My treatment of breadth-first search and Dijkstra’s algorithm differs from our textbook’s in two ways. First, I structure the two algorithms to emphasize their similarity. Second, I keep track of predecessor nodes. For any node \(u \), the predecessor \(p \) is the node immediately before \(u \) on the shortest path from \(s \) to \(u \). Predecessor nodes are useful for reconstructing the shortest path explicitly, rather than just knowing its length.

1 Breadth-First Search

Input: A graph \(G = (V, E) \) and a start node \(s \in V \). Output: A list of nodes in \(G \), each tagged with information about the (or a) shortest path from \(s \) to the node. Specifically, each node will be presented in a triple \([u, p, d]\), where \(u \) is the node, \(p \) is the predecessor node (or \(\text{None} \)), and \(d \) is the distance from \(s \) to \(u \) (the number of edges used in the shortest path).

1. Let \(\text{frontier} = [[s, \text{None}, 0]] \) and \(\text{known} = [] \).
2. While \(\text{frontier} \) is not empty:
 (a) Remove the first item \([u, p, d]\) from the start of \(\text{frontier} \).
 (b) For each neighbor \(v \) of \(u \):
 i. If \(v \) is not in \(\text{known} \) and not in \(\text{frontier} \), then append \([v, u, d + 1]\) to the end of \(\text{frontier} \).
 (c) Append \([u, p, d]\) to \(\text{known} \).
3. Return \(\text{known} \).

2 Dijkstra’s Algorithm

Input: A weighted graph \(G = (V, E) \) and a start node \(s \in V \). Let \(\text{weight}(u, v) \) denote the weight of the edge from \(u \) to \(v \), if any. Output: A list of nodes in \(G \), each tagged with information about the (or a) shortest path from \(s \) to the node. Specifically, each node will be presented in a triple \([u, p, d]\), where \(u \) is the node, \(p \) is the predecessor node (or \(\text{None} \)), and \(d \) is the distance from \(s \) to \(u \) (the total weight of the edges used in the shortest path).

1. Let \(\text{frontier} = [[s, \text{None}, 0]] \) and \(\text{known} = [] \).
2. While \(\text{frontier} \) is not empty:
 (a) Remove the triple \([u, p, d]\) from \(\text{frontier} \) that has the least \(d \).
 (b) For each neighbor \(v \) of \(u \):
 i. If \(v \) is in \(\text{frontier} \), then let \([v, q, c]\) be its triple in \(\text{frontier} \); if \(d + \text{weight}(u, v) < c \), then update \(v \)’s triple in \(\text{frontier} \) to be \([v, u, d + \text{weight}(u, v)]\).
 ii. If \(v \) is not in \(\text{known} \) and not in \(\text{frontier} \), then append \([v, u, d + \text{weight}(u, v)]\) to \(\text{frontier} \).
 (c) Append \([u, p, d]\) to \(\text{known} \).
3. Return \(\text{known} \).