A. Let \(A, B \in P \). Let \(M, N \) be deterministic Turing machines that decide \(A, B \) in time \(O(n^k), O(n^\ell) \), respectively. Define a Turing machine \(K \) that, on input \(w = w_1 \cdots w_n \), does the following.

1. For \(i = 0, \ldots, n \):
 (a) \(K \) runs \(M \) on \(w_1 \cdots w_i \).
 (b) \(K \) runs \(N \) on \(w_{i+1} \cdots w_n \).
 (c) If both \(M \) and \(N \) accept, then \(K \) accepts; otherwise, \(K \) continues.

2. If \(K \) has not accepted by now, then \(K \) rejects.

Thus \(K \) accepts a string \(w \) if and only if that string can be expressed as the concatenation of a string in \(A \) and a string in \(B \). The running time of \(K \) on an input of length \(n \) is no worse than

\[
 n \cdot \left(O(n^k) + O(n^\ell) \right) = O(n^{1 + \max(k, \ell)}).
\]

So \(K \) is polynomial-time. Thus \(P \) is closed under concatenation.

B. We know from class and the textbook that \(\text{NP} \subseteq \text{PSPACE} \). So, if any language in \(\text{PSPACE} \) is reducible to \(B \), then any language in \(\text{NP} \) is reducible to \(B \).

(If you don’t remember that \(\text{NP} \subseteq \text{PSPACE} \), here’s how you could figure it out. We know that \(\text{NP} \subseteq \text{NPSPACE} \), because a Turing machine cannot use more space than it uses time. We know that \(\text{NPSPACE} \subseteq \text{PSPACE} \), because of the theorem that says that simulating a nondeterministic Turing machine with a deterministic one causes only a quadratic blowup in the space required.)

C. You’ve proved in your homework that \(A \) is not decidable, probably by mimicking our proof that \(K(x) \) is not computable. Essentially the same proof shows that \(A \) is not recognizable.

Suppose that \(M \) is a recognizer for \(A \). Define a Turing machine \(N \) that, on input \(n \) (regarded as an integer in binary), outputs a string \(x \) such that \(K(x) \geq n \). \(N \) can do this by running \(M \) on all strings of length \(n \), in parallel. At least one of these strings \(x \) is incompressible. Eventually, \(M \) will eventually tell \(N \) that \(x \) is incompressible. At that point, \(N \) stops running \(M \) and outputs \(x \). Let \(m \) be any integer large enough that

\[
 m - \lfloor \log_2 m \rfloor - 1 > |N| + |\#|.
\]

Let \(x = N(m) \). Then \(N\#m \) is a description of \(x \), of length less than \(m \), so \(K(x) < m \). But the definition of \(N \) guarantees that \(K(x) \geq m \). This contradiction shows that \(A \) cannot be recognizable.
D. Let \(D \) be a regular expression matching any digit. Let \(L \) match any letter, and let \(A \) match any character other than carriage returns. Let \(C \) be the carriage return character (usually written \(\backslash n \) or \(\backslash r \) in programming languages). Let \(\cdot \) denote a space. Then an addressee is

\[
AA^*,
\]

(without the comma), a street address is

\[
DD^* \cdot AA^* \cdot
\]

a P.O. box is

\[
PO_{\cdot}Box \cdot DD^*,
\]

and a valid third line is

\[
AA^*, LL^* DDDD(\epsilon \cup −DDDD).
\]

So a valid postal address is

\[
AA^*C(DD^* \cdot AA^* \cup PO_{\cdot}Box \cdot DD^*)CAA^*, LL^* DDDD(\epsilon \cup −DDDD).
\]

E. Assume (for the sake of contradiction) that \(A \) is a CFL. Let \(p \) be the pumping length guaranteed to exist for \(A \) by the pumping lemma for CFLs. Let

\[
s = 1^p0^p \cdot \#1^p0^p.
\]

Then \(s \in A \), so the pumping lemma guarantees that \(s = uvxyz \) for strings \(u, v, x, y, z \) such that \(|vxy| \leq p \), \(|vy| \geq 1 \), and \(uv^ixy^iz \in A \) for all \(i \geq 0 \). There are several cases.

- If \(vxy \) is contained in the \(1^p0^p \) on the left-hand side, then we can pump up to make the left-hand side longer than the right-hand side. In particular, \(uv^2xy^2z \notin A \).

- Similarly, if \(vxy \) is contained in the \(1^p0^p \) on the right-hand side, then we can pump down to make the right-hand side shorter than the left-hand side: \(uxz \notin A \).

- The only remaining case has \(\# \in vxy \). Then clearly \(\# \notin x \), or else we could pump \(v \) and \(y \) to wreck the number of \(\# \)'s. Because \(|vxy| \leq p \), we know that \(v = 0^k \) and \(y = 1^\ell \) for some \(k, \ell \leq p \). We must have \(k > 0 \), because otherwise pumping \(v \) and \(y \) would just mean pumping \(y \), and we could pump down to make the right-hand side shorter than the left-hand side. But then, because \(v \) is a nonempty string of 0's, pumping up \(v \) and \(y \) causes the left-hand side to have more 0's than does the right-hand side, so we again leave \(A \).
We have shown that, no matter how u, v, x, y, and z are arranged, we can pump to leave the language A. This contradiction shows that A cannot be context-free.

F. For any Turing machine M and string w, define a Turing machine N that, on input x, simply runs M on w and then accepts. So, if M halts on w, then N accepts all strings x, and $L(N)$ is infinite. On the other hand, if M does not halt on w, then N does not halt on any input x, so $L(N) = \emptyset$ is finite. Thus the function that takes (M, w) to N is a computable reduction of HALT_{TM} to A. Because HALT_{TM} is not recognizable, it follows that A is not recognizable.