A. Let \(D = 0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9 \). Let
\[
Z = DDDD \cup DDDD - DDDD.
\]

B. Let \(A \) be a regular expression that matches all single upper-case letters, lower-case letters, and spaces \(_{..} \). Let
\[
S = DD^* _{..} AA^*.
\]

C. Let
\[
P = PO _{..} Box _{..} DD^*.
\]

D. Let \(C \) be a regular expression that matches all single upper-case letters. Let \(N \) be a regular expression that matches the newline and carriage return characters. Then the regular expression that we desire is
\[
AA^* N (S \cup P) NAA^* _{..} CC^* _{..} Z.
\]

[This problem is somewhat under-specified and open-ended. In grading, I am looking for reasonable answers that demonstrate basic competence with regular expressions. In other words, a perfect answer is not required. Just about any answer can be improved to a slightly better answer that handles more obscure cases.]

B. Let \(A \) be regular and \(B \) be context-free. Let \(M \) be a DFA for \(A \) and \(N \) a PDA for \(B \). We will design a PDA \(P \) for \(A \cap B \), that simulates \(M \) and \(N \) simultaneously and accepts if and only if both \(M \) and \(N \) accept. The stack of \(P \) will be used to simulate the stack of \(N \). Precisely, let
\[
\begin{align*}
\Sigma^P &= \Sigma^M = \Sigma^N, \\
\Gamma^P &= \Gamma^N, \\
Q^P &= Q^M \times Q^N, \\
q^P_0 &= (q^M_0, q^N_0), \text{ and} \\
F^P &= F^M \times F^N.
\end{align*}
\]

It remains to describe \(\delta^P \). For every transition \(\delta^M (q^M, a) = r^M \) and \(\delta^N (q^N, a, t) = (r^N, u) \), add a transition
\[
\delta^P ((q^M, q^N), a, t) = ((r^M, r^N), u).
\]

By our usual reasoning for the product construction, \(P \) accepts exactly \(A \cap B \).

C. [This is 1.49b in our textbook. By the way, 1.49a is more interesting.] Let \(A = \{1^n w : n \geq 0 \text{ and } w \text{ contains at most } n \text{ 1s} \} \subseteq \{0,1\}^* \). Assume for the sake of contradiction that \(A \) is
Let p be the pumping length for A. Let $s = 1^p01^p$. Then $s \in A$ and $|s| \geq p$. By the pumping lemma, $s = xyz$ where $y \neq \epsilon$, $|xy| \leq p$, and $xy^iz \in A$ for all $i \geq 0$. It is easy to see that xy is a substring of the first 1^p in s. Thus $y = 1^k$ for some $1 \leq k \leq p$, and $xy^0z = 1^{p-k}01^p$. When $1^{p-k}01^p$ is written in the form $1^n w$, it must be true that $n \leq p - k < p$ and there are at least p 1s in w. Thus $xy^0z \notin A$. This contradiction implies that A is not regular after all.

D. [This is 1.63a in our textbook.] Let A be infinite and regular. Because A is regular, there exists a pumping length p for A. Because A is infinite, there exists a string $s \in A$ such that $|s| \geq p$. By the pumping lemma, there exist strings x, y, z such that $y \neq \epsilon$ and $xy^iz \in A$ for all $i \geq 0$. Let $B = \{xy^iz : i \text{ is even}\}$. Because $y \neq \epsilon$, B is infinite. Because $x(yy)^*z$ is a regular expression for B, B is regular. Let $C = A - B = A \cap \overline{B}$. Because B is regular, so is \overline{B}. Because A and \overline{B} are regular, so is their intersection, which is C. Because C contains xy^iz for all odd i, C is infinite. Finally, B and C are disjoint, and $B \cup C = A$. Thus A is a disjoint union of two infinite, regular languages B and C.

E. [This is 2.9 in our textbook.] This context-free grammar works for the given language:

$$S \rightarrow TC \mid AU, \quad C \rightarrow \epsilon cC, \quad A \rightarrow \epsilon aA, \quad T \rightarrow \epsilon aTb, \quad U \rightarrow \epsilon bUc.$$