In this first problem, you will write a function (in the language of your choice, but preferably Python) that simulates a given DFA on a given input. For this to work, we need to agree on a uniform way of describing DFAs. Let us adopt the convention that the states of a DFA are numbered \(q_0, q_1, \ldots, q_{n-1} \), where \(n \) is the number of states and \(q_0 \) is not necessarily the start state. Similarly, let’s agree that the symbols are numbered \(a_0, a_1, \ldots, a_{m-1} \), where \(m \) is the size of the alphabet. Then one can uniquely specify a DFA by the following data.

- A list \(\text{delta} \) of length \(n \), such that each entry of \(\text{delta} \) is a list of \(m \) integers from \(\{0, 1, \ldots, n-1\} \). This \(\text{delta} \) is the table for the DFA’s transition function \(\delta \). Namely, if the machine is in the \(i \)th state and sees the \(j \)th symbol, then it transitions to the \(\text{delta}[i][j] \)th state.
- A number \(s \) belonging to the set \(\{0, 1, \ldots, n-1\} \), to indicate the start state.
- A list \(F \) of numbers from \(\{0, 1, \ldots, n-1\} \), with no repeats, to indicate the final states.

We have not specified the set \(Q \) of states or the alphabet \(\Sigma \), but we know how big each is from the structure of \(\text{delta} \), and we know how to compute with them because the states and symbols are uniquely identified as numbers. Thus \(\text{delta}, s, \) and \(F \) essentially encode the DFA.

The input string \(w \) to a DFA on \(m \) symbols shall be represented as a list of numbers from the set \(\{0, 1, \ldots, m-1\} \). For example, the string \(w = a_3a_3a_1a_0a_5 \) shall be represented as \([3, 3, 1, 0, 5]\). Finally, our DFA function will output \(\text{True} \) or \(\text{False} \) (or whatever the appropriate analogue is, in your chosen language) rather than Accept or Reject.

A. Write a function \(\text{dfa} \) that simulates a given DFA on a given input. That is, \(\text{dfa} \) takes in four arguments — \(\text{delta}, s, F, \) and the list \(w \) — and outputs either \(\text{True} \) or \(\text{False} \), according to whether the DFA described by \(\text{delta}, s, F \) would accept or reject that input. Include a short example transcript showing that your code works. (Print out and hand in on paper.)

B. 1.16b

C. 1.32

D. 1.38. Explain how to construct, for any arbitrary all-NFA, an equivalent DFA. List \(Q, \Sigma, \delta, q_0, \) and \(F, \) rather than drawing a diagram. You need not prove that your construction works.

E. 1.45. This problem is significantly harder than the others, I think. You may want to use the result of 1.31 (which you do not have to prove).