking in” [7] of the initial rates due to decoherence
leads to the same structure being observable in late-time
energies and diffusion rates.

The system and model that we study is presented in
Sec. II, while the analysis of classical and quantum mo-
mentum diffusion in this system is discussed in Sec. III.
Our experimental set-up is described in Sev. IV, and
the results (experimental, quantum and classical calcula-
tions) are presented in Sec. V. The conclusion is in Sec.
VI.

II. SYSTEM AND MODEL

For our system we use a laser-cooled cloud of caesium
atoms of initial temperature ≈ 20 µK interacting with
a standing wave of off-resonant laser light. The laser is
pulsed with period T and pulse profile f(t). If the laser-
atom detuning is large the internal atomic dynamics can
be eliminated and the motion of the caesium atoms is
described by the single particle Hamiltonian [11]

Ĥ =
p̂2

2m
−

h̄Ωeff

8
cos(2kLx̂)

N
∑

n=0

f(t − nT ), (1)

where x̂ and p̂ are operators representing the atomic
position and momentum, respectively, and kL is the
wave number of the laser light. The effective potential
strength, Ωeff = Ω2(s45/δ45+s44/δ44+s43/δ43), accounts
for dipole transitions between different combinations of
hyperfine levels in the caesium atoms (6S1/2(F = 4) →
6P3/2(F

′ = 5)), where δij are the corresponding detun-
ings between laser and atomic transiton frequencies, and
Ω/2 is the resonant single-beam Rabi frequency. If we as-
sume equal populations of atoms in all ground state Zee-
man sublevels, then s45 = 11

27
, s44 = 7

36
, and s43 = 7

108
.

It is useful to rewrite this Hamiltonian in appropriate
dimensionless units as

Ĥ =
ρ̂2

2
− k cos(φ̂)

∞
∑

n=0

f(τ − n), (2)

which is the usual expression for the Hamiltonian of the
standard kicked rotor system. In these units - which
will be referred to as “scaled units” - the position op-

erator is defined by φ̂ = 2kLx̂, the momentum oper-
ator is ρ̂ = 2kLT p̂/m, time is rescaled as τ = t/T ,
and our new Hamiltonian is related to Eq. (1) by

Ĥ = (4k2
LT 2/m)Ĥ . The classical stochasticity param-

eter is given by κ = ΩeffωrTτp, where τp is the pulse
length in unscaled time and ωr = h̄k2

L/2m. In our exper-
iments, f(τ ) is a good approximation to a square pulse,
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i.e., f(τ ) = 1 for 0 < τ < α, where α = τp/T . Note that
k = κ/α.

In scaled units we have [φ̂, ρ̂] = ik̄, with k̄ = 8ωrT ,
so that the quantum behaviour of our system is reflected
by an effective Planck’s constant, k̄ , which increases as
we increase the pulse period T . This reflects our ability
to change the total action in the system, and hence how
classically our system behaves (for larger k̄ values the
quantum nature of the system should be more apparent).
Note that the effective Planck’s constant is proportional
to the ratio of the total classical action of the system to
h̄.

The natural experimental unit for momentum is that of
two photon recoils, 2h̄kL, and p/(2h̄kL) will henceforth be
referred to as the momentum in experimental units. We
note the relationship ρ/k̄ = p/(2h̄kL) and also define the
quantity φd = κ/k̄ = Ωeffτp/8 as a dimensionless mea-
sure of the physical kicking strength. Experimentally, it
is easier to hold this quantity constant, rather than κ, as
T is varied as a constant value of φd corresponds to con-
stant pulse duration, standing wave detuning and power
(whereas κ is proportional to T ).

Our system is coupled to its environment via atomic
spontaneous emission events, which occur when the cae-
sium atoms absorb photons from the standing wave [2]
and then spontaneously re-emit the photons in random
directions. We characterise the level of this decoherence
by the probability of spontaneous emission per atom per
kick, η. Given the large detuning, i.e., Ωeff/δ � 1, this
process may be modeled by the following master equation
for the density operator ŵ of the system [3],

˙̂w = −i[Ĥ, ŵ]−
η

α

N
∑

n=0

f(τ − n)[cos2(φ̂/2), ŵ]+

+2
η

α

N
∑

n=1

f(τ − n)

∫ 1

−1

duN(u)eiuφ̂/2

× cos(φ̂/2)ŵ cos(φ̂/2)e−iuφ̂/2, (3)

where N (u) is the distribution of recoil momenta pro-
jected onto the axis of the standing wave, and [., .]+ de-
notes an anti-commutator. Simulations of Eq. (3) are
used for comparisons with the experiment.

III. MOMENTUM DIFFUSION

We measure the total kinetic energy of the cloud af-
ter N kicks, which depends on the initial energy of
the cloud plus the increase in the kinetic energy result-
ing from the kicks. The amount of increase for kick
number n is the momentum diffusion rate, given by
2D(n) = 〈ρ̂2

n+1〉 − 〈ρ̂2
n〉, where we denote ρ̂0 = ρ̂(t′ = 0),

ρ̂1 = ρ̂(t′ = 1), etc.. For a kicked rotor system with a suf-
ficiently broad initial momentum distribution, we expect
D(0) = D(1) = κ2/4. The system then passes through
an initial quantum diffusion period lasting typically for

around 5 kicks [8], with a diffusion rate approximated by
the result of Shepelyansky (under the conditions k̄ ≥ 1
and κ � k̄) [9],

Dq =
κ2

2

(

1

2
−J2(Kq)−J2

1 (Kq)+J2
2 (Kq)+J2

3 (Kq)

)

, (4)

where Kq = 2κ sin(k̄/2)/k̄. Note that the classical diffu-
sion rate is also given by Eq. (4), but with Kq → κ (i.e.,
k̄ → 0).

Without decoherence, the system generally settles into
a localised state [12], but the loss of phase coherence pro-
duced by the addition of spontaneous emission causes the
system to settle instead into a final steady state diffusion
regime, with a late time diffusion rate which may be ap-
proximated by the formula [2, 8, 12]

D∞ =

∞
∑

n=0

η(1 − η)nD0(n), (5)

where D0(n) is the diffusion rate at the nth kick for a
kicked rotor without decoherence. Essentially, this for-
mula assumes that dynamical correlations over particular
time intervals which give rise to the late time diffusion
rates are suppressed by a factor equal to the probability
that a spontaneous emission occurs within that time in-
terval. The correlations taken over a set number of kicks
give rise to the diffusion rates seen in the kicked rotor
without decoherence after that number of kicks, which
leads to the late time diffusion rate being an appropriate
weighted average over the diffusion rates as the kicked
rotor “settles down” [8]. Thus, the diffusion rates in the
first few kicks are essentially “locked in” by the sponta-
neous emission events, and we observe similar structure
in the late time diffusion rates as we vary T to that ob-
served in the initial quantum diffusion rates.

The structure we observe in the initial quantum dif-
fusion rates as we vary T for constant φd with diffusion
rates measured in experimental units is particularly in-
teresting. We can express Shepelyansky’s formula in this
regime as

D′

q =
(φd)2

2

(

1

2
−J2(K

′

q)−J2
1 (K ′

q)+J2
2 (K ′

q)+J2
3 (K ′

q)

)

,

(6)
with K ′

q = 2φd sin(4ωrT ). We then see that any structure
in the diffusion rates is periodic in T with period 2π/8ωr

(In fact, from Eq. (5) this is also true for the late time
diffusion rates). We also see that the form of the struc-
ture depends solely on the value of φd. Fig. 1 shows the
initial quantum diffusion rate as a function of pulse pe-
riod for varying values of φd. We see the regular feature
of a peak near the quantum resonance at k̄ = 2π/8ωr

(T = 60.4 µs), and we see increasing numbers of en-
hanced diffusion peaks or resonances as we increase the
value of φd.

The classical diffusion rate can be similarly found in
this regime to be

D′

cl =
(φd)

2

2

(

1

2
−J2(κ)−J2

1 (κ)+J2
2 (κ)+J2

3 (κ)

)

, (7)
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FIG. 1: Theoretical initial momentum diffusion rates in the
quantum case (solid line), D′

q as given by Eq. (6), and the
classical case (dotted line), D′

cl in Eq. (7), in experimental
units of as a function of T for (a) φd = 3, (b) φd = 4.5, (c)
φd = 6 and (d) φd = 7.5. The quantum resonance is seen in
the quantum diffusion rate at T = 60.4 µs.

with κ = 8ωrTφd. The second set of curves in Fig. 1
shows the classical rate for various φd. These rates os-
cillate around the quasilinear value which in these units
is (φd)

2/4, with the oscillations increasing in frequency
with φd. For any given φd however, the structure in the
classical diffusion rate is markedly different to that in the
initial quantum rate.

In the experiment, late-time energies were measured
and not initial diffusion rates. However, the diffusion
resonances discussed above are still observable. The ex-
istence of the same structures in the late time diffusion
rates (in the presence of decoherence) as those in the ini-
tial quantum rates has been verified using the simulations
described later in this paper. An approximate formula for
the energy after N kicks can be found by summing the
diffusion rate at each kick, that is

E′(N ) =
〈
(

p
2h̄kL

)2

〉

2
=

N−1
∑

n=0

D′(n, T ). (8)

Therefore, with the initial and final diffusion rates both
displaying these structures, it follows that the energy at
the N th kick should also display them.

IV. EXPERIMENT

The experimental setup used was much the same as
that used previously in our quantum chaos investigations
[2, 13], with a few modifications. A standard six-beam
magneto-optical trap was used to trap and cool approxi-
mately 105 caesium atoms. The trapping laser frequency
was set about 10 MHz to the red of the 6S1/2(F = 4) →
6P3/2(F

′ = 5) transition. A second (repump) laser was
locked to the 6S1/2(F = 3) → 6P3/2(F

′ = 4) transition
to return those atoms lost to the F = 3 ground state to
the trapping cycle. After a 20 ms cooling phase prior to
kicking, the cloud had a temperature of approximately
20 µK and a width of σcloud ∼ 270 µm in its position
distribution. Kicking of the cloud occurred for up to 2
ms during the 10 ms free expansion phase, at the com-
pletion of which the cloud was “frozen” in space by the
molasses beams and imaged. The repumping beam was
left on during the kicking to prevent loss of atoms to the
F = 3 ground state. The resultant heating effect was
negligible for our experiments.

A third laser was used to create a pulsed optical stand-
ing wave across the cloud. A relatively high power laser
diode was injection locked with a frequency stabilised ex-
ternal cavity laser, giving a beam of up to 22 mW CW
power. For fast switching the beam passed through a
80 MHz Acousto-Optic Modulator (AOM) in front of a
single mode polarisation preserving optical fibre. Tem-
poral modulation was provided via the RF supply to the
AOM, generating pulse shapes very close to rectangular.
The linearly polarised beam was then collimated giving
a beam radius at the cloud of 2σbeam = 1 mm. Finally,
to create a standing wave the beam was retroreflected
by a mirror outside the vacuum cell. The atoms experi-
enced a range of optical potential depths as the cloud’s
width was comparable in size to that of the laser beam.
If φd,max is the kicking strength along the beam axis then
the mean value was found to be φd,mean ≈ 0.77φd,max

with a standard deviation of 18%. In the following, φd

will always refer to φd,mean. The detuning of the kicking
beam to the blue of the F = 4 → F ′ = 5 transition was
monitored as a beat frequency of the superposition of
the trapping and kicking beams. Both the beam detun-
ing and intensity were chosen to give a desired φd while
maintaining a constant spontaneous emission rate. The
range of φd examined in this way was from φd = 3.3 to
6.6. Taking reflection losses at the cell windows into ac-
count, over this φd range the Rabi frequency varied from
Ω/2π = 34 − 76 MHz with corresponding detunings of
δ45/2π = 315 − 740 MHz, thus δ >> Γ, Ω was satisfied
for all φd values considered.

For a chosen φd the pulse length was held constant
(τp = 520 ns), while the pulse period was varied from
2.5 µs to just above the quantum resonance at T ≈ 60
µs. Thirty kicks were delivered to the cloud for each
pulse period. The expanded cloud images were averaged
over the dimension perpendicular to the kicking beam to
yield the momentum distributions of the kicked cloud.
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FIG. 2: Experimental results (top) and the corresponding quantum simulations with fixed φd (middle) for the energy, E′, after
30 kicks as a function of pulse period with τp = 520 ns, η = 0.0125 and for (a) φd = 3.3, (b) φd = 4.0, (c) φd = 5.0, (d) φd = 5.9
and (e) φd = 6.6. Additional quantum simulations (bottom, solid line) take into account the spread in physical kicking strength
φd as do the analytical classical results (bottom, dotted line). The energies are in experimental units and error bars for the
results and simulations are shown but are very small.

From each distribution the mean energy E = 〈p2〉/2 was
calculated. High momenta have a large effect on these
energy values and as this was where the signal dropped
for the higher energy kicked clouds, much care was taken
to reduce the effects of noise. For an experimental run
involving a single φd value, the subtracted background
was an average from just before and after the run. Any
slight fluctuations in background level were accounted for
by defining the zero level for each momentum distribu-
tion via an image taken just before commencement of the
kicking sequence, omitting the small cloud. The signal-
to-noise ratio was on average about 100:1 and for each
value of T the momentum distribution was measured 5
times. Long term fluctuations in the kicking beam power
after the fibre were caused by the transmission of the
Fabry-Perot etalon set up between the fibre ends chang-
ing with time. To minimise the effects of this problem
one fibre end was angle cleaved and the beam power was
checked and readjusted several times throughout a run.
These measures reduced the fluctuations in φd from this
source to ∼ 1%.

V. EXPERIMENTAL RESULTS

A. Varying T while keeping φd constant

We have compared our results with numerical simu-
lations of Eq.(3). The simulations are performed using

the method of quantum trajectories, as in Ref. [8]. The
simulations reflect a system with an initial Gaussian dis-
tribution in momenta of width σρ/k̄ = σp/2h̄kl = 4 (this
corresponds to a cloud of temperature ≈ 20µK). They
also take into account the effects of finite pulse widths,
spontaneous emission noise, and small amplitude fluctu-
ations in the kicking strength.

The results of both experiments and simulations giv-
ing the mean energy as a function of T for various values
of φd are given in Fig. (2). Firstly, the quantum reso-
nance at T ≈ 60 µs is seen to be present for all φd values.
Secondly, while a single broad peak similar to that seen
by d’Arcy et al. [14] is found for φd = 3.3, for larger
φd values more complicated structure is observed. The
peak splits and diverges, whereupon a second peak rises.
The structure mirrors that in the initial quantum diffu-
sion rate as given by Shepelyansky’s result in Eq. (6)
and shown in Fig. 1. For φd = 3.3 there is particularly
good agreement between experiment and theory in peak
height and structure. For higher φd there is still good
agreement in the position of the peaks, but discrepan-
cies between the “peak-to-valley” energy differences for
theory and experiment are apparent which are not ac-
counted for by experimental error. Also, the broadness
of the overall structure is greater in the experimental
results than in the simulations especially for lower φd

values. There are a number of effects that can account
for these discrepancies, which will be discussed below.
However, we still see a clear correspondence between the
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FIG. 3: Initial momentum diffusion rates, D′, with constant
φd (dash-dotted line) and the experimental spread in φd (solid
line) in experimental units as a function of T for (a) φd = 3.3,
(b) φd = 5.0 and (c) φd = 6.6.

resonance structure predicted via the simulations and ob-
served experimentally, which are also clearly related to
resonances predicted by Shepelyansky’s result.

One source of discrepancy between our experimental
results and the simulations shown in the middle row of
Fig. (2) is the fact that the kick strength is not the
same for all atoms. Firstly, there is a spread in physical
kicking strengths due to the finite width of the kicking
beam, which results in atoms at different radial positions
across the beam interacting with laser fields of different
intensity. The simulations of the middle row, however,
assume a constant φd value of 0.77 of the maximum ex-
perimental kicking strength, φd,max. The effect of the
spread in kicking strengths on the initial Shepelyansky
diffusion rates is easily examined and also applies to the
late-time energies. If ρ(r) is the 2-dimensional cloud den-
sity as a function of radius r, and φd(r) the distribution
of kicking strengths, then we define the diffusion rate for
a given φd,max as [15]

D̄(φd,max, T ) =

∫

∞

0

D(φd(r), T )ρ(r)2πrdr, (9)

where D(φd(r), T ) is given by Eq. (6). Calculating
D̄(φd,max, T ) for a broad kicking beam with σcloud <<
σbeam, corresponding to constant φd(r), reproduces the
pronounced structure as seen in Fig. 1 and in the sim-
ulations. But calculating the diffusion rate with the 2:1
beam-to-cloud width ratio as used experimentally and
with φd,max = φd/0.77, gives less accentuated diffusion
resonance structure which is broader over the pulse pe-
riod values. Fig. 3 displays these results for a few values
of φd. Thus, a spread in φd values creates an averag-
ing effect which diminishes and broadens the resonance

structure.

A spread in φd values is also caused by atoms in
different magnetic substates of the F = 4 level cou-
pling to the higher energy states with different transi-
tion strengths, resulting in atoms in different substates
experiencing different kicking strengths. The combina-
tion of this effect with that caused by the finite beam
width can create a spread of φd values which is as large
as 20% of the mean φd value. In order to account for
this, we performed additional simulations in which the
φd value for each trajectory was chosen from a distribu-
tion based on the 2:1 beam-to-cloud width ratio for our
system (assuming that each has a radial Gaussian pro-
file). Also factored in were the relative coupling strengths
of atoms in different magnetic substates for the exper-
imental detunings δ = 315, 385, 485,575,655 MHz for
φd = 3.3, 4.0, 5.0, 5.9,6.6 respectively (assuming an equal
population of atoms in each substate). The results of
these simulations are shown in the bottom row of Fig.
2. These additional simulations give much better agree-
ment with the results, with the resonance structure be-
ing less pronounced. Also, the greater broadness of the
overall structure in the results, particularly noticeable for
φd = 3.3, is accounted for.

However, there is still some discrepancy in energy val-
ues between the experimental results and the additional
simulations. For φd = 5.9 and 6.6 the measured energies
are overall much lower than expected, while for all φd

they are much larger than in the simulations around the
quantum resonance region of T = 58-68 µs. The first
problem is accounted for by realising that in recording
the momentum distributions, at some point signals at
higher momenta fall below the noise level and therefore
are effectively “lost in the noise”. Hence, the measured
total energy of the cloud is systematically lower than the
true energy after kicking. For bigger φd, for which en-
ergies are higher in general, this problem is particularly
pronounced as more atoms lie in the wings of the distri-
bution. The discrepancy around the quantum resonance
currently remains unexplained, but could be a system-
atic effect related to the larger pulse period values in this
region. Continuing investigations will hopefully resolve
this issue.

Overall, agreement between the experimental results
and the additional simulations is very good, with clear
structure evident and the amount of detail increasing
with φd as expected. For comparison, the energies for
the classical system after 30 kicks were also computed by
assuming that the diffusion rate for the first two kicks is
φd/4, and for subsequent kicks is given by Eq. (7). They
were averaged over the same spread in φd values that
was used in the additional quantum simulations and are
shown in the bottom row of Fig. 2. Note that the ener-
gies are larger than the quantum simulations, as it would
be expected, and for φd = 5.9 and 6.6 go off the scale,
oscillating around E′ = 300 and 560 respectively. With
regards to their structure, the classical energies clearly
exhibit very different behaviour from those measured in
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ing quantum simulations averaged over the spread of κ values
(dashed line) giving the late-time diffusion rate, D∞, in scaled
units for κ = 11, η = 0.012 and a maximum α of 0.015.

the quantum system, which confirms that the recorded
resonance structure is a quantum effect.

B. Varying k̄ while keeping κ constant

Keeping φd constant and examining the energy after a
certain number of kicks is the most straightforward ex-
perimental method of investigating diffusion resonances.
However, for the kicked rotor it is not the most natural
choice of experiment or units. It would be preferable to
work with a constant κ rather than φd, for in the latter
as we change the pulse period we effectively deal with
a different kicked rotor system each time. For theoreti-
cal considerations it is more direct to keep κ constant, as
well as η and α, and directly examine the diffusion rate in
scaled units as a function of k̄. In this way the structure
in the quantum-to-classical transition for a single rotor
system can be investigated directly.

We will now briefly look at a experimental realisation
of such an investigation and the subsequent results. As
was reported previously in Ref. [8], Shepelyansky’s re-
sult also gives rise to resonance structure in the initial
diffusion rates in scaled momentum units as the effective
Planck’s constant k̄ is varied. The “locking in” effect
causes the same structure to be observable in the late-
time diffusion rate, D∞, and it is this rate that we have
also investigated experimentally.

The experimental method was quite similar to that
for the previous results, but with some important differ-
ences. Firstly, to keep the theoretical parameters κ and
η constant as k̄ is varied requires a different kicking beam
detuning, power and pulse length for each point on the
curve. In finding a viable set of parameters, taking into
account experimental limitations and theoretical consid-
erations, one concession that had to be made was to vary
the parameter α = τp/T at higher k̄. However, as α was

reduced - which tends to increase diffusion rates - in a
region where D∞ is expected to decrease, no additional
feature should appear. Reducing α as such stretched the
upper k̄ limit to 4.9. The first quantum resonance at
k̄ = 2π is therefore not seen in the results presented
here. To estimate the late-time diffusion rate the en-
ergy, E(N ) = 〈ρ2〉/2, of the cloud after 16 and 30 kicks
was measured to give D∞ ≈ (E(32) − E(16))/16. As
the momentum distributions in the measurement units of
two-photon recoils were quite narrow a truncation of the
wings of the measured distributions was possible. This
further reduced the effect of noise in this high-momentum
region on the measured energies. Simulations of Eq. (3)
were performed as before, taking into account the spread
in κ due to the finite kicking beam width and differing
transition strengths for the various magnetic sublevels of
the F = 4 level.

Fig. 4 displays the measured and simulated late-time
diffusion rate as a function of k̄ for κ = 11, η = 0.012 and
a maximum α of 0.015, where α decreases from k̄ = 3.7
onwards to be finally 0.012 at k̄ = 4.9. Note that this is
only a 20% decrease in the value of α, and, as mentioned
above, cannot cause the decrease in diffusion rate seen in
this area.

We see in the experimental results that a peak in the
diffusion rate occurs as expected, but the quantitative
agreement with the simulations is poor. The placement
of the peak is somewhat to the right as compared to the-
oretical simulations and the measured diffusion rates are
greater than expected, with those at higher k̄ significantly
larger than the simulations. We are currently perform-
ing further investigations, which will hopefully uncover
the source of these problems and improve the agreement
between the simulations and experimental results. Also
note that the larger error bars for the diffusion rates at
higher k̄ are caused by the momentum distributions in
the measurement units of two-photon recoils becoming
narrower in these regions, thus making energy differences
more difficult to resolve.

Nevertheless, a peak in the experimental results is ev-
ident; a clear observation of action-space diffusion reso-
nances. The transition region between the quantum and
classical regimes is indeed not as smooth as one would
expect. It contains a diffusion peak separate from the
quantum resonances as predicted by Shepelyansky’s re-
sult.

VI. CONCLUSION

In conclusion, we have presented experimental and
simulation results showing non-trivial behaviour in the
late-time energy and diffusion rate as the pulse period/k̄
is varied for the quantum kicked rotor. Very good quali-
tative agreement between the results and simulations can
be seen. The relationship between the observed structure
to Shepelyansky’s scaling for the quantum correlations is
evident. Furthermore, we note that the structure observ-
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able in the late time energies confirms that in a system
subject to environmental coupling a dependence of the
late-time diffusion rate on the initial quantum diffusion
rate exists.

Investigations are currently underway to discover the
source of remaining discrepancies between the simula-

tions and experimental results. We have also begun stud-
ies of similar diffusion resonances found in the quantum
kicked rotor with the addition of amplitude noise on the
kick strength and noise on the period between kicks.

This work was supported by the Royal Society of New
Zealand Marsden Fund, grant UOA016.
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