Recall that

\[\text{CLIQUE} = \{ \langle G, k \rangle : G \text{ is an undirected graph, } k \geq 1, \text{ and } G \text{ contains a } k\text{-clique} \}. \]

Also, for any \(k \geq 1 \), let

\[\text{CLIQUE}_k = \{ \langle G \rangle : G \text{ is an undirected graph that contains a } k\text{-clique} \}. \]

In class, we will soon learn that \(\text{CLIQUE} \) is \(NP \)-complete. Without going into details, this means that if \(\text{CLIQUE} \in P \), then \(P = NP \). The common belief is that \(P \neq NP \), and hence \(\text{CLIQUE} \not\in P \).

A. Show that \(\text{CLIQUE}_k \in P \) for all \(k \). (For the sake of Problem B, it might help if you try to pin down your running time fairly precisely. By the way, the \(k = 3 \) case is Problem 7.9 in our textbook.)

B. Explain how it’s possible that \(\text{CLIQUE}_k \in P \) for all \(k \), but \(\text{CLIQUE} \not\in P \). In other words, explain why someone might think that \((\forall k \text{ CLIQUE}_k \in P) \implies \text{CLIQUE} \in P \), and why that argument can’t be completed.