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Abstract. Much is known regarding images of p-adic Galois represen-

tations coming from subquotients of étale cohomology groups of varieties

over number fields. In particular, the Mumford-Tate conjecture gives

them up to subgroups of finite index, and has been proved in many

cases by Serre. In the analogous situation of arboreal Galois represen-

tations little is known. In this paper we give a conjectural description

of their images in the case that they arise via iteration of a given poly-

nomial. We also discuss in depth the case of iteration of a quadratic

polynomial with integer coefficients.

1. Arboreal Representations

There are two main sources of totally disconnected, locally compact groups,

namely matrix groups over local fields and automorphism groups of locally

finite trees [22]. Continuous homomorphisms of Galois groups into the for-

mer have been well studied and exploited but those into the latter have

barely been touched upon.

If K is a number field, S a finite set of primes of K, KS a maximal

algebraic extension of K unramified outside S, and G =Gal(KS/K), the

Fontaine-Mazur conjecture [6] characterizes those representations G → GLn(Zp)

coming from algebraic geometry by the group-theoretical condition of being

potentially semistable at p. In the case that S contains no prime lying above

p, the conjecture states that every such representation should have finite im-

age. This state of affairs is unsatisfactory in that for many K and S the

group G has an infinite pro-p quotient, which therefore cannot be seen by

a p-adic Galois representation. A refinement, the virtual Golod-Shafarevich

conjecture [2], implies that in such cases there should exist representations

G →Aut(T ) with image having nonzero Hausdorff dimension (see below for
1
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its definition), where T is a locally finite, rooted tree. We call such repre-

sentations arboreal.

This source of arboreal Galois representations is hard to control. In par-

ticular, there is not one infinite finitely, tamely ramified p-extension whose

Galois group has been explicitly presented. A more explicit source of arbo-

real Galois representations is given by the Galois action on the roots of the

iterates of a given polynomial. In this paper we consider the images of such

representations, mostly in the case of quadratic polynomials.

Let f be a degree d polynomial in Q[x], all of whose iterates are separable.

The roots of the nth iterate fn of f can be identified with the dn vertices

at level n of the d-ary rooted tree T , in such a way that the Galois group

of fn embeds in Aut(Tn) where Tn consists of the subtree of vertices up to

and including level n. Putting these embeddings together yields a continuous

homomorphism GQ := Gal(Q/Q) →Aut(T ), whose image G(f) is the Galois

group over Q of the extension generated by all roots of all iterates of f . The

Galois group of fn will be denoted Gn(f). All Gn(f) will be transitive if

and only if every iterate of f is irreducible, in which case (as is typical in

this paper) we call G(f) spherically transitive.

The main focus of this paper is the identification of and properties of G(f)

as a subgroup of Aut(T ). In particular, we focus on the case d = 2. In this

case, Aut(Tn) is a 2-group, in fact a Sylow 2-subgroup of Sym(2n) so of order

22n−1, whence Gn(f) is a 2-group. The main measure of the size of G(f) is

its Hausdorff dimension, given by the liminf of log2(|Gn(f)|/(2n − 1)).

After presenting some analogies with p-adic representations in section 2,

we discuss some general properties that G(f) must obey in section 3. In

Section 4 we examine the possibilities for G(f) when f ∈ Z[x] is quadratic.

We decompose the set of such f into natural families and compute G(f)

generically in each of these families. We then examine the behavior within

each family, conjecturing that G(f) must have finite index in the generic

group. In section 5 we summarize our main conjectures.
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2. Analogies with p-adic Galois Representations

If V is a smooth projective variety over Q, then its étale cohomology

groups are p-adic vector spaces on which GQ acts. These and their sub-

quotients yield representations GQ → GLn(Qp), which we say come from

algebraic geometry. Since there is always a stable lattice, this in turn pro-

duces representations GQ → GLn(Zp). The most important examples are

the 1-dimensional (cyclotomic) representations given by Galois action on the

pnth roots of 1, the 2-dimensional representations given by Galois action on

the pn-division points of an elliptic curve, and the 2-dimensional represen-

tations associated to modular forms arising as subquotients of the Galois

action on the pn-division points of Jacobians of modular curves.

In analyzing these representations the main questions concern the size of

the image and the nature of the images of Frobenius elements. In general, for

representations coming from algebraic geometry, the image is conjecturally

determined up to finite index subgroups by the p-adic points of a Hodge

(or Mumford-Tate) group. The first such results concerned CM elliptic

curves, whose Galois representations have image the normalizer of a Cartan

subgroup of GL2(Zp). Serre [17] showed that elliptic curves without CM

have Galois representations whose image is of finite index in GL2(Zp). Other

cases of the Mumford-Tate conjecture have been established by Deligne [5],

Serre [18], [19], [20], and Chi [4].

Analogues for Galois representations associated to Drinfeld modules have

been discovered by Pink [15]. Our goal is to shed light on these same ques-

tions in the case of arboreal Galois representations associated to the iterates

of a given polynomial and to observe analogous phenomena.

3. Densely settled subgroups

Let the notation be as on p. 2. We focus on the case where f is a polyno-

mial with integer coefficients. Let ρf denote the continuous homomorphism

Gal (Q/Q) −→ Aut(T ) whose image is G(f). In this section we discuss

some properties of Im ρf , particularly in the case where f is quadratic, and

give conjectures on other properties.
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In [3] we conjecture that the image of ρf must possess a property known

as settledness that depends on the cycle decomposition of the action of Im ρf

on each level of T . Denote by Vn the vertices of T that are distance n from

the root, or in other words the roots of fn. Let σ ∈ Im ρf , and denote by σn

the restriction of σ to Vn. Call a cycle C of σn stable if for each m ≥ n, the

portion of σm that restricts to C is a single cycle of length 2m−n · |C|, where

|C| denotes the length of C. We say that σ is settled if the proportion of

elements of Vn contained in stable cycles of σn goes to one as n grows. We

say that Im ρf is densely settled if settled elements are dense in the profinite

topology.

Let Frobp be a Frobenius element at the prime p. Then the cycle decom-

position of the action of Frobp on the roots of fn is given by the degrees

of the irreducible factorization of fn mod p. Since Frobenius elements are

dense in Im ρf by the Tchebotarev Density Theorem, we can show that

Im ρf is densely settled by showing that the irreducible factors of fn mod p

are settled in a sense precisely analogous to the definition given in the pre-

vious paragraph. In [3] we conjecture that any irreducible quadratic over

Fp is settled, and we give a heuristic argument and extensive computations

in support of this conjecture. Indeed it seems likely that all separable poly-

nomials over Fp are settled. From this it would follow that Im ρf is densely

settled for all quadratic f ∈ Z[x].

However, while conjecturally Im ρf must be settled at least for quadratic

f , this alone appears insufficient to characterize the possible images of ρf .

Indeed, there are many abelian subgroups of Aut(T ) that are settled, but

very few can occur as Im ρf for quadratic f ∈ Z[x]:

Call f critically infinite if the set {fn(γ) : n = 1, 2, . . .}, where γ is the

critical point of f , is infinite.

Theorem 3.1. Let f ∈ Z[x] be a critically infinite quadratic polynomial

with all iterates irreducible. If G(f) is abelian, then it is cyclic.

Proof: Suppose that G(f) is abelian, and denote by Gn(f) the action of

G(f) on Vn. We claim that the center of Gn(f) contains a unique element
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of order 2 for all but finitely many n. This claim immediately implies that

Gn(f) is cyclic for infinitely many n, and thus for all n. Hence G(f) is cyclic.

To prove the claim, first note that in [9, Corollary 4.11 and remarks before]

it is shown that if fn is irreducible and Disc fn is not a square in Q, then

the center of Gn(f) contains a unique element of order 2. From [10, p. 10]

we have that the squarefree part of Disc fn is equal to the squarefree part of

fn(γ). If there are infinitely many n with y2 = fn(γ) for some y ∈ Q, then

since f is critically infinite, it follows that for all k > 0 there are infinitely

many distinct (x, y) ∈ Q2 with y2 = fk(x). Since f is assumed separable, k

can be selected so the curve Y 2 = fk(X) has genus at least two. However,

this violates Faltings’ theorem [8, Part E].

As for quadratic f such that {fn(γ) : n = 1, 2, . . .} is finite (such f

are called critically finite), one can reproduce the proof of Theorem 3.1

provided that Disc fn is not a square for infinitely many n. A straightforward

calculation shows that all critically finite quadratic f ∈ Z[x] are of the form

(x− k)2 + k, (x− k)2 + k− 1, or (x− k)2 + k− 2 for some k ∈ Z. In each of

these cases, Disc fn is a square for all sufficiently large n only if k is a square,

k = 1, or k−2 is a square respectively. For these values of f and k, the group

Gn(f) appears to be either cyclic, isomorphic to (Z/2nZ)∗, or nonabelian.

This follows from the first part of section 4.2 as well an examination of the

cases f = (x − k)2 + k, k = ±1 and (x − k)2 + k − 2, |k| ≤ 2 and the fact

that any finite index subgroup of Z2 o Z∗2 is nonabelian. Thus even when

f is critically finite, only a very restricted set of abelian groups can occur

as G(f). This leads us to ask what additional properties besides settledness

G(f) should possess.

4. Quadratic Polynomials

4.1. Generic quadratic families. We now turn to a more detailed analysis

of Im ρf in the case of quadratic f ∈ Z[x]. Any such f may be written

(1) f = (x− γ)2 + γ + m,
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where 2γ and 4m are integers. One easily checks that f is critically finite

if and only if m ∈ {−2,−1, 0}. We now fix a value of m and consider all f

whose decomposition in (1) has the prescribed value of m. Let us describe

the Galois groups for iterates of a generic such f .

Theorem 4.1. Suppose f = (x − t)2 + t + m ∈ Q(t)[x], where m 6∈
{0,−1,−2}. Let Gn(f) be the Galois group over Q(t) of the splitting field of

the nth iterate fn, and let G(f) = lim
←

Gn(f). Then G(f) ∼= Aut(T ), where

T is the infinite binary rooted tree of preimages of 0.

Proof: We first show that fn is irreducible, and therefore separable, for all

n. From [10, Proposition 3.3] we need only show that fn(t) is never a square

in Q(t). This clearly holds, as fn(t) has degree one for each n.

We now wish to show that for all n, Gn(f) is isomorphic to Aut(Tn), the

group of automorphisms of the binary rooted tree of height n. It is well-

known that Aut(Tn) is isomorphic to the n-fold iterated wreath product of

Z/2Z, and in particular |Aut(Tn)| = 22n−1. Let Kn denote the splitting

field of fn over Q(t), and put Hn = Gal (Kn/Kn−1). If we show that

|Hn| = 22n−1
for all n, then it follows by induction and comparison of degrees

that Gn
∼= Aut(Tn).

The argument in [10, Lemma 4.1] applies verbatim over Q(t), and putting

g = id in that Lemma shows that |Hn| = 22n−1
if and only if fn(t) is not a

square in Kn−1. Now the only primes of Q(t) (by which we mean a discrete

valuation ring OP with maximal ideal P ) that ramify in Kn are those such

that Disc Kn is zero in OP [16, Proposition 7.9] and moreover if Disc fn is

not zero in OP then Disc Kn is not zero in OP (for the last assertion one can

adapt the argument in [12, Corollary 2, p. 157]). It follows that the only

primes ramifying in Kn−1 are those with Disc fn−1 = 0 in OP , and by [10,

p. 10] these are precisely the primes dividing fm(t) for some m ≤ n− 1.

To show that Disc fn is not a square in Kn−1, we show that its squarefree

part is divisible by a prime that does not ramify in Kn−1. By [10, p. 10]

the squarefree part of Disc fn is precisely the squarefree part of fn(t). In

the case currently under consideration, fn(t) has degree 1 as a polynomial
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in t, and thus is squarefree. Moreover, since f is critically infinite by our

assumption that m 6∈ {0,−1,−2}, the set {fm(t) : m = 1, 2, . . .} consists

of infinitely many distinct degree 1 polynomials, and thus all its elements

are relatively prime to one another. It follows that fn(t) cannot divide

Disc fn−1, and thus does not ramify in Kn−1. �

We remark that if K is a number field and OK is its ring of integers, then

as in (1) every quadratic polynomial in OK [x] can be written as (x−γ)2+γ+

m, where 2γ, 4m ∈ OK . Moreover, if m is such that f = (x− t)2 + t + m ∈
K(t)[x] is critically infinite, a straightforward adaptation of the proof of

Theorem 4.1 shows that G(f) ∼= Aut(T ).

Theorem 4.2. Using the notation of Theorem 4.1, suppose f = (x− t)2 +

t + m ∈ Q(t)[x], where m ∈ {0,−2}. Then G(f) ∼= Z2 o Z∗2, the group of

invertible affine linear transformations of Z2.

Proof: In the case m = 0, we have fn = x2n − t, whence the splitting

field Kn of fn over Q(t) is just Q( 2n√
t, ζ2n). One now checks easily that fn

remains irreducible over Q(t, ζ2n), and thus [Kn : Q(t)] = 22n−1. Therefore

the map ζ2n 7→ ζa
2n , 2n√

t 7→ 2n√
t
b

is an automorphism of Kn/Q(t) for all

a ∈ Z/2nZ∗ and all b ∈ Z/2nZ. It follows that Gal (Kn/Q(t)) is isomorphic

to the group of invertible affine linear transformations of Z/2nZ and thus

G(f) is isomorphic to the same group over Z2.

If m = −2, the proof is identical to that of part 1) of Theorem 1.1 in [7].

�

Any extension L of Q(t) has a sub-extension A = Q ∩ L of Q, which we

call the arithmetic part of L (it is also the maximal constant field extension

contained in L). We refer to the extension L/A(t) as the geometric part of L.

If L is the splitting field of a polynomial g, there is a natural isomorphism of

L/A(t) and E/C(t), where E is the splitting field over C(t) of g considered

as a polynomial in C(t)[x]. It now follows that if Kn is the splitting field

over Q(t) of fn for some f ∈ Q(t)[x], L = ∪nKn, and E/C(t) corresponds to

L/A(t), then the group Gal (E/C(t)) is isomorphic to the closure in Aut(T )
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of the iterated monodromy group of f over C (see [13, Chapter 5]). This

last group may be computed using geometric methods. In the case of f =

(x − t)2 + t + m ∈ Q(t)[x], m 6∈ {0,−1,−2}, the geometric part of L has

Galois group Aut(T ), while if m ∈ {0,−2} then the geometric part of L has

Galois group Z2. In the former case, this observation can be used to provide

an alternate proof of Theorem 4.1

We now arrive at the lone m not treated in Theorems 4.1 and 4.2, namely

m = −1. If f = (x − t)2 + t − 1, Kn is the splitting field over Q(t) of fn,

and L = ∪nKn, then Gal (L/A(t)) is isomorphic to the closure B of the

Basilica group in Aut(T ). The Basilica group is a certain group generated

by a finite automaton, and about which much is known [1] and which has

a natural action on T . Unfortunately, much less seems to be known about

B. Thus G(f) has B as a normal subgroup, with quotient Gal (A/Q). It

remains an open problem to determine Gal (A/Q) and to find the structure

of G(f) beyond the previous observation.

4.2. Quadratic Specializations. In the previous section, we examined

generic behavior of ρf within certain families of quadratic f . In this section

we focus on the behavior of ρf for specific f . The general theme is that

specializations of t in Theorems 4.1 and 4.2 should yield Galois groups of

finite index in the generic groups described in Theorems 4.1 and 4.2. This

is reminiscent of work of Serre (e.g. [17]), where the Lie algebra of the Tate

module of an elliptic curve determines the Tate module up to finite index.

Lemma 4.3. Let F be a field containing a primitive kth root of unity ζk,

and let α ∈ F . Then [F (α1/k) : F ] = k/d, where 1 ≤ d ≤ k is maximal such

that α1/d ∈ F .

Proof: Let e := [F (α1/k) : F ] and note that we have αe′/k 6∈ F for all

e′ < e. Indeed, if αe′/k ∈ F then α1/k is a root of xe′ − αe′/k, whence

[F (α1/k) : F ] ≤ e′, a contradiction.

Now let f(x) ∈ F [x] be an irreducible factor of xk−α, and let β be a root

of f . Write β = ζi
kα

1/k for some 1 ≤ i ≤ k, and note that F (β) = F (α1/k)
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since F contains ζk. Thus Gal (F (β)/F ) is cyclic of order e. It follows that

f(x) =
e∏

j=1

(
x− ζ

i+(jk/e)
k α1/k

)
= xe − ζei

k αe/k,

where the second equality is obtained by comparing roots. Thus αe/k ∈ F ,

proving that 1/d = e/k. �

Theorem 4.4. Let t0 ∈ Z, let f = (x− t0)2 + t0 + m ∈ Q[x], where m = 0.

Let Gn(f) be the Galois group over Q of the splitting field of the nth iterate

fn, and let G(f) = lim
←

Gn(f). Then G(f) is a finite-index subgroup of

Z2 o Z∗2 unless t0 ∈ {−1, 0, 1}.

Proof: Note that Z2 o Z∗2 = lim
←

Z/2nZ o (Z/2nZ)∗, and the order of

Z/2nZo(Z/2nZ)∗ is 22n−1. Thus it suffices to show that [Z/2nZo(Z/2nZ)∗ :

Gn(f)] is bounded as n goes to infinity.

Note that fn(x) = (x− t0)2
n

+ t0, and the splitting field Kn of fn over Q

must contain a primitive 2nth root of unity ζ2n as long as t 6= 0. By Lemma

4.3, the degree [Kn : Q(ζ2n)] is 2n/d, where 1 ≤ d ≤ 2n is maximal such that

t
1/d
0 ∈ Q(ζ2n). Thus [Kn : Q] = 22n−1/d, implying that [Z/2nZo(Z/2nZ)∗ :

Gn(f)] = d. Now provided that t0 6= ±1, there is e > 0 and a prime p such

that vp(t
1/e
0 ) is odd. If p 6= 2 then p does not ramify in Q(ζ2n), and it follows

that t
1/(e+1)
0 is not in Q(ζ2n). If p = 2, then one notes that 4

√
2 6∈ Q(ζ2n)

(otherwise Q( 4
√

2) would be a subfield of an abelian extension, and thus

Galois, which is a contradiction). Therefore t
1/(e+2)
0 6∈ Q(ζ2n). In either

case we have d ≤ e + 2. Thus d is independent of n for n sufficiently large,

which proves the Theorem. �

We note that if m = −2, then matters are similar to the case m =

0, although more complicated and with more exceptional values, namely

t0 ∈ {−2,−1, 0, 1, 2}. In this case, the roots of fn generate a subfield of

degree at most two of the splitting field over Q of x2n − β, where β is a

root of x2 − t0x + 1 [7, p.8]. Let α be a root of x2n − β, and note that if

[Z/2nZo (Z/2nZ)∗ : Gal (Q(α, ζ2n))/Q(β)] is bounded as n goes to infinity,
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then it follows that G(f) has finite index in Z2 o Z∗2. By Lemma 4.3 it is

enough to show that 2n√
β 6∈ Q(β)(ζ2∞) for some n > 0, unless β is a root

of unity, which occurs only when |t0| ≤ 2. It is possible, although quite

laborious, to prove this using knowledge of the Galois group and subfields

of Q(β)(ζ2∞)/Q(β). We omit the details.

We now discuss the case where m 6∈ {0,−1,−2} (we touch on m = −1

below). Theorem 4.1 and the strong form of the Hilbert Irreducibility The-

orem imply that if m 6∈ {0,−1,−2} is fixed, then for all but a ‘thin’ set

of γ ∈ 1
2Z we have Gn(f) ∼= Aut(Tn) for f = (x − γ)2 + γ + m (see [14,

section 6]). However, we would like to know something about G(f) for such

specializations. In order to emulate the proof of Theorem 4.1, one needs to

know arithmetic properties of the critical orbit {fn(γ) : n = 1, 2, . . .} of f ,

specifically the assertion that the squarefree part of fn(γ) is divisible by a

prime that does not divide fm(γ) for all m < n. We conjecture that this

condition holds for all but finitely many n.

Conjecture 4.5 (Strong Dynamical Wieferich Prime Conjecture). Let b ∈
1
2Z and f ∈ Z[x] be separable and quadratic such that {fn(b) : n = 1, 2, . . .}
is infinite. Then for all but finitely many n there exists a prime p with

vp(fn(b)) odd and vp(fm(b)) = 0 for all m < n.

We first remark that Conjecture 4.5 implies that G(f) has finite index

in Aut(T ) for all critically infinite quadratic f ∈ Z[x] all of whose iterates

are irreducible. This set of polynomials is quite a large subset of quadratic

f (see [10, Theorem 3.5]). As for the name of Conjecture 4.5, recall that

a Wieferich prime p is one satisfying 2p−1 ≡ 1 mod p2. This condition is

equivalent to the following: let an = 2n − 1, and let np be the smallest

index such that p | anp . Then p2 | anp . Currently only two Wieferich

primes are known, although even the statement that their complement is

infinite remains a conjecture (see e.g. [21]). Thus a reasonable analogue of

this conjecture in the dynamical setting would be that given an unbounded

sequence {fn(b) : n = 1, 2, . . .}, there exist infinitely many p such that

vp(fn(b)) = 1 for some n but vp(fm(b)) = 0 for all m < n. Conjecture 4.5
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represents a significant strengthening of this, albeit with only the stipulation

that vp(fn(b)) be odd.

Conjecture 4.5 can be proven in the case where the forward orbit of 0

{fn(0) : n = 1, 2, . . .} is finite but does not contain 0 [10, p. 19]. Thus for

instance the conjecture is true if f is of the form x2 + kx− k or x2 − kx− 1

for some k ∈ Z.

As for m = −1, matters are more mysterious, which perhaps is unsurpris-

ing given that the behavior in the generic case f = (x− t)2 + t− 1 ∈ Q(t)[x]

is not known (see discussion on p. 8). We conjecture that for all but finitely

many specializations t0 ∈ Z, G(f) has finite index in the group obtained

in the generic case. However, G(f) has been not been explicitly computed

for any specializations t0. The case t0 = −1, which gives f = (x + 1)2 − 2,

is particularly interesting because the splitting fields of the iterates fn are

2-extensions ramified only at 2 (and ∞). The suggestion has been made

by several people that the maximal such 2-extension should be the union of

these splitting fields. This is conceivable since the Galois groups of the first

few were computed (by Klüners and Fieker) and were large. Their orders

(for n ≤ 7) were 2(2n+1+1)/3 if n is even and 2(2n+1+2)/3 if n is odd. If true

for general n, this would imply that G(f) has Hausdorff dimension 2/3.

Further investigation leads to the following conjecture. With the stan-

dard generators a, b of the closure B of the Basilica group [1], let H be the

subgroup generated by [a, b] and aba, a normal subgroup with B/H infinite,

cyclic. Let Hn be the image of H in Aut(Tn).

Conjecture 4.6. Let f = (x + 1)2 − 2. The Galois group of fn over Q(i)

(a subgroup of index 2 in Gn(f)) is Hn for all n.

This implies that the union of the splitting fields of all the fn has Galois

group over Q(i) equal to the closure of H in Aut(T ). Using the explicit

presentation of B in [1], we compute that this closure is not a free pro-2

group (its class 5 quotient is smaller than that of the 2-generated free pro-2

group). On the other hand, Marksheitis [11] showed that the Galois group

over Q(i) of the maximal 2-extension unramified outside the prime above 2
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is a free pro-2 group. Thus one consequence of Conjecture 4.6 is that G(f)

is properly contained in the Galois group of the maximal 2-extension of Q

unramified outside {2,∞} - in other words, this maximal 2-extension is not

generated by the roots of the iterates of f .

5. Conjectures

We gather the main conjectures made through this paper. They all per-

tain to the case where f ∈ Z[x] is quadratic. First we conjecture that every

irreducible quadratic f is settled. This implies that the images of Frobenius

elements under the corresponding arboreal Galois representation ρf are set-

tled. Since Frobenius elements are dense in the image, we further conjecture

that the image G(f) of ρf is a densely settled subgroup.

A subgroup commensurable to a densely settled subgroup is densely set-

tled. There are many commensurability classes of densely settled subgroups

but we conjecture that few of these arise as possible G(f) in the case where

f ∈ Z[x] is quadratic. In fact the only classes appear to be that of Aut(T )

(in the case where f is critically infinite), that of the closure of the Basilica

group acting on T and a few subgroups of this group, that of the affine

group on Z2, that of Z2, and that of the spherically homogeneous procyclic

subgroup. Conjectures 4.5 and 4.6 go in the direction of establishing this

classification. It is worth remarking that if we allow f ∈ OK [x], where

K is an algebraic number field, then the classification should expand due

to the presence of additional conjugacy classes of critically finite quadratic

polynomials.
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