Carleton College Math 111, Winter 2008, Exam 1

You have 60 minutes.

You may not use any notes or calculator.

Always show your work and explain all of your answers. Good work often earns partial credit. A correct answer with no explanation often earns little or no credit.

If you have no idea how to solve a problem, or if you have forgotten a key formula that you think you need to know, you may ask me for a hint. The hint will cost you some points (to be decided unilaterally by me as I grade your paper), but it may help you earn more points overall.

Good luck.
1. Differentiate the following functions. Do NOT simplify.
 A. \(y = 5x^6 - 2x^3 + 3x + 1 \).

 B. \(s(t) = \frac{t}{\cos t} \).

 C. \(p = 4^r \cdot (3r - 1) \).

 D. \(y = \left(2e^{5t} + \sin \left(\sqrt{t} \right) \right)^7 \).
2. The Furtwängler Glacier on Mount Kilimanjaro is a giant sheet of ice. Suppose, for simplicity, that it is rectangular of length 600 m and width 100 m. Due to warming climate, its length and width are both shrinking by 5 m per year. Its thickness is a constant 6 m. How fast is the volume of the glacier changing? Simplify your answer, and include units.

3. Suppose that $x = f(t) = \cos(2t) + \sin(3t)$ is the position of a particle at time t. Compute the particle’s acceleration. Simplify and clearly mark your answer.
4. Recall that Newton’s law of cooling is expressed by the differential equation \(\frac{dy}{dt} = k(A - y) \).

A. Explain in words the physical meaning of these five quantities:

- \(t \)
- \(y \)
- \(A \)
- \(k \)
- \(\frac{dy}{dt} \)

B. We used \(k = 0.9 \) in the Santa-cooling problem in class. If we had used a lesser (but still positive) value of \(k \), such as 0.5, would Santa cool more slowly or more rapidly? Explain.

C. The value \(k = 0.9 \) was given to us by the police but not explained further. In words, describe some circumstances of Santa’s death that might influence the police estimate for \(k \).
5. Show that \(\lim_{h \to 0} h \sin \left(\frac{1}{h} \right) = 0. \)

6. Compute the derivative, at \(x = 0 \), of \(y = f(x) = \begin{cases}
 x^2 \sin \left(\frac{1}{x} \right) & \text{if } x \neq 0, \\
 0 & \text{if } x = 0.
\end{cases} \)
7. The table below shows the number s of web sites in existence, for each year t in a 10-year period. I wish to model s as a function of t. When I plot the data on a semilog plot, I get a line of slope 1.43 and intercept 2.31. What then is the function $s(t)$? Simplify your answer.

<table>
<thead>
<tr>
<th>year t</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td># sites s</td>
<td>42</td>
<td>176</td>
<td>735</td>
<td>3070</td>
<td>12800</td>
<td>53600</td>
<td>224000</td>
<td>936000</td>
<td>3910000</td>
<td>16400000</td>
</tr>
</tbody>
</table>

8. Graph $y = e^{2x} - 4$ as precisely as you can (including the correct scale, intercepts, etc.).