SETTLED POLYNOMIALS OVER FINITE FIELDS

RAFE JONES AND NIGEL BOSTON

ABSTRACT. We study the factorization into irreducibles of iterates of a qua-
dratic polynomial f over a finite field. We call f settled when the factorization
of its nth iterate for large n is dominated by “stable” polynomials, namely
those that are irreducible under post-composition by any iterate of f. We
prove that stable polynomials may be detected by their action on the critical
orbit of f, and that the the critical orbit also gives information about the split-
ting of non-stable polynomials under post-composition by iterates of f. We
then define a Markov process based on the critical orbit of f and conjecture
that its limiting distribution describes the full factorization of large iterates
of f. This conjecture implies that almost all quadratic f defined over a finite
field are settled. We give several types of evidence for our conjecture.

Let F, be the finite field with ¢ elements, and consider a polynomial f € F,[z]
of degree d. In this paper we consider the iterates of f, namely the polynomials

ffi=fofo---of.
—_—

Our particular interest is in understanding the factorization of these polynomials
into irreducibles. We give some general results on these factorizations, and explore
connections to number theory. While in general f™ has many irreducible factors, we
call f settled if, loosely, the number of factors remains small as n grows; see Section 1
for a precise definition. A complete understanding of the factorizations, and indeed
merely of settledness, appears difficult to obtain even in the case d = 2. However,
we develop a conjectural theory in this case and give computational evidence for
it. Previous work on the irreducibility of polynomial iterates (also called stability;
see Section 2) has focused principally on the case of polynomials with coefficients
in number fields. See for instance [1], [2], [3], [6], [7], [9], and [10]. Settledness was
mentioned briefly in Sections 3 and 5 of [4]. The current paper is a thorough study
of the phenomenon.

The organization of the paper is as follows. In Section 1 we discuss the connec-
tions to number theory, which were our original motivation. In Section 2 we give
results on the factorizations of f™ in the case where f has degree 2, in particular
connecting them to the presence of squares in the forward orbit of the critical point
of f. Results from this section play a role in recent work of Ostafe and Shparlinski
[11]. In Section 3 we develop a conjectural theory of factorizations of f™, where
irreducible factors behave in accordance with a certain Markov process, implying
that essentially all quadratic polynomials are settled. Section 4 gives examples and
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2 JONES AND BOSTON

evidence for this conjecture, whilst Section 5 shows that the Markov process does
not directly yield the Galois groups of the iterates.

1. MOTIVATION AND BACKGROUND

We motivate our work with some background on arboreal Galois representations.
Say f is a polynomial with coefficients in a number field K. If o € K is a root of
its nth iterate, f, then f(«a) is a root of f*~1. It follows that the set of roots of
all iterates of f form a tree where edges are assigned between elements if f maps
one to the other. We denote this tree T'. For general f, T is the complete deg(f)-
ary rooted tree. In this case, since elements of Gal (K/K) commute with f, we
obtain a continuous map 7 : Gal (K/K) — Aut(T) that we call an arboreal Galois
representation. See [4] for further discussion. In order to define L-functions as in the
case of linear Galois representations, one requires a conjugacy invariant quantity
that encodes essential information about the images of the Frobenius elements
Froby,.

The image of 7 may be alternately described as the inverse limit of the groups
Gal (K,,/K), where K, is the splitting field over K of f™. We may thus describe
7(Froby,) by describing its images in Gal (K, /K) as n grows. Let g € K[xz] be
any monic irreducible polynomial, and for a prime p in the ring of integers Ok of
K we recall that the residue field Ok /p := F, is a finite field. By reducing the
coefficients of g modulo p, one obtains a polynomial g € F[z]. It is well-known that
the cycle structure of the action of Frob, on the roots of g is given by the degrees
of the irreducible factors of the polynomial § € Fp[z]. Hence understanding the
factorization of iterates of f € F4[z] yields information on 7(Froby) in Gal (K, /K)
for all n.

2. SETTLEDNESS

Definition 2.1. Let K be a field and f,g € K[x]. We say g is f-stable if g o f"
is irreducible over K for n = 0,1,2,.... We say f is stable if f is f-stable, i.e., all
iterates of f are irreducible. We say f is eventually stable if some iterate of f is the
product of f-stable polynomials. Finally, for fixed n, let g1, ..., g, be the f-stable
polynomials dividing f™ (repeated according to their multiplicity as factors of f™),
and denote by s, the sum of their degrees. We call f settled if nlingo Sn/deg f* = 1.

The stability and settledness of polynomials in general has not been much stud-
ied. There are some results in special cases, such as f quadratic ([1], [2], [3], [10],
[9]) and f(z) = 2™ — b [6]. In [9] the first author conjectures that all quadratic
f € Z]z] with 0 not periodic are eventually stable (considered as polynomials over
Q). Our main purpose here is to investigate settledness for polynomials over finite
fields. In particular, we give evidence for the following conjecture:

Conjecture 2.2. Let q be an odd prime power and let f € F,[x] be quadratic with
f # x%. Then f is settled.

In this section we give some results on settledness extending those in [4] and [9].
A consequence of Conjecture 2.2 is that to each quadratic f € Z[z] and odd prime
g we can associate a particular (possibly infinite) partition of unity as follows. If
g1,- .- g are the (not necessarily distinct) stable divisors of f™, arranged in non-
increasing order by degree, then write (degg;)/2"™ + -+ - + (deg g,-)/2". Taking the
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limit as n — oo yields a partition of unity by settledness. This partition encodes
information about the Frobenius conjugacy class at ¢ in the Galois group of | K,
over Q, and may be viewed as an analogue of the trace of Frobenius in the case of
linear Galois representations. See [4] for more details.

Note that if g is f-stable, then in particular g is irreducible. The basis for
many of our results on stability and settledness is a simple criterion for f-stability
in characteristic not equal to two, which becomes a characterization of f-stability
in the case that K is a finite field of odd characteristic. To state this criterion,
we need some terminology: the critical orbit of a quadratic f € K[z] is the set
{fi(y) :i=2,3,...}, where v is the critical point of f, while the adjusted critical
orbit of fis {—f(V)}U{fi(y):i=2,3,...}.

Proposition 2.3. Let K have characteristic not equal to two. A quadratic polyno-
mial f € K[x] is stable if its adjusted critical orbit contains no squares. In the case
where K is a finite field, f is stable if and only if its adjusted critical orbit contains
no squares.

To prove Proposition 2.3 we need two preliminary results. The first is a well-
known lemma:;:

Lemma 2.4 (Capelli’s Lemma). Let K be a field, f(z),g(z) € K|z, and let 3 € K
be any root of g(x). Then g(f(x)) is irreducible over K if and only if both g is
irreducible over K and f(x) — (8 is irreducible over K(3).

Our second preliminary result is similar to one appearing in [2], but we give here
a slightly different statement and a more direct proof.

Lemma 2.5. Let K be a field of odd characteristic, f(x) = ax® + bx + ¢ € K|z],
and v = —b/2a be the unique critical point of f. Suppose that g € K|x] is such
that g o f*~' has degree d and is irreducible over K for some n > 1. Then go f*
is irreducible over K if (—a)%g(f™ (7)) is not a square in K. If K is finite then we
may replace “if” with “if and only if.”

Proof. (cf [8, Lemma 4.13]) By Capelli’s Lemma and the irreducibility of go "1,
we have go f™ irreducible if for any root 3 of go f*~1, Disc (f(z)—f3) = b*>—4ac+4af
is not a square in K(3). Now

Ni(o/x(b® —dac+4ap) = (-4a)* ] (‘b2 to— 5)

B root of go fm1 da
= (—4a)lgo "1 (=0 /da+c) = (—4a)?g o f"H(f()).

This proves the Lemma in the case of a general field K. Note that Ng(gy/k is a
multiplicative homomorphism, thus mapping squares to squares. If K = F, then
since 1/2 of the elements of F,(3)* are squares, it follows that a € F,(0) is a square
if and only if Ng,(g)y/r, (@) is a square in F,. O

Note that Proposition 2.3 follows by taking g(x) = x in Lemma 2.5. The fol-
lowing is a new result that will help in the analysis of several examples in Section
3

Proposition 2.6. Let f(z) = ax® + bz +c € K[z] and let v = —b/2a be the unique
finite critical point of f. Suppose that g € K[x] is such that go f*~' is irreducible
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over K for somen > 1. Then either g o f™ is irreducible or there exists a monic
h € K|[z] such that

go ["(x) = kh(z —v)h(—(z — 7))
for some k € K.

Proof. Suppose that g o f™ is reducible, and let degg o f* = d. Consider the
action of G,, := Gal (K (go f™)/K) on the roots of go f", where K(go f™) denotes
the splitting field of g o f™ over K. Since g o f™ is reducible, this action has at
least two orbits. However, since g o f»~! is irreducible, each orbit has at least
deggo f*~! = d/2 elements. Thus there are precisely two orbits.

By Capelli’s Lemma, f(x)— 3 is reducible over K (3) for every root 3 of go f*~1.
Note that

f(x) = B=ax?—bxr+c—B=a((x—v)*— (b* — dac — 4af) /4a?).

Let +ag be the square roots of (b*> — 4ac — 4af3)/4a?, and choose the signs so that
{ag : B aroot of go f*~1} is one Galois orbit and {—ag : 3 a root of go f*~1} is
the other. We then have

gofr=a'T[((z =) —ap) [T (@ =) +ap).
B

B

Since n > 2, the degree of g o f"~! is even. Thus the second product may be
rewritten as [[5(—(z —v) — ag). Taking h(z) = [[5(z — ag) € K|z] completes the
proof. ([

3. A MARKOV MODEL FOR FACTORIZATIONS OF ITERATES

In this section we specialize to the case K = [y, still taking ¢ to be an odd prime
power and f to be quadratic. We develop a conjectural model for the factorization
of f™ into irreducibles as n grows.

For f € Fylz], define ¢y to be the number of distinct elements of the critical
orbit of f, i.e., one less than the smallest integer k such that f*(y) = f7(y) with
k> j > 1. It follows from Proposition 2.5 that the factorization of iterates of f is
determined by the presence of squares in the finite sequence consisting of the first
cg + 1 terms of the adjusted critical orbit, i.e., —f(7), f2(7), ..., [/ T1(7). Indeed,
if the first element of this sequence that is a square is the ith one, then f? is the
first reducible iterate of f. More generally, if h € F,[z] is irreducible, then by
Proposition 2.5 we have that when deg h is odd, then h is f-stable if and only if the
sequence —h(f (7)), h(f2(7)), ..., h(fT1()) contains no squares. When deg h is
even, as is the case when h = f* for some i > 1, we need only consider the sequence
R(f(7)), h(£2(7)), ..., h(f(¢fv)). Moreover, in either case if the first element of the
appropriate sequence that is a square is the ith one, then h o f is reducible and
ho f7 is irreducible for j < i.

Example 3.1. Let f = 22+1 and K = F,. When ¢ = 3, we have f(y) =1, f2(y) =
2, and f3(vy) = 2. Here ¢y = 2, and the sequence —f(v), f2(v), £3(7), f4(7) is just
2,2,2 2. This contains no squares, and thus f is stable. When ¢ = 7, the critical
orbitis 1 -2 — 5 — 5 — ---. The relevant sequence is 6,2,5,5. Since the second
element is a square, we conclude that f is irreducible but f2 factors. Note also that
h = 2% +x +4 divides f3, and since deg h is even and h(f (7)), h(f2(7)), h(f3(7)) =
6, 3,6 contains no squares, we conclude that h is f-stable.
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Let f € Fy[x] be quadratic, and suppose that all iterates of f are separable over
F, (equivalently, 0 is not in the forward orbit of the critical point of f). Consider
the tree V' defined as follows. The vertices consist of all irreducible h € F4[z] such
that h | f™ for some n > 0, where we take f* = x. There is an edge connecting h;
and hs precisely if ho divides hy o f. We call the factor(s) of h o f the immediate
descendant(s) of h (there may be one or two). Denote by V;, the vertices of distance
n from fo, so that V;, = {h € F,[z] : h irreducible and h | f”}. The graph furnishes
a natural map V,11 — V,,, and we take L = liin V. to be the inverse limit of this

directed system. We refer to the elements of L as ends of the tree V. If we assign
the discrete topology to each V,,, then L becomes a profinite topological space.
Moreover, we assign a probability measure to each V,, by taking u,(h) = 27" deg h.
These measures are compatible with the maps V,,11 — V,,, and it follows that we
have a measure p on L that restricts to u, for each n. We thus have a probability
space L, u, B, where B denotes the Borel o-algebra on L.

We now wish to label almost all vertices of the aforementioned graph with a
type, which is a string of letters taken from the alphabet {n,s}. Let g € F,[z]
be irreducible of even degree. Recall that the critical orbit of f has c; elements.
The type of g is a string of length ¢y consisting of the letters n and s according to
whether each element of the set {h(f(7)), h(f2(7)),...,h(f (7))} is a non-square
or a square. We sometimes wish to multiply types, which we do by identifying n
with —1 and s with 1. Clearly the type of an even-degree irreducible factor i of f™
encodes certain splitting information about the portion of the graph V emanating
from h. In the case where deg h is odd, or equivalently degh = 1, we must assign a
string of length cy+1 to encode the same information. For simplicity we leave these
vertices unlabeled. Note that an end of V' whose projections in V,, have degree 1 for
every n yields a sequence a1, o, ... of elements of Fy with f(ay) = a,—1 for n > 2
and f(aq) = 0. Thus a,, = ay, for some n > m, implying that 0 = f™(a,) = apem.
Therefore 0 is periodic under iteration of f, whence «,, = 0 for infinitely many n,
i.e., the polynomial x occurs for infinitely many projections (powers of x cannot
occur since all iterates of f are separable). It follows that there can be at most
one such end. Thus for any end belonging to a cofinite subset of L, only a finite
number of the associated vertices are unlabeled.

We denote by 7, the natural restrictions L. — V,,. Consider random variables
X, : L — {n,s}% defined by X,,(I) = ¢(m,(1)). Thus X,, simply returns the
labeling of the nth vertex associated to the end [. By the remarks in the second
paragraph of this section, we have that the stochastic process X1, X5, ... completely
determines the factorizations of the iterates of f. Moreover, we have the following
characterization: f is settled if and only if
(3.1) lim u(X, =(n---n))=1.

n—oo
We call the process X1, Xs,... the factorization process of f.

In the factorization process, some types cannot occur as immediate descendants
of certain other types, because of Proposition 2.6. The next proposition gives the
precise constraints.

Proposition 3.2. Suppose that F, is a finite field of odd characteristic, and f €
F,[x] is quadratic with critical orbit of length m and all iterates separable. Let g €
F,[x] be irreducible of even degree. Suppose that hihs is ¢ non-trivial factorization
of go f, and let d; (resp. e;) be the ith digit of the type of hy (resp. ha). Then
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there is some k, 1 < k < m, with d,, = er and e,, = di,. Moreover, k = m if and
only if v is periodic.

Remark 3.3. When + is not periodic, the value of k is the length of the tail of
the orbit of v under f. In other words, k is the smallest positive integer with

fk(’y) 75 fz(’y) for all i, but fk—H(’y) = f‘(’y) for some 1.

Proof. By Proposition 2.6, there is h € F,[z] with hy = h(x—7) and hy = h(—z+7).
A straightforward calculation shows that hi(—x+27v) = ha(z) and hy(x) = he(—z+
2v). Hence a relation among elements of the form hy(f()) and those of the form
ha(f7 (7)) occurs when

(3.2) f') == +2y

for some 4, 5. If fi(y) = f7(v) then 2fi(y) = 2v, and 7 is periodic, with m being the
smallest positive integer satisfying f™(v) = «. Then hy(vy) = h(0) = ha(7y) implies
that d,, = en,. If fi(y) # f7(v), then writing f(z) = (z — v)? + ¢ and applying it
to both sides of (3.2) shows that fi*1(y) = f7*1(y). Thus ~ is not periodic under
f,and k = min{i, j} is the smallest positive integer such that f*(v) is not periodic.
Note that k¥ < m — 1 in this case. O

Consider now a time-homogeneous Markov process Y7, Ys, ... related to f, which
we call the f-Markov process and define as follows. The state space is the type space
of f, namely {n,s}°’. We define the f-Markov process by giving its transition
matrix M = (P(Y, = t;|Y,—1 =t;)), where t; and t; vary over all types, and this
completely determines the process. Note that the columns of M must sum to 1
(we remark that many authors take the transition matrix to be the transpose of
M). We define M by assuming that all allowable types of immediate descendants
have equal probability. To define allowable types, note that f naturally acts on its
critical orbit, and thus also on the set of types. Indeed, if ¢ is a type, then f(t) is
obtained by shifting each entry one position to the left and using the former nth
entry as the new final entry, where n is such that f¢/*1(y) = f*(y). If g € V has
type t and t begins with n, then there is only one immediate descendant of g, and
it will have type f(¢). This is the only allowable type in this case. If ¢ begins with
s, then g has two descendants whose types must multiply to f(¢). Among pairs
of types t1,ts with t1t3 = f(t), we call allowable those that satisfy the conclusion
of Proposition 3.2, namely d = e,, and e; = d,, with & = m if ~ is periodic,
and k the length of the tail of the orbit of « if « is not periodic. See Examples
4.1 and 4.2 for examples of f-Markov processes. The following proposition gives a
characterization of allowable types.

Proposition 3.4. Let f € F,[z] be quadratic with critical point v, critical orbit of
length m, and all iterates separable. Let k be the length of the tail of the orbit of v
under f, with k = m if v is periodic, and let ay - - - a,, be a type with a; = s. Then
the type dy - - - dp, is an allowable type of immediate descendant of ay --- a., if and
only if k=m or k <m and did,, = ag4+1-

Proof. Let g € F4[z] be irreducible with even degree and type a; - --an,, where
a1 = 8. Then go f = hiho, and the types dy - - - dp, €1 - - - €y, Of hq, ho must multiply
to f(ai---am), which is as---ana; if & = m and az---apmag1 if & < m. In
particular we have d,e,, = a1 if kK = m and drer, = dpen = ap41 if E < m.

If £ = m, then by Proposition 3.2 we must have d,, = e,,. But this is equivalent
to dmen = s, which is already assured since d,,e,, = a1 = s. Therefore dy ---d,, is
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allowable. Suppose that k < m. If dy - - - d,;, is allowable, then by Proposition 3.2 we
have e, = d,,,. From dixer = ax4+1 we thus have did,, = agy1. If dpdy, = ak41, then
we have dypep = did,, and did,, = d;,emn, implying that d; - - - d,,, is allowable. [

From the definition of allowable types, we see that the type n---n is fixed under
the action of f and has only one descendant and hence is an absorbing state of
the f-Markov process (that is, P(Y, =n---n|Y,_1 =n---n) = 1). We wish to
show that the f-Markov process is in fact an irreducible absorbing Markov process,
namely that every non-absorbing state transitions to every other state with non-
zero probability after a finite number of steps.

Corollary 3.5. Let f € F,[z]| be quadratic with all iterates separable. Then the
f-Markov process is an irreducible absorbing Markov process.

Proof. Let v be the critical point of f, and m the length of the critical orbit.
Suppose that a;---a,, is a type with a3 = s. We show that every type is an
allowable descendant of an allowable descendant of a; ---a,,. This is enough to
establish the corollary since each non-absorbing type with first entry n transitions
to a type with first entry s with probability one after a finite number of steps.

Let k be the length of the tail of the critical orbit of f, with k = m if the critical
point is periodic. If k = m, the corollary follows immediately from Proposition 3.4.
If £ < m, then a; - - - a,, has at least one descendant dj - - - d,,, with dx41 = n and
at least one with diy1 = s. The corollary now follows from Proposition 3.4. (]

Absorbing Markov processes are well-studied, and we recall some of their prop-
erties; see [12, page 236] for details. Most saliently, any initial state lands on an
absorbing state after finitely steps with probability 1. Hence for the f-Markov
process Y1,Yo, ...,

(3.3) lim P(Y;=n---n) =1

1—00

In the case where the process is irreducible, the probability of being in a non-
absorbing state decreases by a factor of A each time, where A is the largest eigenvalue
of M less than 1. Moreover, if we denote by M* the sub-matrix of M obtained by
deleting the rows and columns corresponding to absorbing states, then M* has A
as an eigenvalue of multiplicity one and the entries of any non-trivial corresponding
right eigenvector give the asymptotic relative frequencies of each non-absorbing
state, known as the quasi-stationary distribution. See examples 4.1 and 4.2.

We will give evidence that, when n is large, the factorization process of f behaves
quite similarly to the f-Markov process. One such similarity is that for quadratic
f € Fylz] with all iterates separable, the only absorbing state of the factorization
process is n - - - n (see the second paragraph of this section). We make the following
far more expansive conjecture. The first part immediately implies Conjecture 2.2
in the case where all iterates of f are separable, by equations (3.1) and (3.3).

Conjecture 3.6. Let f € Fy[z] be quadratic with all iterates separable.

(1) The distribution of the factorization process of f converges to that of the
f-Markov process, namely the distribution having all its mass on n---n.

(2) Suppose f is not eventually stable, i.e., no iterate of f factors as a product
of f-stable polynomials. Let X1, X5, ... be the factorization process for f
and X\ be the largest eigenvalue less than 1 of the transition matrix M of
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the f-Markov process. Then we have

X, =t
n—oc 3, P(Xpo1=1t)
where the sums are taken over all states except n---n.
(3) Under the hypotheses of part (2), the relative frequencies of all non-n---n
states in the factorization process for f converge to those of the f-Markov

process.

4. EXAMPLES AND EVIDENCE

We first treat the few cases where the factorization process can be completely
described, and then give computational evidence for Conjecture 3.6 in more compli-
cated cases (Examples 4.1 and 4.2). The simplest possible case is when the critical
orbit of f € F,[z] consists of a single point, i.e., the critical point is a fixed point.
This occurs precisely when f is conjugate to 2?2, i.e. f = (x + u)? — u for some
u € F,. In this case one can choose a lift of f to a polynomial feoyL [x], where L is
some number field. In this case the Galois groups of iterates of f can be explicitly
computed (they are subgroups of the affine group AGL;(Zs), which is isomorphic
to Zo x Z3%). One can thus write down the cycle types of all Frobenius conjugacy
classes, and hence in particular the factorizations of f™ € Fy[x] (see [4, Section 4]
for a discussion of the case where ¢ is prime and @ € Z is chosen to be prime).

The next simplest case is when the critical orbit contains two points. Every
quadratic polynomial in odd characteristic is conjugate to one of the form f.(z) =
22 + ¢, and solving for ¢ with f3(0) = £.(0) and f2(0) = f2(0) shows that a two-
element critical orbit occurs only when f is conjugate to 2> — 2 or 2 — 1. In
these cases, we have critical orbits that are translates of -2 — 2 — 2 — --- and
-1 —0— —1 — ---, respectively. In the former case, the Galois groups of lifts
are also subgroups of AGL1(Zs), and the analysis is similar to that of the previous
paragraph.

Hence the simplest case where the factorization of iterates cannot be determined
explicitly via a finite amount of data occurs when f is of the form (z +u)? —u — 1.
In order to have f irreducible over Z, we take u = 1. We note that the Galois
groups over Q of the iterates of f have been studied in [4, Section 4]. Their inverse
limit is conjecturally large enough to have nonzero Hausdorff dimension in Aut(7)
and is related to the well-known Basilica group. The splitting fields over QQ of
the iterates of f are 2-extensions unramified outside 2 and oo. Understanding the
images of Frobenius in this arboreal Galois representation, and thus understanding
the factorization process of f € Fp[z] for various primes p, is the next step in
analyzing this situation.

Example 4.1. Let f = (z + 1)®> — 2 € F,[z], where ¢ is a prime power. In this
case f has finite critical orbit even over Z, so the critical orbit is the same for all g,
namely —2 — —1 — —2 — ... We have f(nn) = nn, f(ns) = sn, f(sn) = ns, and
f(ss) = ss. Because the critical point —1 is periodic, by Proposition 3.4 all types
of immediate descendants are allowable from the states sn and ss, giving:

nn — nn, ns v sn,
sn +— sn/nn or ss/ns,

$s — nn/nn or ns/ns or sn/sn or ss/ss
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Ordering lexicographically (here nn,ns, sn, ss), the two matrices

1 0 025 0.25

0 025 0.25
My = 8 (1) 832 8;2 MP={(1 025 0.25
' ' 0 0.25 0.25

0 0 025 0.25

are, respectively, the transition matrix of the f-Markov process and its submatrix
corresponding to the non-absorbing states. The matrix M; has eigenvalues approx-
imately —0.3090,0,0.8090, 1, where A = (v/5 4+ 1)/4 ~ 0.8090 is half the golden
ratio. A right A-eigenvector of M; is (1,/5,1). Hence the masses in states ns and
ss are ultimately about the same, say «j for the value at time k. The mass in state
sn at time k is about v/5oy,, and ak+1 ~ 0.8090qy,.

According to Conjecture 3.6, this behavior should be reflected in the factorization
process for f. In this case, the critical orbit of f is the same for all ¢, and in Table
1 we give the masses for all states in the factorization process at large iterates for
several prime values of q.

prime | iterate nn sn ns EX

3 24 0.9910 | 0.0046 | 0.0019 | 0.0024
3 25 0.9928 | 0.0037 | 0.0018 | 0.0017
3 26 0.9942 | 0.0032 | 0.0013 | 0.0013
3 27 0.9953 | 0.0026 | 0.0010 | 0.0011
3 28 0.9962 | 0.0019 | 0.0010 | 0.0010
5 24 0.9941 | 0.0034 | 0.0013 | 0.0013
5 25 0.9952 | 0.0026 | 0.0011 | 0.0011
) 26 0.9961 | 0.0020 | 0.0009 | 0.0010
5) 27 0.9969 | 0.0017 | 0.0007 | 0.0007
5 28 0.9975 | 0.0013 | 0.0006 | 0.0006
7 24 0.9884 | 0.0062 | 0.0028 | 0.0027
7 25 0.9906 | 0.0049 | 0.0023 | 0.0022
7 26 0.9923 | 0.0041 | 0.0018 | 0.0019
7 27 0.9937 | 0.0033 | 0.0015 | 0.0015
7 28 0.9949 | 0.0027 | 0.0012 | 0.0012
11 24 0.9839 | 0.0081 | 0.0037 | 0.0043
11 25 0.9873 | 0.0069 | 0.0029 | 0.0029
11 26 0.9898 | 0.0055 | 0.0024 | 0.0024
11 27 0.9915 | 0.0041 | 0.0021 | 0.0022
11 28 0.9931 | 0.0039 | 0.0015 | 0.0015

TABLE 1. Masses in each state of the factorization process for
f(z) = (z +1)? — 2 € F,[x] for various primes gq.

Example 4.2. We turn to an example with critical orbit of length 3. As in Ex-
ample 3.1, let f = 22 + 1 and K = F;. The behavior of types beginning with
n is determined by noting that f(nnn) = nnn, f(nns) = nss, f(nsn) = snn, and
f(nss) = sss. In the notation of Proposition 3.4, we have k = 2, and so the allow-
able descendants of snn are the types dydads with dods = n, i.e. nns,nsn, sns, and
ssn. Performing similar analyses for sns, ssn, sss and using lexicographic ordering
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of types gives the transition matrix

100 0 O 025 0 025
0 0 0 0 02 0 025 0
0 00 0 025 0 025 0
My = 0100 0 025 0 025
001 0 0 025 0 025
0 00 0 025 0 025 0
0 00 0 02 0 025 0
0001 0 025 0 025

We remark that there are only three distinct f-Markov processes for f with critical
orbit of length 3, one corresponding to each possible length of the periodic part of
the critical orbit. The matrix Ms has largest eigenvalue (other than 1) equal to
approximately 0.9010, one quarter of the largest root ¢t ~ 3.6039 of 23 — 222 — 8z +
8 = 0. Looking at a suitably normalized corresponding right eigenvector of M,
we see that nns,nsn, sns, ssn should each account for about the same proportion
of the factorization of f*, say oy, that nss,snn should each account for about

Iterate | nnn nns nsn nss snn sns ssm 5558

2 0.0000 | 0.0000 | 0.5000 | 0.0000 | 0.0000 | 0.5000 | 0.0000 | 0.0000
3 0.2500 | 0.0000 | 0.0000 | 0.0000 | 0.7500 | 0.0000 | 0.0000 | 0.0000
4 0.2500 | 0.1250 | 0.2500 | 0.0000 | 0.0000 | 0.2500 | 0.1250 | 0.0000
5 0.3750 | 0.0625 | 0.0625 | 0.1250 | 0.3750 | 0.0000 | 0.0000 | 0.0000
6 0.3750 | 0.0625 | 0.1250 | 0.0625 | 0.0625 | 0.1250 | 0.0625 | 0.1250
7 0.5625 | 0.0312 | 0.0000 | 0.0625 | 0.1875 | 0.0312 | 0.0625 | 0.0625
8 0.5781 | 0.0781 | 0.0469 | 0.0312 | 0.0156 | 0.0469 | 0.0781 | 0.1250
9 0.6641 | 0.0469 | 0.0391 | 0.1094 | 0.1016 | 0.0000 | 0.0078 | 0.0312
10 0.6953 | 0.0391 | 0.0117 | 0.0469 | 0.0391 | 0.0156 | 0.0430 | 0.1094
11 0.7480 | 0.0098 | 0.0215 | 0.0410 | 0.0176 | 0.0312 | 0.0195 | 0.1113
12 0.8320 | 0.0107 | 0.0137 | 0.0137 | 0.0352 | 0.0078 | 0.0049 | 0.0820
13 0.8564 | 0.0137 | 0.0059 | 0.0215 | 0.0186 | 0.0063 | 0.0142 | 0.0635
14 0.8787 | 0.0046 | 0.0061 | 0.0396 | 0.0164 | 0.0117 | 0.0103 | 0.0327
15 0.8987 | 0.0068 | 0.0033 | 0.0129 | 0.0110 | 0.0065 | 0.0100 | 0.0508
16 0.9161 | 0.0059 | 0.0077 | 0.0188 | 0.0146 | 0.0046 | 0.0028 | 0.0296
17 0.9224 | 0.0069 | 0.0015 | 0.0179 | 0.0159 | 0.0018 | 0.0072 | 0.0264
18 0.9288 | 0.0051 | 0.0062 | 0.0105 | 0.0120 | 0.0064 | 0.0054 | 0.0256
19 0.9369 | 0.0041 | 0.0059 | 0.0131 | 0.0132 | 0.0045 | 0.0028 | 0.0195
20 0.9437 | 0.0045 | 0.0035 | 0.0079 | 0.0128 | 0.0035 | 0.0044 | 0.0196
21 0.9510 | 0.0047 | 0.0040 | 0.0077 | 0.0080 | 0.0040 | 0.0047 | 0.0160
22 0.9581 | 0.0033 | 0.0031 | 0.0085 | 0.0076 | 0.0030 | 0.0033 | 0.0131
23 0.9629 | 0.0025 | 0.0029 | 0.0058 | 0.0067 | 0.0029 | 0.0026 | 0.0137
24 0.9677 | 0.0026 | 0.0022 | 0.0053 | 0.0056 | 0.0021 | 0.0025 | 0.0121
25 0.9721 | 0.0018 | 0.0020 | 0.0053 | 0.0049 | 0.0023 | 0.0021 | 0.0097
26 0.9760 | 0.0018 | 0.0017 | 0.0040 | 0.0044 | 0.0017 | 0.0017 | 0.0086
27 0.9790 | 0.0016 | 0.0015 | 0.0036 | 0.0039 | 0.0015 | 0.0015 | 0.0074

TABLE 2. Masses in each state of the factorization process for
f(z) =2*+1 € Frlz].
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(t — 1)ag =~ 2.6039ay, and sss for about (2 —t — 5)ay, ~ 4.3840ay,. Moreover,
apt1 = (t/4)ay =~ 0.9010c. Table 2 contains data for the first 27 iterates of f.

We now return to Example 4.1 and examine some related issues. First, since
the critical orbit of f = (z + 1)? — 2 € F,[z] is the same for all ¢, one can use
Chebotarev’s Density Theorem to study how varying q over prime values changes
the factorization behavior of a given iterate. Note that this is different from the
question of being settled, which involves fixing the prime and varying the depth.
For example, suppose that ¢ is a prime that is 5 (mod 8), so that f has type sn and
so f2 splits into two factors hihs. Then hi(—=1) = ha(—1) and both are nonsquares
since hi(—1)ha(—1) = f?(—1) = —1 and —1 has no 4th root (mod ¢). Thus sn
always decays to sn/nn at this level. The nn factor is f-stable but what about
the decay of the new sn factor? It turns out that it leads to ss/ns if and only if
g = 2% — 422 4 428 + 82* + 4 has a linear factor (mod ¢). Looking at the Galois
group of g of order 128, we see that exactly half of the primes that are 5 (mod 8)
have ss/ns at the next level.

Second, we wish to give additional evidence that the factorization process of
f = (x 4+ 1)?> — 2 mimics a Markov process, beyond the content of Conjecture
3.6. Here we examine at the kth iterate how many irreducible factors of type sn
decay to sn/nn and how many to ss/ns. The Markov model suggests that either
possibility should be equally likely. Likewise, we can perform the same calculation
with irreducible factors of type ss. Table 3 contains the corresponding data. Note

sn 88
prime | iterate || sn/nn | ss/ns || nn/nn | sn/sn | ns/ns | ss/ss
3 23 168 163 80 86 92 106
3 24 221 227 132 136 110 160
3 25 291 321 208 184 200 182
3 26 433 379 234 272 222 278
3 27 657 569 306 306 358 344
5 23 117 122 46 78 72 60
) 24 168 151 96 106 80 82
5 25 235 233 108 120 110 128
5 26 293 293 160 172 154 208
5 27 414 394 268 276 218 240
7 23 182 239 90 94 88 142
7 24 255 234 188 182 208 184
7 25 371 393 212 214 216 194
7 26 927 500 270 290 260 354
7 27 716 710 384 462 410 452
11 23 158 169 92 78 78 96
11 24 209 207 136 136 108 150
11 25 311 281 188 182 174 170
11 26 413 395 226 212 228 236
11 27 506 574 310 320 292 340

TABLE 3. Decay data for the factorization process of f(z) = (z +
1)? — 2 € F,[x] for various primes gq.
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that the numbers in each row of the sn/nn and ss/ns columns are approximately
equal, in accordance with the Markov process. The same is true of the numbers in
each row of the last four columns.

As a final check that the factorization process behaves like a Markov process for
large iterates, we check that there is no bias over two steps. An irreducible factor
of type sn can arise from a previous sn, ns, or ss. For each of these we see how
many sn decay to sn/nn and how many to ss/ns. The data can be found in Table
4. Note that the numbers in the sn/nn and ss/ns columns from Table 3 are broken

sn from sn sn from ns sn from ss
prime | iterate || sn/nn | ss/ns || sn/nn | ss/ns || sn/nn | ss/ns
3 23 63 48 65 75 40 40
3 24 85 83 97 97 39 47
3 25 120 101 115 140 56 80
3 26 156 135 174 163 103 81
3 27 224 209 295 226 138 134
3 28 331 326 282 319 166 140
3 29 356 423 455 472 241 201
3 30 542 510 577 668 334 300
) 23 47 54 47 43 23 25
5 24 60 57 62 62 46 32
5 25 90 78 96 98 49 57
5 26 122 113 111 120 60 60
5 27 140 153 172 171 102 70
5 28 207 207 234 213 137 139
7 23 73 89 75 108 34 42
7 24 98 84 108 105 49 45
7 25 130 125 150 177 91 91
7 26 196 175 215 227 116 98
7 27 264 263 304 305 148 142
7 28 374 342 360 400 234 228
11 23 47 73 72 59 39 37
11 24 84 74 90 90 35 43
11 25 108 101 134 113 69 67
11 26 164 147 164 151 85 97
11 27 192 221 207 248 107 105

TABLE 4. Two-step decay data for the factorization process of
f(z) = (z +1)? — 2 € F,[x] for various primes gq.

up according to where the sn entry producing them came from. Once again, in each
row of each pair of columns the numbers are approximately equal, in accordance
with the Markov process, which would say that what happens at one level should
be independent of the past.

5. THE MARKOV PROCESS AND GALOIS GROUPS

Recall that any polynomial conjugate to x? — 1 yields the same transition matrix
My for any prime p. We might then expect that the Markov process determines
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the density of cycle structures in the Galois groups of iterates and hence the Galois
groups themselves. This turns out to be often but not always true.

Definition 5.1. A level n type sequence is a partition of 2" into powers of 2 together
with a map from each term of the partition to the set of types. If two terms are
equal, we do not order them. A level n datum is a level n type sequence together
with a rational number between 0 and 1 (called its probability of occurring). The
level n data is a collection of these for which the sum of the probabilities is 1.

For example, if n = 5 and we consider the partition 2° = 16 + 8 4 4 + 4, then
the map sending 16 to nn, 8 to sn, and each 4 to ss defines a level 5 type sequence
which we will write [nn, 16][sn, 8][ss, 4]%. Associating the rational number 1/128 to
it yields a level 5 datum.

Now suppose f(z) = (x +t)? — (t+ 1) and p is a prime. The factorization of f"
modulo p yields a level n type sequence s where the partition is given by the degrees
and the types by the types of the corresponding irreducible factors. Attaching to s
the density of primes p yielding the type sequence s then produces a level n datum.

The advantage of the approach using level n data is that one can both read off
the possible cycle structures with their densities (often allowing determination of
the Galois group) and also apply the Markov process to obtain level n + 1 data.
The goal then is to start with level 1 data and iteratively obtain level n data for
every n and hence the Galois groups. We will assume that f is generic, meaning
that ¢ is not of the form m?,m? — 1,2m?2, or 2m? — 1. This will ensure that the
Galois groups of its iterates are as large as possible.

The first twist is that the Markov process must be modified depending on whether
pis 1 (mod 4) or 3 (mod 4) because, as noted in Lemma 2.5, linear factors behave
differently under iteration, depending on whether —1 is a square modulo p. For
example, if pis 1 (mod 4), then an [nn, 1] factor will always yield an [nn, 2] factor,
whereas if pis 3 (mod 4), then it will yield [nn, 1][ss, 1] or [ns, 1][sn, 1] equiprobably.
In the first case, the probability of the type sequence will stay the same (unless it has
other factors behaving nondeterministically when it will change accordingly); in the
second case, the probability of each possibility will be half the original probability
(again modified by the behavior of other factors). A datum associated to 1 (mod 4)
(respectively 3 (mod 4)) primes will be called even (respectively odd).

The even level one data are then:

([lnn, 1], [nn, 1], 1/32), ([[nn, 1], [sn, 1]1,1/16), ([[nn, 2]], 1/8), ([[ns, 1], [ns, 1]],1/32),

({[ns, 1], [ss,1]],1/16), ([[sn, 1], [sn, 1]],1/32), ([[sn, 2]}, 1/8), ([[ss, 1], [ss, 1]],1/32)
The odd level one data are:

([lnm, 1], [ns, 1], 1/16), ([[nn, 1], [ss, 1]}, 1/16), ([[ns, 1], [sn, 1]],1/16),

([lns, 21}, 1/8), ([[sn, 1], [ss, 1]],1/16), ([[ss, 2]], 1/8)

Note that the sum of the probabilities associated with the partition 2! =1 + 1
is 1/2 and likewise for the partition 2! = 2. This illustrates the (trivial) fact that
the only permutation group of degree 2 with cycle structures with those densities
is the cyclic group of order 2.

Applying the Markov processes to the 8 even and 6 odd data yields 22 even and
14 odd level 2 data. The only permutation group of degree 4 with cycle structures
with densities matching this data is the dihedral group of order 8 and this is indeed
the Galois group of f2.
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The Markov processes applied to the level 2 data yields 120 even and 56 odd
level 3 data. The only permutation group of degree 8 with cycle structures with
densities matching this data is the Sylow 2-subgroup of Sym(8) of order 128 and
this is indeed the Galois group of f2. The Markov processes applied to the level
3 data yields 1793 even and 577 odd level 4 data. The only permutation group of
degree 16 with cycle structures with densities matching this data is a certain group
of order 2'® and this is indeed the Galois group of f4.

This works well at level 5 too, yielding cycle structure densities that match the
known Galois group of f° of order 225, Apparently this is the only such permuta-
tion group of degree 32, but checking all 2-subgroups of Sym(32) of that order is
prohibitive (see [5] for a database of the approximately 2.8 million transitive groups
of degree 32).

When we apply the Markov processes to obtain level 6 data, however, a second
twist emerges. There are too many data for us to obtain all of them but the
analysis of data corresponding to the cycle structure of the identity element is
simple enough. In particular it corresponds to a group of order 24°. The Galois
group of f%, however, has order 2%7. In fact, it contains the 6th quotient of the
Basilica group with quotient the Klein 4-group. This has fixed field the biquadratic
field Q(v=T,2).

The emerging picture appears to be as follows. Let B,, denote the nth quotient
of the Basilica group (n > 6). Let N, denote its normalizer in the Sylow 2-
subgroup of Sym(2™). If we can prove, as computation suggests, that N, /B, is
elementary abelian of order 2" ~2, then it follows that the Galois group G,, of f™ over
Q contains B,, with index 4 and that the quotient is a Klein 4-group corresponding
to Q(v~1,Vv2).

On the other hand, the level n data for n > 6 predicts a group of order 23(271_2)“7
which is (for n > 6) even bigger than N,,. The cycle structure densities still appear
to match well for the level n data corresponding to partitions involving 2”1, but
not for the partition 2" =1+ ... + 1 as indicated above.
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