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Abstract. In their expository paper Plane Trees and Algebraic Numbers [7], Shabat
and Zvonkin discuss how each combinatorial bicolored plane tree can be realized as
the preimage of a segment between two critical values of a complex polynomial. This
‘Shabat polynomial’ is unique up to automorphism of the complex plane. Shabat and
Zvonkin illustrate in broad strokes many surprising and useful consequences of this
correspondence; both in how the world of plane trees and influence can inform the
world of polynomials, and vice-verse.

This paper provides a natural companion to Shabat and Zvonkin, by filling in many
of the details omitted or glossed over in the original paper. Specifically, we develop the
necessary theory to prove the above correspondence from basic undergraduate-level
ideas and tools. Following this theme, we provide detailed exposition on the com-
position of Shabat polynomials and their corresponding trees, the Galois-theoretic
properties of bicolored plane trees, and how trees determine solutions to the Pell
equation for polynomials and continued fractions of polynomials. The theory in this
paper is as self-contained and elementary as possible.
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1. Introduction

Our paper investigates a strong connection between the combinatorial and the alge-
braic. Specifically, we study combinatorial bicolored plane trees and Shabat polynomi-
als. For the first step in our investigation, let us study the preimages of segments in C
under polynomials. If n is the degree of a polynomial f ∈ C[z], then in general, each
point in C will have n preimages. Therefore, the preimage of an arbitrary segment
in the image of f will in general be n disconnected (not necessarily linear) curves, as
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illustrated in Figure 1.

  
  

f

  

Figure 1. The Preimage of an Arbitrary Segment

We can make this situation more interesting if we examine the so called critical
values of f .

Definition 1.1. For a polynomial f , the critical values of f are the images of its
critical points, that is, the set of points f(c) ∈ C such that f ′(c) = 0.

An important observation to make is that around the critical points of f , the map f
is many-to-one, and thus not bijective. When a segment lies between the two critical
values of f , some of its preimages will therefore ‘link up’, as in Figure 2.

  
  

f

  

Figure 2. The Preimage of a Segment Between Two Critical Values

To get an even more interesting picture, we can restrict the critical values of f .

Definition 1.2. A polynomial f over C is Shabat if it has at most two critical values.

When f has exactly two critical values (i.e. f is Shabat), then the preimage of a
segment between the two critical values of f is a bicolored plane tree, as seen in Figure 3.
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Figure 3. The Preimage of a Segment Between the Two Critical Values
of a Shabat Polynomial

Definition 1.3. A bicolored plane tree is a tree T embedded in a plane (with no edge
crossings) such that each vertex of T has one of two colors, and each edge contains one
vertex of each color.

In our paper, we will study the connections between plane trees and Shabat polyno-
mials, generally understood with natural notions of equivalence described in Section 2.
In Section 2, we develop the basic tools of covering spaces and Riemann surfaces in or-
der to prove Theorem 1.1 of [7], that is, up to equivalence, there is a bijection between
bicolored plane trees and Shabat polynomials such that each tree is the preimage of
a segment between the two critical values of the Shabat polynomial. In Section 3, we
will compute numerous examples absent from Sections 2 and 5 of [7], illustrating an
algorithmic approach one can take to calculate polynomials from their corresponding
trees. Later, in Section 4, we provide a detailed exposition of the Galois-theoretic
results described Section 4 of [7], showing how the algebraic properties of Shabat poly-
nomials can affect their corresponding trees by defining a faithful action of the absolute
Galois group Gal(Q/Q) on the set of bicolored plane trees. Finally, in Section 5, we
further develop the links bewteen Abel’s equation, polynomial continued fractions, and
bicolored plane trees which are hinted at in Section 7 of [7].

We will begin by proving a proposition which we alluded to earlier.

Proposition 1.4. (Theorem 1.1 of [7]) For each Shabat polynomial f , the inverse
image of a segment between the two critical values of f is a bicolored plane tree, colored
by the critical values which each vertex maps to.

Proof. Let T be the preimage of a segment under f , and let c1 and c2 be the two
critical value of f . If we understand the vertices of T to be the points which map to
critical values of f and we color them based on which critical values they map to, T
is naturally a bicolored plane tree. Our proof proceeds in two parts. First, we will
show that T is acyclic, and second we will show that T has exactly one more vertex
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than edge. The second claim completes the proof since an acyclic graph with one more
vertex than edge is necessarily a tree.

Claim 1: T is acyclic.

Assume by way of contradiction that there is some cycle in T , as illustrated in Figure
4.

  
  

f

  

Figure 4. A Cycle as the Preimage of a Segment

Consider the region R bounded by a cycle in T (where R includes the boundary).
Since f is continuous, each edge in the boundary of R must map to an edge in the
boundary of f(R), and f(R) is compact. However, each edge understood with an
orientation, either white to black or black to white. We will say a positive edge is
one which, when viewed from inside R, has the white vertex to the left of the black
vertex. In other words, when traversing the boundary of R in the positive direction,
the black vertex is the first point in the edge which is hit. Since the boundary of R
is a bicolored cycle, it has both positive and negative edges, meaning the image of R
has both positive and negative edges. Since each edge in T maps to a single edge, that
edge is necessarily contained in R, contradicting it being on the boundary. To see this,
imagine a thin, open band in the subspace topology of R around two edges incident to
the same vertex. This open band must contain the segment in f(R), as in Figure 5.

Claim 2: If n is the degree of f , then T has n edges and n+ 1 vertices.

Since f has degree n and the segment between c1 and c2 has only noncritical values
in it, the tree T associated with f must have n edges, since noncritical values of f have
n preimages. As each vertex in T is the preimage of c1 or c2, the vertices of T are
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Figure 5. An Open Band in the Subspace Topology of R

exactly the roots of the equations

f(z) = c1, and

f(z) = c2.

Counting multiplicity, there are a total of 2n solutions to the above equations. Around
each solution, the map f is k to 1, for k ∈ N. The multiplicity of each solution is k,
which will be the degree of the corresponding vertex. Therefore, if V is the vertex set
in T ,

|V | = 2n−
∑
v∈V

(Deg(v)− 1)

where the final sum counts the repeated roots of the above equations. However, each
vertex maps to a critical value, and vertices of degree greater than 1 are the critical
points of f , since around these points f is many-to-one (and not a local homeomor-
phism). These points are the solutions to both f(z) = ci and its derivative, f ′(z) = 0.
If they have multiplicity k in f(z) = ci, then as vertices they have degree k, and they
necessarily have multiplicity k− 1 in f ′(z) = 0. Therefore, the sum in the above equa-
tion is actually the total number of roots to the equation f ′(z) = 0, which is n − 1.
From here, we get

|V | = 2n− (n− 1)

= n+ 1.

Therefore, T is a connected graph with n edges and n + 1 vertices, so T is a tree. As
T is embedded in a plane and has a natural 2-coloring (with color classes being the
points mapping to c1 and those mapping to c2), we have shown that T is a bicolored
plane tree. �

2. The Link Between Plane Trees and Shabat Polynomials

Before we begin, we must establish some notions of equivalence for both Shabat
polynomials and bicolored plane trees.
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Definition 2.1. Two bicolored plane trees are isomorphic if there exists an orientation-
preserving transformation of the plane which takes one tree to the other, respecting
the edges, vertices, and coloring. An isomorphism class of bicolored plane trees is a
combinatorial bicolored plane tree.

Note that bicolored plane trees have a stronger sense of isomorphism than ordinary
trees, as illustrated by Figures 6 and 7.

    

Figure 6. Two Nonequivalent Combinatorial Plane Trees

    

Figure 7. Two Nonequivalent Combinatorial Bicolored Plane Trees

Definition 2.2. Two Shabat polynomials f and g are equivalent (written f ∼ g) if
there exist constants a, b, A, and B (a,A 6= 0) such that

Af(az + b) +B = g(z)

for all z ∈ C.

While the above notions of equivalence may or may not seem natural, they are in
part motivated by the following theorem, which we shall prove in this section.

Theorem 2.3. (Theorem 1.1 of [7]) For every combinatorial bicolored plane tree there
exists a unique Shabat polynomial (up to equivalence) which has that tree as the preim-
age of a segment between its critical values.

By Proposition 1.4, we already know that every Shabat polynomial produces such a
tree as the preimage of a segment between its critical values, so combining these two
results we will be able to say
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Theorem 2.4. There is a bijection between combinatorial bicolored plane trees and
equivalence classes of Shabat polynomials such that each tree can be realized as the
preimage of a segment between the two critical values of the corresponding polynomial.

This proof of Theorem 2.3 will follow in two main phases:

Phase 1: The Topological Map:
For any combinatorial bicolored plane tree T there exists a unique topological covering
from a sphere X punctured at the vertices of T (and infinity) to a sphere Y punctured
at three points such that the edges in T all map to a single segment in Y between two
of these punctured points.

Phase 2: The Analytic Map:
For a specific topological map given above, there exists a unique way to assign coor-
dinates such that the map is holomorphic on the punctured sphere. There is then a
unique way to fill in the holes so that the map becomes meromorphic, and any mero-
morphic function on the Riemann sphere fixing infinity is a polynomial.

2.1. The Topological Map. We proceed in two parts. First, we show the existence
of the topological map by explicit construction. Then we will show the uniqueness of
that same map by developing the theory of covering spaces.

2.1.1. Constructing a Covering from a Combinatorial Bicolored Plane Tree. We begin
by rigorously defining the objects we are working with.

Definition 2.5. Let X and Y be two path connected topological spaces. An (unram-
ified) covering of Y by X is a continuous function f : X → Y (denoted (X, f)) such
that for all y ∈ Y there exists an open Vy ⊆ Y containing y such that f−1(Vy) ⊂ X
is a disjoint union of open sets, each mapped homeomorphically onto Vy by f . Each
connected component of f−1(Vy) is a sheet of the covering, and |S| is the degree of the
covering, which is the number of sheets. For any y ∈ Y , the set f−1(y) is called the
fiber of y.

Definition 2.6. Two coverings of Y by X and X ′ are isomorphic if there exists a
homeomorphism from X to X ′ respecting the covering maps f : X → Y and f ′ : X ′ →
Y .

Let T be a combinatorial bicolored plane tree. By a stereographic projection, we
can imagine T drawn on a sphere X. Puncture X at every vertex of T and infinity,
and call the result X ′. Let Y be a sphere, and puncture Y at three points (one of
which we will call infinity), calling the result Y ′. We will construct a continuous map
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(presented in [7]) f : X → Y such that every edge in T maps to a single segment be-
tween y1 and y2, the two non-infinite holes in Y , and where f is a covering of Y ′ when
restricted to X ′. For convenience, let the outer boundary of our figures be the point
at infinity. As a running example, we will show the construction for the tree in Figure 8.

  
  

f

  

Figure 8. A Combinatorial Bicolored Plane Tree as the Preimage of a Segment

First, we will triangulate X by drawing lines from each vertex to infinity in such a
way that each edge in T is incident to at least one triangle, and that no two of them
are incident to the same triangle. In other words, each triangle has a black vertex,
a white vertex, and a vertex at infinity. We can do the same with Y , by drawing a
triangle between y1, y2, and ∞. This triangulation is illustrated in Figure 9

  
  

f

  

Figure 9. A Triangulation of the Sphere Respecting the Map

Remember, the boundary of each figure is a single point at infinity, so each triangle
has a single edge from the tree and two new edges. Therefore, the image has been
partitioned into exactly two triangles. We will homeomorphically map each triangle
in the preimage to a triangle in the image in such a way that the edges are preserved
(with orientation). We will call a ‘positive’ triangle any triangle which has its vertices
in the counter-clockwise order of black, white, infinity. Similarly, ‘negative’ triangles
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will be those with the counter-clockwise order white, black, infinity. This designation
is illustrated in Figure 10.
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Figure 10. The Labeled Triangulation

The positive triangles in each image have been labeled A, and the negative have been
labeled B. We construct our map by sending the A regions to the A region, and the
B regions to the B region. By construction, each positive triangle will be adjacent to
only negative triangles and vice-versa. Every positive triangle only shares edges with
negative triangles and vice-versa because any triangle sharing an edge with a positive
triangle will necessarily have the opposite orientation along that edge.

As each triangle is a simply connected compact set, we can certainly map each in-
dividual triangle in X homeomorphically its associated half plane in Y in such a way
that preserves the edges. Furthermore, our mapping respects the orientation of the
triangles, so we can insist that our mapping agrees on all of the edges. Therefore, our
mapping is indeed a continuous function from X to Y . If we restrict our construction to
X ′ and Y ′ (the two punctured spheres), then each point in Y ′ has half as many preim-
ages in X ′ as there are triangles in our triangulation of X. Any point y ∈ Y ′ contained
in one of the triangles of the image will have a simply connected open neighborhood
U entirely contained in that triangle, so the preimage of U will be a disjoint union of
simply connected open sets, each of which is contained in a triangle in the preimage
and homeomorphic to U by f , illustrated in Figure 11. Note that the preimage of a
point in a positive triangle is a point in each positive triangle.

If y ∈ Y ′ is on the edge of a triangle, then there is a single preimage of y on each
preimage of the edge. Since X ′ is Hausdorff, we can give each point in E = f−1(y)
a simply connected open neighborhood disjoint from the open neighborhood of each
other point in E. The intersection of the images of these open neighborhoods is a
simply connected open set U in Y ′ containing y. The preimage of the set U will be a
disjoint union of open sets in X ′, each of which is homeomorphic to U by f . Therefore,
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Figure 11. An Illustration of the Local Homeomorphism

in all cases we satisfy the covering property, so f is a covering of X ′ by Y ′ which maps
every edge in the tree to a single edge in such a way that respects orientation.

Definition 2.7. Given a tree T , the covering (X ′, f) of Y ′ described above is the
covering determined by T .

We will now show how to identify the covering constructed above with a unique sub-
group M ≤ π1(Y ′, y0) where M ∼= π1(X ′, x0) and x0 ∈ f−1(y0). Later, when we begin
our study of covering spaces, we will show that this uniquely determines our covering
up to homeomorphism.

The following definitions and constructions are from [6].

Definition 2.8. A sequence of permutations [g1, . . . , gk] on n letters is called a con-
stellation (or k-constellation) if G = 〈g1, . . . , gk〉 acts transitively on n letters and
g1g2 . . . gk = e. The group G is called the cartographic group of the constellation.

Let f : X ′ → Y ′ be a covering of Y ′ by X ′. Let y0 ∈ Y ′ be given, and consider
E = f−1(y0), the fiber of y0. Note that if γ ∈ π1(Y ′, y0), then f−1(γ) is a set of paths
beginning and ending at points in E. As these paths are oriented (by the orientation
of f), this set of paths induces a natural map g : E → E sending each path’s starting
point to its ending point. This induced map is necessarily invertible as f is locally
bijective and γ is invertible. Hence, g is a permutation. The group

G = {gi corresponding to f−1(γi) : γi ∈ π1(Y, y0)}

acting on the set E is called the monodromy group of the covering. In our situation, Y ′

and X ′ are punctured spheres (and therefore path connected), so different choices of
y0 ∈ Y ′ result in isomorphic monodromy groups. Furthermore, the path-connectedness
of X ′ implies G acts transitively on E since for any x1, x2 ∈ E there is a directed path
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γ from x1 to x2, and f(γ) ∈ π1(Y ′, y0).

If our space Y ′ is homeomorphic to a sphere punctured at n points, then π1(Y ′, y0) ∼=
Fn−1, the free group on n− 1 generators. We can take our generators of π1(Y ′, y0) to
be loops γi based at y0 going around hole i in a counter-clockwise direction. With this
convention we always have

γ1γ2 . . . γn = e,

meaning [γ1, . . . , γn] is a natural constellation (permuting the singleton set {y0}). As
G = 〈f−1(γi)〉 by definition, this naturally extends to a constellation [g1, g2, . . . , gn] in
the monodromy group.

Proposition 2.9. If f : X ′ → Y ′ is a covering of Y ′ by X ′ and G is the monodromy
group of the covering, then for some y0 ∈ Y ′ and x ∈ E = f−1(y0),

Mx = {γi ∈ π1(Y ′, y0) : gi(x) = f−1(γi)(x) = x} ∼= π1(X ′, x).

Furthermore, if f∗ : π1(X ′, x) → π1(Y ′, y0) denotes the map between fundamental
groups induced by f , then the image of π1(X ′, x) under f∗ is Mx. If a different point
x′ ∈ E is chosen, the stabilizer of that point Mx′ is conjugate to Mx in π1(Y, y0).

Proof. Consider some loop γx ∈ π1(X ′, x). As x ∈ E, f(γx) ∈Mx. Similarly, if γ ∈Mx,
then f−1(γ) contains a loop based at x by definition, and thus f−1(γ) stabilizes x under
the action of π1(Y, y0). Therefore, there is a natural bijection betweenMx and π1(X ′, x).
Furthermore, since f∗ is just the restriction of the action of π1(Y, y0) to a subgroup,
it is necessarily a group isomorphism. The observation that f(γx) ∈ Mx implies that
f∗(π1(X, x)) = π1(Y, y0). The final claim follows from the transitivity of the action of
π1(Y, y0). �

Note that the cosets of the group Mx ≤ G are in bijection with E. This is because,
if x0 ∈ E such that g1(x) = f−1(γ1)(x) = x0, and γ1γ

−1
2 ∈ Mx, then g2 = γ2 must

also send x to x0. Furthermore, since the constellation determines the image of a
homomorphism of the fundamental group of Y ′, it also determines (up to conjugacy)
the stabilizer of a point, Mx. Therefore, a constellation will uniquely determine, up to
conjugacy, a subgroup of π1(Y ′, y0) which is isomorphic to π1(X ′, x0).

We now show how to topologically encode our combinatorial bicolored plane trees
as unique constellations. As constellations uniquely determine a subgroup of π1(Y ′, y0)
and by the above propositions such a subgroup uniquely determines the covering, this
will show that each combinatorial bicolored plane tree uniquely determines a covering
of the punctured sphere.

Definition 2.10. Bicolored graphs drawn on a surface are called hypermaps.
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We encode hypermaps as 3-constellations, that is, constellations containing exactly
three permutations, which we will call σ, α and φ. Assume all edges are labeled, with
the label on the right side of an edge when viewed from a black vertex. The label of
an edge is considered incident to a face if it lies inside that face. Our 3-constellation
will be a permutation on the labels of the edges. For each black vertex in the plane
tree, we add a cycle of all edges incident to that vertex in counter-clockwise order to
σ. We call α the analogous permutation of edges around white vertices in the positive
direction. We then define φ = α−1σ−1. φ also has a natural geometric interpretation,
as shown in the following proposition.

Proposition 2.11. φ permutes the labels of edges incident to a face in the positive
direction.

Proof. By definition, φ = α−1σ−1. First consider the permutation σ−1 on a set of
labels, illustrated in Figure 12:

  

1

2
3

x

Figure 12. The Edge Labels Permuted by σ−1

The labels 2, 3 and x are for illustrative purposes only. Our primary goal is to
show that the 1 labeled edge ends up permuted to the next edge on the upper face in
the positive direction. This is clear after applying α−1 (illustrated in figure 13). Note
that all labels return to the faces they were originally on, but at the next edge in the
counterclockwise direction.

�

Proposition 2.12. For a given hypermap H, the Euler characteristic χ of the surface
it is drawn on is given by

χ(H) = c(σ) + c(α) + c(φ)− n
where c(π) denotes the number of cycles in permutation π and n is the number of edges
in H.
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1

x

Figure 13. The Edge Labels Permuted by α−1

Proof. The number of vertices in the hypermap is c(σ) + c(α), and by 2.11 the number
of faces is c(φ). Therefore, the above formula is exactly V − E + F = χ(H), Euler’s
formula. �

We now know that a constellation of a monodromy permutation uniquely deter-
mines, up to isomorphism, a subgroup of the fundamental group of the target space
which is isomorphic to the fundamental group of the covering space. We also know
how to obtain a constellation from a combinatorial bicolored plane tree. The following
propositions will complete the unique link (up to conjugacy) between a combinatorial
bicolored plane tree and a subgroup Mx ≤ π1(Y ′, y0) which is isomorphic to π1(X ′, x0)
and which is mapped injectively onto Mx by f .

Proposition 2.13. The punctures in the sphere X ′ are in bijection with the number
of cycles in the constellation C associated to the tree (when they are written in disjoint
cycle notation).

Proof. First, we show that for each cycle in each gi ∈ C, we have a distinct puncture
in X. Let gi ∈ C and γi be the associated loop around the hole yi in Y . Consider
some element x0 ∈ E = f−1(y). Let x1 = g(x0), x2 = g(x1), etc. As |E| is finite, for
some k, x0 = xk. In other words, (x1, . . . , xk) is a cycle in 〈gi〉. The curve traced by
the path from xi to xi+1 by definition maps to the loop γi around xi. For this reason,
this is the same curve for each xi. Therefore, the image (under f) of the loop formed
by all such curves is a loop around exactly the hole in yi. Therefore, this loop in X
(corresponding to a cycle in gi) contains exactly one hole. Since each gi is associated
with a different γi around a different puncture in Y , the cycles in distinct elements of
C correspond to different punctures in X.

To see why different cycles in each gi must correspond to different punctures in
X, assume that two (disjoint) cycles, c1 and c2 in gi map points {x1,1, . . . , x1,n} and
{x2,1, . . . , x2,n} around the same puncture X, respectively. Fill in all other holes in
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X, and all holes in Y except for the one associated with γi, the loop associated with
gi. Now X and Y are both homeomorphic to a plane. The inverse image of γi pro-
vides two natural closed loops connecting all of {x1,1, . . . , x1,n} with one loop and all
of {x2,1, . . . , x2,n} with a different loop (both in X). Either some x2,j is in the interior
of the {x1,1, . . . , x1,n} loop (the part which is now simply connected) or some x1,k is
in the interior of the {x2,1, . . . , x2,n} loop. In either case, this point must map to the
interior of the image of this loop, which is a contradiction since each xi,j ∈ E, so they
all map to the same point y ∈ Y .

Now we show that for each hole in X, there is at least one cycle associated with
that hole. Fix a base-point x0 ∈ E and a loop in X around a given hole in X. This
is a nontrivial element of γX ∈ π1(X, x0) which must map to a nontrivial element
γY ∈ π1(Y, y0). Hence, γX is homeomorphic to some loop in the inverse image of
γY which goes through some elements in E. The element gY in the monodromy group
associated with γY therefore has a cycle going around this particular puncture in X. �

Proposition 2.14. Given a combinatorial bicolored plane tree T , the group G =
〈φ, σ, α〉 is equal to the monodromy group of the covering f : X ′ → Y ′ determined
by T when the point y0 is chosen to be on the edge in Y ′.

Proof. For the purposes of this proof, let C = [g1, g2, g3] be a constellation such that
G = 〈g1, g2, g3〉 is the monodromy group, and where each gi corresponds to a loop γi in
π1(Y, y0) around the ith hole in Y ′. We will also assume that the lines dividing regions
A and B, which we constructed in our triangulation above, are drawn on both X ′ and
Y ′. The constellation we produced from T has the same number of cycles as there are
holes in X ′ by Proposition 2.11. Further by the previous proposition, we know that
each cycle in C corresponds to exactly one hole in X ′.

Let y0 ∈ Y ′ be a point on the segment in Y ′. E = f−1(y0) contains exactly one
point in each edge of T . First, let γ be a loop around either the black or the white
hole of Y ′ (i.e. not around infinity) in the positive direction. Assume without loss of
generality that γ is around the black hole in Y ′. We can choose γ so that it intersects
exactly one of the lines separating the upper and lower half of the plane (the dotted
lines separating regions A and B in the earlier figures). The preimages of γ only inter-
sect a single line separating preimages of A and B once, so each preimage is a curve
between two edges incident to a single black vertex in the positive direction. Since the
preimages of γ create loops around the black vertices, γ naturally extends into a per-
mutation of the edges in T in a counterclockwise direction around the black vertices.
The g ∈ G associated with γ is the same as the permutation σ described above. An
analogous argument will show that a loop around the white vertex is associated with α.
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Since we know the loop around ∞ is the inverse of the products of the other two
loops, for C to be a constellation the loop around infinity must be associated with the
permutation φ = α−1σ−1. The claim follows. �

Note that the assumption that y0 lies on the edge in Y ′ is not actually very constrain-
ing, since for any y ∈ Y ′, this edge is homeomorphic to a non-self intersecting path
between the white and black holes of Y ′ going through y. Therefore, we can conclude
that the constellation [φ, σ, α] is the constellation given by the monodromy group of
the covering determined by T . By Proposition 2.9, it follows that, up to conjugacy,
T determines a subgroup Mx of π1(Y ′, y0) which is the image of π1(X ′, x) under the
induced map f∗ between fundamental groups. We will now begin an in-depth investi-
gation of covering spaces to show that the subgroup Mx determines a unique covering
of Y . We will see that conjugate subgroups determine isomorphic coverings, and thus
justifying why we can only know Mx up to conjugacy.

2.1.2. The Uniqueness of the Covering. We have shown how to explicitly construct a
covering from punctured sphere X to punctured sphere Y so that a given bicolored
plane tree is the preimage of a segment between two of the punctures in Y . Our theorem
would seem to be proven, except for the single word unique. In order to establish the
uniqueness of the covering constructed above, we need to further develop the theory
of covering spaces, using arguments and propositions from [5].

For the following propositions, let Y be a path connected, locally path connected
and semi-locally simply connected topological space, and let (X, p) be a covering space
of Y . These assumptions are not needed for all the following propositions, but they
are all necessary for Y to have a covering.

Definition 2.15. A topological space Y is semi-locally simply connected if, for all
y ∈ Y , there is an open set U containing y such that each loop in U is homotopic to a
point in Y .

Definition 2.16. Let L be a topological space. A lift of a continuous map f : L→ Y
is a continuous map f̃ : L → X such that pf̃ = f , that is, a function f̃ such that the
following diagram commutes:

X

L Y

p

f

f̃

The first order of business is to understand lifts in a general sense.

Proposition 2.17. The Homotopy Lifting Property (Proposition 1.30 of [5]) Let L be

a topological space and let f : L× [0, 1]→ Y be a homotopy, and let f̃ : L×{0} → X be
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a continuous map lifting f |L×{0}. There exists a unique homotopy f̃ : L× [0, 1]→ X

such that pf̃ = f .

Proof. For the purposes of this proof, let Uα denote an open set in Y containing some
point α such that p−1(Uα) can be written as a disjoint union of open sets each homeo-
morphic to Uα. This is always possible as (X, p) is a covering of Y .

Since (X, p) is a covering space for Y , for all points (l, t) ∈ L× [0, 1], there is an open
neighborhood Uα of f((l, t)). By the continuity of f , f−1(U) is an open set in L× [0, 1]
containing (l, t). Therefore, there is an open neighborhood N × (a, b) ⊆ L × [0, 1] of
(l, t) such that f(N × (a, b)) ⊆ Uα.

Fix some point l0 ∈ L. As {l0} × [0, 1] is compact, we can cover {l0} × [0, 1] with
finitely many sets of the form Nt × (at, bt). Pick

0 = t0 < t1 < · · · < tn−1 < tn = 1

so that for N0 = ∩nt=0Nt, we have N0 ⊆ L, and for some α ∈ Y , f(N0× [ti, ti+1]) ⊆ Uαi
.

From now on, let Ui denote this particular Uαi
. We will construct our lift f̃ in a small

neighborhood of l0 inductively, and we will consistently update Ni so that

N0 ⊇ N1 ⊇ · · · ⊇ Ni 3 l0
for all i.

Let f̃i denote f̃ restricted to set Ni × {ti}. Note that our base case is given by

assumption, as f̃0 is given. Assume we have lifted f to f̃ uniquely on Ni−1 × [0, ti].
We have already shown that f(Ni × [ti, ti+1]) ⊆ Ui, since Ni ⊆ N0. There is a unique
set Ũi ⊆ p−1(Ui) which maps homeomorphically onto Ui by p and which contains

f̃(Ni× [l0, ti]). Setting Ni+1 = Ni∩ f̃i
−1

(Ũi), we get that f̃(Ni+1×{ti}) ⊆ Ũi. We may

now define f̃ : N × [ti, ti+1]→ X as f̃ = p−1f . This choice of definition of f̃ is unique
on Ũi+1 since p is a homeomorphism. As we perform only finitely many steps, the final
neighborhood Nn of l0 is open. Therefore, we can lift f uniquely in finitely many steps
in an open neighborhood of any point in L. This naturally extends to a lifting of f on
all of L. �

A very important application of Proposition 2.17 arises when one applies it to fun-
damental groups, as in Proposition 2.18.

Proposition 2.18. (Proposition 1.31 of [5]) The map p∗ : π1(X, x0) → π1(Y, y0)
induced by p is injective. The image subgroup of p∗ consists of homotopy classes of
loops based at y0 whose lifts to X are loops based at x0.
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Proof. Consider some loop γ ∈ ker(p∗). By definition, p(γ) is homotopic to the constant
path at y0, and by the homotopy lifting property, γ must be homotopic to the constant
path at x0 in X. Therefore, the map p∗ is injective. For the second part, consider some
loop γ′ homotopic to a loop γ in the image of p∗. By the homotopy lifting property,
there is a homotopy between the preimage of γ and the preimage of γ′, so the map p∗
respects homotopy classes. �

A zealous reader will note the similarity between Propositions 2.18 and 2.9. Propo-
sition 2.18 is essentially the same as Proposition 2.9, when one has not defined the
monodromy group of the covering. From this point on, for any topological spaces L
and K and any continuous map f : L → K, we will use the notation f∗ to refer to
the map from π1(L, l0) to π1(K, k0) induced by f . Now that we understand the power
of lifts, a natural question becomes, when can a map f : L → Y be lifted to a map
f̃ : L→ Y ? Towards that end, we proceed with Proposition 2.19.

Proposition 2.19. The Lifting Criterion (Proposition 1.33 of [5]) Let L be a path
connected and locally path connected topological space and let f : L→ Y be a continuous
map. Then a lift f̃ : L→ X exists iff f∗(π1(L, l0)) ⊆ p∗(π1(X, x0)).

Proof. (⇐) If f lifts to a map f̃ , then by definition f∗ = p∗f̃∗. For an arbitrary loop γ

in L, f̃(γ) = γ̃ is a loop in X, which is then mapped injectively into π1(Y, y0) by p∗,
so the claim follows.

(⇒) Now assume f∗(π1(L, l0)) ⊆ p∗(π1(X, x0)). Let l ∈ L, and let γ be a path
from l0 to l in L. By the homotopy lifting property, the path f(γ) lifts uniquely to a

path f̃(γ) in X starting at x0. Define f̃(l) = f̃γ(1). To verify that f̃ is well defined,
consider any path γ′ from l0 to l. fγ′(fγ)−1 is a loop h based at y0, and by assumption
[h] ∈ p∗(π1(X, x0)). Therefore, there is a loop in X whose image is homotopic to h.
By Proposition 2.18, this loop is homotopic (in X), to a loop α with p(α) = h. The

first half of α is exactly ( ˜fγ′)−1, and the second half is f̃γ. The common intersection

of these two paths means that f̃(l) does not depend on the path γ to l, and so f̃ is
well defined.

We show f̃ is continuous like so. Let U ⊆ Y be an open neighborhood of f(l) lifting

to an open set Ũ (containing f̃(l)) such that p : Ũ → U is a homeomorphism, and let
V ⊆ L be an open, path connected neighborhood of l with f(V ) ⊆ U . For some l′ ∈ V ,
define a path η from l to l′ in V . The paths (fγ)(fη) in Y lift uniquely to X, and

since p is a homeomorphism between U and Ũ , we get that f̃(l′) ∈ Ũ . As this is true

for all l′ ∈ V , it follows that f̃(V ) ⊆ Ũ , and on V f̃ = p−1f . Therefore, for all l ∈ L,
f is continuous on an open neighborhood of l. As L is path connected (and therefore

connected), we conclude that f̃ is continuous. �
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As is a major theme in this section, we must now establish when and how a lift can
be considered unique. The result of Proposition 2.20 is both surprisingly powerful and
extremely versatile.

Proposition 2.20. The Unique Lifting Property (Proposition 1.34 of [5]) Let L be a

connected topological space and let f : L→ Y be a continuous map. If two lifts f̃1 and
f̃2 of f agree anywhere, they are equivalent.

Proof. We proceed by showing A = {l ∈ L : f̃1(l) = f̃2(l)} is a clopen set. The con-
nectedness of L implies that any clopen set must be L or the empty set, so this is
certainly sufficient.

Claim 1: A ⊆ L is open.
Let l ∈ L be given, and let U be an open neighborhood of f(l) in Y so that p−1(U) is a
disjoint union of sets mapped homeomorphically onto U by p. Let Ũ1 ⊆ p−1(U) be the

neighborhood containing f̃1(l), and let Ũ2 ⊆ p−1(U) be the neighborhood containing

f̃2(l). By the continuity of f̃1 and f̃2, there is an open set N ⊆ L containing l such that

f̃1(N) ⊆ Ũ1 and f̃2(N) ⊆ Ũ2. As p : Ũ1 → U and p : Ũ2 → U are homeomorphisms,

if Ũ1 = Ũ2, then pf̃1 = pf̃2 implies f1(l) = f2(l). Therefore, f̃1(l) = f̃2(l) if and only

if Ũ1 = Ũ2. Furthermore, f̃1(l) = f̃2(l) implies f̃1(N) = f̃2(N) as f̃1(N) ⊆ Ũ1. Hence,

A = {l ∈ L : f̃1(l) = f̃2(l)} is open.

Claim 2: A is closed.
Consider some l ∈ Ac = L \ A. By the above arguments, f̃1(l) 6= f̃2(l) ⇒ Ũ1 6=
Ũ2 ⇒ f̃1(N) ∩ f̃2(N) = ∅. Therefore, there is an open neighborhood N of l such that

f̃1 and f̃2 disagree everywhere on N . By unioning over all such l, we conclude that
Ac = {l ∈ L : f̃1(l) 6= f̃2(l)} is open. Combining this with claim 1, we get that A is
clopen, so A = L or A = ∅. �

We now have enough machinery to construct a simply connected covering space of
Y , which is often called the universal cover of Y . One should note that many authors
(as in [4]) define the universal cover in terms of a universal property, and then show
that it has the characteristics we describe. For simplicity sake, we will only show its
existence and behavior in our specific context.

Theorem 2.21. The Universal Cover ([5]) There exists a simply-connected, path con-
nected topological space X and a map p : X → Y , such that (X, p) is a covering of
Y .

Proof. We proceed by construction. For any path γ, we write [γ] to denote the homo-
topy class of γ with the endpoints fixed. Fix a base-point y0 ∈ Y , and define

X = {[γ] : γ is a path in Y satisfying γ(0) = y0}.
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Define the map p : X → Y so that

f([γ]) = γ(1).

The above map is well defined as each homotopy class of paths has a fixed endpoint.
It is onto Y since Y is path connected. We will define a clever topology on X so that
f is indeed a bona fide covering. Let

U = {U ⊆ Y : U is open, path connected and semi-locally simply connected}

As Y is locally path connected and semi-locally simply connected, Y = ∪U∈UU . Fur-
thermore, if U1, U2 ∈ U , then there is some path-connected V ⊆ U1∩U2. V is necessarily
semi-locally simply connected since U1 and U2 are. For each U ∈ U and each path γ
in Y satisfying γ(1) ∈ U , define

U[γ] = {η ◦ γ : η is a path in U and γ(1) = η(0)}.

We define our topology on X so that each U[γ] is open. Note that f : U[γ] → U is
necessarily a bijection between open sets.

Claim 1: if [α] ∈ U[γ], then U[γ] = U[α].

Consider [α] ∈ U[γ]. By definition, there is a path η in U from γ(1) to α(1). For any
[γ′] ∈ U[γ], there is a path µ such that [γ′ = µγ], meaning [µγ] = [µηα], so U[γ] ⊆ U[α].
By a symmetric argument, we may show U[α] ⊆ U[γ]. The claim follows.

Claim 2: {U[γ] : γ is a path in Y based at y0} is a basis for a topology on X.

Let U[γ] and V[α] be open sets in X and let γ′ ∈ U[γ] ∩ V[α]. Under f , U[γ] ∩ V[α] must
map to an open set U ∩ V in Y . There is a semi-locally simply connected open set
W ⊆ U ∩ Y containing α(1) since U is a basis for Y . W[γ′] ⊆ X is a thus an open set
in U[γ] ∩ V[α].

Claim 3: (X, p) is a covering of Y .
f : X → Y is a local homeomorphism since f is bijective between each basis set U
and each one of its preimages. To show f is a covering, let y ∈ Y and let γ and γ′ be
paths from y0 to y. Let U be a path connected and semi-locally simply connected open
neighborhood of y. By claim 1, if [α] ∈ U[γ] ∩ U[γ′], then U[γ] = U[α] = U[γ′]. Therefore,
two preimage sets of U intersect if and only if they are exactly the same set, so we
conclude that f is a covering.

Claim 4: X is path connected and simply connected.
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For each path γ in Y , define

γt(a) =

{
a if a ≤ t
t if a > t

The map t 7→ γt lifts the path γ to X, when we fix x0 ∈ f−1(y0). By the above lift, every
element in X has a path to x0, so X is path connected. Furthermore, by definition,
any loop in X must therefore satisfy [γ1] = [γ0] = x0, meaning it is homotopic to the
constant path γ0. Hence there are no nontrivial elements of π1(X, x0). The final claim
follows. �

Recall that in the start of this section, we explicitly constructed a covering of a
punctured sphere and showed that this covering was fundamentally associated with
a unique subgroup of π1(Y, y0). Using the universal cover, we can show that we can
construct a cover associated with any subgroup of π1(Y, y0), and we can rigorously
describe the properties it must have.

Proposition 2.22. (Proposition 1.36 of [5]) For any M ≤ π1(Y, y0) there exists a path-
connected covering (XM , p̃) of Y such that p̃∗(π1(XM , x0)) = M for some x0 ∈ XH .

Proof. By the construction in Theorem 2.21, we know there is a simply connected
covering (X, p) of Y . Now let M ≤ π1(Y, y0) be given. We show how to introduce
a quotient topology on X so that the fundamental group of the resulting space is
isomorphic to M . For two paths γ and γ′ based at y0 (two points in the universal
covering X), we say [γ] ∼ [γ]′ if γ(1) = γ′(1) and γγ′−1 ∈M . We call the induced map
from X/ ∼ to Y p̃. This is illustrated in the following commutative diagram.

X

X/ ∼

Y

p
p̃

∼

Claim: ∼ is an equivalence relation on Γ = {[γ] : [0, 1]→ Y |γ(0) = y0, γ(1) = y1}.

Let [γ1], [γ2], and [γ3] be three paths in Γ. Since γ1γ
−1
1 is homeomorphic to the con-

stant path (the identity element of M), [γ1] ∼ [γ1]. If [γ1] ∼ [γ2], then γ1γ
−1
2 ∈ M , so

(γ1γ
−1
2 )−1 = γ2γ

−1
1 ∈ M , meaning [γ2] ∼ [γ1]. Finally, if [γ1] ∼ [γ2] and [γ2] ∼ [γ3],

then γ1γ
−1
2 and γ2γ

−1
3 are in M . Their product γ1γ

−1
2 γ2γ

−1
3 = γ1γ

−1
3 ∈ M, meaning

[γ1] ∼ [γ3].

The above claim shows that ∼ is an equivalence relation on X, since under ∼, paths
can only be related if they share endpoints.
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Define XM = X/ ∼. We will show X/ ∼ is a covering of Y by showing that if two
points [γ] and [α] in X are glued together, then the associated sets U[γ] and U[α] are also
glued together. If [γ] ∼ [γ′], then for any path η based at γ(1), γη(γ′η)−1 = γγ′ ∈ M .
Let p̃ : XM → Y be defined as p̃([γ]) = γ(1). If p : X → Y denotes the universal
covering map, then we know for any open, path connected and semi-locally simply
connected region U , p−1(U) is a disjoint union of open sets homeomorphic to U . By
the previous observation, when we take the quotient any two of these open sets will be
either mapped homeomorphically onto the same set or to two disjoint sets. Therefore,
p̃ inherits the covering property from p, and so (p̃, XM) is a covering of Y .

Finally, we will show that p̃∗(π1(XM , x0)) = M . Let x0 be the equivalence class
of the constant path in XM (the image of the base-point of X under ∼). Consider
some loop γ ∈ π1(XM). Note that γ(1) = γ(0) = x0 by definition. This means
the path γ and the constant path were identified in our quotient map, so γ ∈ M .
Therefore, π1(XM , x0) ≤ M . Any element of M will necessarily be identified with the
constant path in the quotient map, and the map p̃ : X/ ∼→ Y will map each of these
loops to the corresponding element of M , so p̃∗ : π1(XM , x0) → π1(Y, y0) is a group
isomorphism. �

Now we need only show the cover obtained above is unique, up to some understand-
ing of equivalence. Recall that if (X1, p1) and (X2, p2) are two coverings of Y , then a
homeomorphism f : X1 → X2 is an isomorphism if p1 = p2f.

Proposition 2.23. (Proposition 1.37 of [5]) If Y is path connected and locally path
connected then for any two connected covering spaces (X1, p1) and (X2, p2) of Y ,
π1(X1, x1) ∼= π1(X2, x2) if and only if there exists an isomorphism f : X1 → X2

such that f(x1) = x2

Proof. If there is an isomorphism f : X1 → X2, then by definition p1 = p2f and
p2 = p1f

−1, so p1∗(π1(X1, x1)) = p2∗(π1(X2, x2)).

If p1∗(π1(X1, x1)) = p2∗(π1(X2, x2)), by the lifting criterion p1 : X1 → Y lifts uniquely
to a p̃1 : X1 → X2 when we choose p̃1(x1) = x2, and similarly p2 lifts uniquely to a
p̃2 : X2 → X1 with the choice that p̃2(x2) = x1. By definition,

p2p̃1 = p1 and p1p̃2 = p2.

Combining these statements, we get that p̃1p̃2 : X2 → X2 is a map fixing x2. Fur-
thermore, this is a lift of p̃1, so by the unique lifting property, it is the identity map
on X2. By symmetry, we see that p̃2p̃1 is the identity map on X1. Therefore, p̃1 and
p̃2 are inverse continuous bijections between X1 and X2, so p̃1 is an isomorphism from
X1 to X2. �
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Recall that in the covering constructed at the beginning of this section, the sub-
group of π1(Y, y0) we obtained depended in part on how we chose our base-point in the
covering space X. Specifically, different choices of base-points resulted in conjugate
subgroups of π1(Y, y0). Therefore, we cannot simply content ourselves with base-point
preserving isomorphisms of covering spaces. Theorem 2.24 states a more general corre-
spondence between subgroups of π1(Y, y0) and covering spaces. Many have noted that
theorem bears a remarkable similarity to the fundamental theorem of Galois theory, a
fact which is not lost on [9].

Theorem 2.24. (Theorem 1.3.8 of [5]) If Y is path connected, locally path connected
and semi-locally simply connected then there is a bijection between the set of isomor-
phism classes of covering spaces (X, p) and conjugacy classes of subgroups of π1(Y, y0).

Proof. By Proposition 2.23, we need only show that conjugation of subgroups of π1(Y, y0)
results in isomorphic coverings of Y . Given a covering (X, p) of Y , we will show that
changing the base-point inside of E = f−1(y0) from x0 to x1 is equivalent to changing
the covering (X, p) to a covering constructed with a conjugate subgroup of π1(Y, y0).
Let x0 and x1 be as described, and let γ be a path in X from x0 to x1, and let
M0 = p∗(π1(X, x0)) and M1 = p∗(π1(X, x1)). The image g of γ under f is a loop
in π1(Y, y0). Conjugating M0 by this loop gives an isomorphic subgroup of π1(Y, y0).
Each loop gαg−1 ∈ M lifts to a loop in X which follows a path from x1 to x0, does
a loop based at x0, and then follows the same path back to x1. This loop is there-
fore a loop based at x1, and so gM0g

−1 ⊆ M1. By a symmetric argument, we can
say g−1M1g ⊆ M , so M1 = g−1M0g, meaning conjugating the subgroup corresponds
exactly to changing the base-point in X. �

An immediate consequence of Theorem 2.24 and Proposition 2.23 is that a universal
cover of a space (if it exists) is unique up to isomorphism. Therefore, one may talk
about the universal cover of a space Y without ambiguity.

We now have a strong understanding of the correspondence between subgroups of
π1(Y, y0) and coverings of Y . However, one often wants to understand a covering (X, p)
of Y in terms of the covering space X instead. This is especially useful when proving
that our topological covering can indeed extend into a meromorphic mapping between
Riemann surfaces. With this in mind, we will restate the above correspondence in
terms of transformations on the covering space X.

Definition 2.25. Let Y be a topological space and let (X, p) be a covering of Y . A
map f : X → X is fiber-preserving if for all x ∈ X, p(f(x)) = p(x).

Definition 2.26. Let Y be a topological space and let (X, p) be a covering of Y . A deck
transformation of this covering is a fiber-preserving homeomorphism f : X → X. The
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set of all such mappings, denoted Deck(X/Y ) or Deck(X
p→ Y ), is called the group of

deck transformations for Y .

Note that, by definition, all deck transformations are isomorphisms of covering
spaces. We can illustrate the theory developed thus far with the following commu-
tative diagram:

X X

X̃

Y

Deck(X/Y )

p

∼

p

p̃

∼

Theorem 2.27. Let (X, p) be the universal cover of Y . Let X/∼= X̃ be any covering
space of Y , where ∼ is the natural equivalence relation defined in Proposition 2.22 for
some subgroup M of π1(Y, y0). There is an isomorphism f : Deck(X/Y ) → π1(Y, y0)
such that f−1(M) = Deck(X/X̃), where f is independent of the choice of M .

Proof. First, we will explicitly construct an isomorphism f : Deck(X/Y ) → π1(Y, y0).
By Theorem 2.24, we know the universal cover is unique. We can therefore assume the
space X is as we constructed it in Theorem 2.21. Under this assumption, each element
of X is a homotopy class of paths in Y based at y0. Let x0 ∈ p−1(y0) be given, and let
σ ∈ Deck(X/Y ). Define

f(σ) = σ(x0).

By the definition of X, σ(x0) = [γ] for some path in Y which starts at p(x0) and ends
at p(σ(x0)). Since σ is fiber-preserving, it follows that σ(x0) = [γ] is the homotopy
class of a loop in Y based at y0, which by definition is an element of π1(Y, y0). To show
f is one to one, consider some other element α of Deck(X/Y ) for which f(α) = f(σ).
σ and α both lift the map p : X → Y to X, so since X is connected and σ and α agree
on x0, by the unique lifting property, σ = α on all of X.

To show f is onto, consider some element [γ] of π1(Y, y0). We will show that there is
an element σ ∈ Deck(X/Y ) such that σ([y0]) = [γ]. As Y is path connected, for each
y ∈ Y , there is a path η from y0 to y and loop α based at y such that [γ] = [η−1αη].
For each x in the fiber of y, let gx be a function lifting α to X, where α(0) = x. Define
σ(x) = g(α(1)). This is well-defined by the unique lifting property, and it is bijective
since it has a well-defined inverse (which can be realized by lifting α). As every x ∈ X
is the preimage of some point in Y , we know σ is a fiber-preserving bijection on X.

We will now show σ constructed above is a homeomorphism, and thus that σ is
indeed a deck transformation. Fix some y1 in Y , and let U be a simply connected open
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neighborhood of y1 such that p−1(U) can be expressed as a disjoint union of sets each
homeomorphic to U by p. Let V ⊆ X be one such set, and let v ∈ V ∩ p−1(y1). By
definition of X, v1 = [η], where η is a path from y0 to y1. Let α be a loop based at y1

such that [η−1αη] = [γ], and let g be a lift of α to X such that g(α(0)) = v1. For any
v ∈ V, v = [ζη] for some path ζ in U . η−1(ζαζ−1)η is a loop based at y0 homotopic to
γ, and (p|V )−1(ζ) is a lift of ζ starting at v1. If p′−1(ζ) is defined as the lift of ζ based
at σ(y1), we get σ(y) = p′−1(ζ)g(α)(p|V )−1(ζ)−1(1) = p′−1(ζ)(g(α)(1)) = p′−1(ζ)σ(y1).
Therefore, if V ′ ⊆ p−1(U) is the open set in X containing σ(y1) which is homeomor-
phic to U by p, then σ(y) ∈ V ′. We conclude that σ is an open map. The analogous
argument with γ shows that σ−1 is an open map, so we may conclude that σ is a
homeomorphism and thus is a deck transformation. Therefore, f is onto and therefore
an isomorphism between Deck(X/Y ) and π1(Y, y0).

To show the final part of the theorem, let M ⊆ π1(Y, y0) and let X̃ the covering
determined by M . By theorem 2.24, we may assume without loss of generality that
X̃ = X/ ∼, where ∼ is the equivalence relation defined in the proof of Proposition
2.22. Observe that if [γ] ∈M and σ = f−1([γ]), then σ([y0]) = [γ]. As σ is a lift of the
covering map p, by the unique lifting property there are no other deck transformations
which send [y0] to [γ]. In particular, this means that a deck transformation σ ∈
Deck(X/Y ) is in Deck(X/X̃) if and only if it maps x0 = [y0] to elements of π1(X, x0).
By the definition of ∼, these are precisely the deck transformations which map [y0] to
loops in M , which is f−1(M), as desired. �

We have shown that, given a combinatorial bicolored plane tree T , we can construct
a covering from a sphere punctured at the vertices of T (and infinity) to a sphere
punctured at three points, so that the edges in T all map to a single edge between
two of the holes in the image. The tree T can be encoded as a constellation, which is
equivalent to the constellation of the monodromy group of the covering. The stabilizer
of a point in the monodromy group is a subgroup of the fundamental group of the tar-
get space which is uniquely determined by T . By Theorem 2.24, a subgroup M of the
fundamental group determines a covering space (X̃, p̃), which is unique up conjugacy
of the subgroup M . This subgroup M is also isomorphic to the group of deck transfor-
mations Deck(X/X̃) for the target space Y . In conclusion, a combinatorial bicolored
plane tree uniquely determines a covering of a punctured sphere by a punctured sphere.

2.2. The Analytic Map. To complete our result, We first establish the necessary
analysis machinery, which mainly includes basics of Riemann surfaces and holomorphic
mappings. We assume the reader is familiar with the definition of Riemann surface
and holomorphic mapping, as in [4]. The results in this section come from sections 1.2,
1.4, and 1.5 of [4].
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Theorem 2.28. (Identity theorem) Let X, Y be Riemann surfaces, f1, f2 two holomor-
phic mappings from X to Y which coincide on a set A ⊆ X having a limit point a ∈ X.
Then f1, f2 are identically equal.

Proof. Let M = {x ∈ X : x has an open neighborhood W such that f1|W = f2|W}.
By definition M is open. We show that M is also closed. Since let b be a boundary
point of M . Since f1 and f2 are continuous, we have f1(b) = f2(b). Let φ : U → V be
a chart on X and ψ : U ′ → V ′ be chart on Y such that fi(U) ⊆ U ′ and b ∈ U. Assume
also that U is connected. Then gi := ψ ◦ fi ◦φ−1 : V → V ′ ⊆ C are holomorphic. Since
b is a boundary point of M , we have U ∩G 6= ∅, and thus by the Identity Theorem for
holomorphic functions on domains in C we have g1 and g2 are identically equal. Thus
f1|U = f2|U . Hence b ∈ M and thus M is closed. Since X is connected, M = ∅ or
M = X. The first case is impossible since a ∈M . So we must have M = X. �

Theorem 2.29. Suppose X and Y are Riemann surfaces and f : X → Y is a non-
constant holomorphic mapping. Suppose a ∈ X and b := f(a). Then there exists an
integer k ≥ 1 and charts φ : U → V on X and ψ : U ′ → V ′ on Y with the following
properties:

(1) a ∈ U , φ(a) = 0; b ∈ U ′, ψ(b) = 0.
(2) f(U) ⊆ U ′.
(3) The map F := ψ ◦ f ◦ φ−1 : V → V ′ is given by F (z) = zk for all z ∈ V .

Proof. First note that there exist charts φ1 : U1 → V1 and ψ : U ′ → V ′ such that
(1) and (2) are satisfied. The function f1 := ψ ◦ f ◦ φ−1

1 is non constant. Since if
it is, by φ and ψ are homeomorphisms, we have f is constant on the U1, and apply-
ing the identity theorem we get f is constant everywhere, contradicting the assumption.

Since f1(0) = 0, there is a k ≥ 1, such that f1(z) = zkg(z), where g is holomorphic
on V1, and g(0) 6= 0. Therefore there exists a neighborhood V2 of 0 and a holomorphic
function h on this neighborhood such that hk = g. Let α : V2 → V be a map onto
an open neighborhood V such that α : z 7→ zh(z). This is a biholomorphic map. Let
U := φ−1

1 (V2) and φ := α ◦ (φ1|U). Replace (U1, φ1) by (U, V ), and by construction
F = ψ ◦ f ◦ φ−1 satisfies F (z) = zk. �

From this theorem it follows directly

Corollary 2.30. Suppose X, Y are Riemann surfaces and f : X → Y is a non-
constant, holomorphic mapping. Then f is open.

Theorem 2.31. Suppose X and Y are Riemann surfaces, X is compact, and f : X →
Y is a non-constant holomorphic mapping. Then Y is compact and f is surjective.

Proof. f(X) is open by 2.30. Since X is compact, f(X) is compact, and thus closed.
The only subsets which are both open and closed of a connected topological space are
the empty set and the whole space, so f(X) = Y . �
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Theorem 2.32. Every holomorphic function on a compact Riemann surface is con-
stant. (Recall that a holomorphic function on a Riemann surface X is a holomorphic
mapping from X to C.)

Proof. C is not compact. �

We will need the following theorem to conclude the map determined by a bicolored
plane tree is a polynomial.

Theorem 2.33. Every meromorphic function f on P1 is rational.

Proof. f can only have finitely many poles, since if it had infinitely many poles, they
must have a limit point on P1. By the identity theorem f would equal ∞ everywhere.

We may assume that ∞ is not a pole, since if it is we could consider 1/f instead.
Suppose a1, · · · , an are poles of f , and let hv(z) =

∑−1
j=−kv cvj(z − av)

j be the prin-

cipal part of f at the pole av. Then f−
∑n

j=1 hv is holomorphic, and thus is a constant.

Notice that if f only has a single pole at ∞, 1
f(z)

= cn
zn

+ cn−1

zn−1 + · · ·+ c1
z

+C for some

constants c1, · · · , cn, C. It follows that f is a polynomial.
�

The following theorem is needed for determining a complex structure of the covering
space determined by a tree.

Theorem 2.34. Let X be a Riemann surface, Y a Hausdorff topological space, p :
Y → X a local homeomorphism. Then there is a unique complex structure on Y such
that p is holomorphic.

Proof. Suppose φ1 : U1 → V ⊂ C is a complex chart on X such that there exists an
open set U ⊂ Y with p|U → U1 a homeomorphism. Then φ = φ1 ◦ p : U → V is a
complex chart on Y . Let U be the set of all complex charts obtained this way. Charts
of U cover Y , since for any y ∈ Y , there is an open neighborhood Vy around y such
that p maps Vy homeomorphically onto its image, which is an open neighborhood Vp(y)

of p(y). We can choose Vy small enough so that Vp(y) is contained in the domain of a
chart. It is also easy to check that the charts are holomorphically compatible with each
other. Let Y have the complex structure defined by U . Then p is locally biholomorphic
and hence holomorphic.

To show that U is unique, suppose there is another complex atlas on Y , U ′ such
that p : (Y,U ′)→ X is holomorphic and thus locally biholomorphic. Then the identity
mapping (Y,U) → (Y,U) is locally biholomorphic. (For any point y ∈ Y , there is
an open neighborhood Vy of y such that ψ ◦ p ◦ φ−1

1 from φ1(Vy) onto its image is
biholomorphic, where ψ : U → V is a chart on X containing p(Vy) and φ1 is a chart of
U . Similarly, there is a chart φ2 of U ′ such that ψ ◦ p ◦φ−1

2 on φ2(Vy) is biholomorphic.
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Thus φ2 ◦ p−1 ◦ ψ−1 ◦ ψ ◦ p ◦ φ−1 = φ2 ◦ φ−1
1 = φ2 ◦ id ◦ φ−1

1 is biholomorphic. ) It then
follows that U and U ′ define the same complex structure on Y . �

Theorem 2.34 states that the covering determined by a combinatorial bicolored plane
tree T as described in section 2.1 can be made holomorphic outside of the vertices of
T and infinity. In order to extend this map, we must prove the following theorems.

Theorem 2.35. Let X be a Riemann surface, D∗ = {z ∈ C : 0 < |z| < 1} and let
f : X → D∗ be an unbranched holomorphic covering map. Then one of the following
holds:

(1) If the covering has an infinite number of sheets, then there exists a biholomor-
phic mapping φ : X → H of X onto the left half plane such that the following
diagram commutes.

X H

D∗

φ

expf

(2) If the covering is k-sheeted (k <∞), then there exists a biholomorphic mapping
φ : X → D∗ such that the following diagram commutes.

X D∗

D∗

φ

pkf

Proof. exp : H → D∗ is a universal covering, so there exists a holomorphic mapping
ψ : H → X such that exp = f ◦ ψ. Deck(H/D∗) = {τn : n ∈ Z} where τn : H → H
denotes a translation z 7→ z + 2πin. Let G ⊂ Deck(H/D) be the subgroup such that
ψ(h) = ψ(h′) if and only if there exists σ ∈ G such that σ(h) = h′.

When G = {e}, ψ(h) = ψ(h′) if and only if h = h′. Therefore ψ is an injective
holomorphic map, which means it is biholomorphic onto its image (cor 2.5 of [4]). The
inverse map of ψ, φ : X → H, is what we are looking for in part (i).

For part (ii), we know that when G ⊆ Deck(H/D∗) is not the identity, there exists
a natural number k ≥ 1 so that G = {τnk : n ∈ Z}. Let g : H → D∗ be the covering
map defined by g(z) = exp(z/k). Then g(z) = g(z′) if and only if z = z + 2mkπi for
some m ∈ Z. This is equivalent as saying there exists σ ∈ G such that σ(z) = z′ (z and
z′ are equivalent modulo G). Since ψ also maps points that are equivalent modulo G
to the same point in X, we can construct a bijective mapping φ : X → D∗, such that
φ(x) = y if and only if ψ−1(x) = g−1(y). Thus φ is a lift of g with respect to ψ. Since ψ
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and g are locally biholomorphic, φ is locally biholomorphic. Now exp = f ◦ ψ = pk ◦ g
and the top diagram commutes, the bottom also does. �

Theorem 2.36. Suppose X is a Riemann surface, A ⊂ X is a closed discrete subset
and let X ′ = X\A. Suppose Y ′ is another Riemann surface and π′ : Y ′ → X ′ is a finite-
sheeted unbranched holomorphic covering. Then π′ extends to a branched covering of X.
In other words, there exists a Riemann surface Y , a holomorphic mapping π : Y → X
and a fiber-preserving biholomorphic mapping π : Y \ π−1(A)→ Y ′.

Proof. For every a ∈ A we choose a coordinate neighborhood (Ua, za) on X such that
za(a) = 0, za(Ua) is the unit disk in C and Ua ∩ Ua′ if a 6= a′. Let U∗a = Ua \ {a}.
Since π′ : Y ′ → X ′ is finite sheeted, π′−1(U∗a ) consists of a finite number n(a) of con-
nected components V ∗av, v = 1, · · · , n(a). For every v the mapping π′|V ∗av → U∗a is an
unbranched covering. Let its covering number be kav. By theorem [above] there exist
biholomorphic mappings ζav : V ∗av → D∗ of V ∗av onto the punctured disk such that the
diagram commutes, where πav(z) = zkav .

We choose distinct points pav, a ∈ A, v = 1, · · · , n(a) disjoint from Y ′, and let
Y := Y ′ ∪ {pav : a ∈ A, v = 1 · · · , n(a)}. We put a topology on Y as follows. For a
basis set in Y ′ we make it a basis set of Y . If Wi, i ∈ I is a neighborhood basis of a,
then let {pav} ∪ (π′−1(Wi) ∩ V ∗av) be a neighborhood basis of pav. It is easy to check
that this is indeed a topology on Y ′, and that it is Hausdorff. Define π : Y → X by
π(y) = π′(y) for y ∈ Y ′ and π(pav) = a.

To make Y into a Riemann surface, we add to the charts of complex structure of
Y ′ the following charts. Let Vav = V ∗av ∪ {pav} and let ζav : Vav → D be the same as
ζav : V ∗av → D∗ on V ∗av and ζav(pav) = 0. Since ζav : V ∗av → D∗ is biholomorphic with
respect to complex structure on Y ′, the new charts ζav : Vav → D is holomorphically
compatible with the the charts of the complex structure of Y ′. Then π : Y → X is
holomorphic. We choose φ : Y \ π−1 → Y ′ to be the identity mapping. This shows the
existence of a continuation of the covering π′. �

We have now essentially established the theory we need to complete the proof of the
bijection theorem (Theorem 2.4).

Proof of Theorem 2.3. By Propositions 2.9, 2.14, and Theorem 2.24, we know that a
combinatorial bicolored plane tree T uniquely determines a covering map f (up to
covering isomorphism) from the sphere punctured at the vertices of T and infinity
(call in X ′) to the sphere punctured at three points (call it Y ′). By Theorem 2.34,
the complex structure of X ′ can be uniquely constructed (up to automorphism of the
image sphere) by lifting the complex structure of the punctured Y ′, where we take the
canonical coordinates on Y ′. Then by Theorem 2.36, we can fill in holes of Y ′ and
X ′ to uniquely extend the map to a meromorphic mapping. Since this is a map from
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a Riemann sphere to a Riemann sphere, it is a rational function by Theorem 2.33.
By the construction of the map we see the function has a single pole at infinity, and
therefore it has to be a polynomial.

The above argument glosses over the fact that we only know the covering of Y ′ up
to homeomorphism. To see why this is sufficient, consider some covering (X̃ ′, f̃) of Y ′

which is isomorphic (as a covering) to (X ′, f). If these are isomorphic covers, there is

a homeomorphic map g : X̃ ′ → X ′ such that f ◦ g = f̃ . Thus, (X̃ ′, g) is a covering of
X ′, so we can uniquely lift the complex structure from X ′ to X̃ ′ by another application
of Theorem 2.34. Thus, the covering of Y ′ is unique up by automorphisms of both
the image sphere and the preimage sphere which fix the point at infinity. These are
exactly the linear transformations z 7→ az+b. Since Shabat polynomials are equivalent
up to pre- and post- composition of linear maps, we conclude that each combinatorial
bicolored plane tree T uniquely determines (up to equivalence) a Shabat polynomial
which has that tree as the preimage of a segment between its critical values.

�

Proof of Theorem 2.4. By Proposition 1.4, each Shabat polynomial produces a bicol-
ored plane tree as the preimage of a segment. By Theorem 2.3, each combinatorial
bicolored plane tree is so produced by some Shabat polynomial, and further equivalent
polynomials produce equivalent trees, and inequivalent polynomials produce inequiva-
lent trees. The desired bijection follows. �

3. Constructing Shabat Polynomials from Trees

3.1. Methods for Constructing Shabat Polynomials. The correspondence be-
tween the equivalence classes of Shabat polynomials (polynomials that differ only by
affine linear transformation of the variable and the entire polynomial itself) and equiv-
alence classes of Bicolored Plane Trees allows us to exploit certain combinatorial and
geometric facts about plane trees in order to construct actual Shabat polynomials. The
general method for finding Shabat polynomials based on their trees goes as follows:

We begin by defining the type of the tree:

(1) We begin first by deciding the combinatorial nature of the plane tree which will
correspond to our Shabat polynomial.

Definition 3.1. Given a bicolored plane tree T of N edges, we let 〈B,W 〉 be
a pair of partitions of N such that B corresponds to the list of valencies of the
black vertices and define W similarly for the white vertices. We say that 〈B,W 〉
is the type of T .

Choosing our type will allow us in a sense to narrow down which equivalence
class the resulting Shabat polynomial will come from. Although different classes
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of bicolored plane trees may share the same type, in many cases we may narrow
down the the corresponding equivalence class of Shabat polynomials to just one.

(2) We can normalize any Shabat polynomial to have the black vertices map to 0
and have the white vertices map to 1. Additionally we may take certain liberties
in adjusting the geometric positioning of its corresponding plane tree in order
to determine algebraic facts about our Shabat polynomial. So given a bicolored
plane tree with black vertices a1, a2, ..., an and corresponding valencies α1, α2,
..., αn, without loss of generality our Shabat polynomial will take on the form
P (z) = (z − a1)α1(z − a2)α2 ...(z − an)αn

(3) The derivative of our polynomial P will be of the form P (z) = (z−a1)α1−1(z−
a2)α2−1...(z−an)αn−1W (z), where W (z) will have all the non-leaf white vertices
as its only roots. Furthermore, the multiplicity of each root of W (z) will be
one less than its actual valency in T . Using certain algebraic facts about the
polynomial W we may in some cases determine all of the roots of the original
Shabat polynomial, or in other cases determines the roots up to equations
describing them as the roots of some other polynomial.

3.2. Canonical Geometric Form. Any two BPT of the same equivalence class will
be the same up to similarity. This fact follows from the equivalence relation on Shabat
polynomials, and means that each equivalence class of BPT will have a canonical
geometric Form. We begin by proving this basic theorem.

Theorem 3.2. Let P and Q be equivalent Shabat polynomials, and let TP and TQ be
their respective plane trees. Then TP and TQ are the same up to similarity (i.e. scaling
and isometry).

Proof. Let Q be equivalent to P , so for some A,B, a, b ∈ C, AP (az + b) + B = Q(z),
and assume without loss of generality that P has critical points 0, 1. We will first
show that linear transformation of the polynomial from the outside will transform the
segment [0, 1] by similarity while fixing TP . We will show this by dividing the proof
into two cases that together will show that equivalent polynomials have the same image
segment and their BPTs will be the same up to similarity.

First let AP (z) + B = Q(z), and let r be a critical point of P , and hence a vertex
of TP . Therefore, P ′(r) = 0 =⇒ Q′(r) = AP ′(r) = 0, so r is a critical point of
Q, and hence a vertex of TQ. Now let E be an edge of TP , and note that the corre-
sponding critical value segment for Q(z) will be [0, A + B] = A[0, 1] + B. Therefore
P (E) = [0, 1] =⇒ Q(E) = AP (E) +B = [0, A+B], so E is also an edge in TQ. So we
have that the linear transformation of the polynomial moves the critical value segment
under linear transformation (i.e. similarity) and fixes TP .

Next we will show that the linear transformation of the variable will fix the critical
value segment while transforming the tree TP up to similarity, so let P (az+ b) = Q(z).
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The critical value segment will be the same for both P and Q. Let r be a critical
point of P , then (r − b)/a will be the corresponding critical point of Q. Furthermore,
if E is an edge of TP then (E − b)/a will be an edge of Q since Q((E − b)/a) =
P (a((E − b)/a) + b) = P (E). Therefore TQ = (TP − b)/a, so the trees are equivalent
up to similarity.

Since the linear transformation of the variable and polynomial are independent of
each other, for any equivalent P and Q we can find a two suitable linear transformations
to turn P into Q, the difference between the respective trees TP and TQ will be the
same up to the similarity of the image segment and the critical value. �

As a result of this proof, when we attempt to find Shabat polynomials we may assume
certain things about the position, size, and symmetry of the corresponding tree that
will determine the Shabat polynomial. Also, this means that for every equivalence class
of BPTs there is a canonical geometric form, that is each equvalence class of Shabat
polynomials will correspond to a plane tree up to not only planar graph equivalence
but also up to similarity.

3.3. Using Geometry to Determine Shabat Polynomials. For the rest of this
paper we will assume that the critical values of any Shabat Polynomial, unless specified
otherwise, will be 0, 1. Notice that as a result of 3.2 we may assume that a Shabat
polynomial has corresponding critical values 0, 1, as we need only find a suitable affine
linear transformation to make the critical value segment [0, 1]. Now we will give some
useful definitions.

Definition 3.3. Let N be the number of edges adjacent to a vertex v, then we say that
N is the valency of v

Definition 3.4. Let v be a vertex of some bicolored plane tree T such that no other
vertex of the same color has the same valency, then v is a bachelor of T .

By theorem 3.2 we can narrow down our search for a corresponding Shabat polyno-
mial by fixing any two bachelors. The reason for this fact is that for any equivalence
class of Shabat polynomials there will be either one or finitely many equivalent poly-
nomials with a corresponding tree T having those bachelor vertices in those places.

Additionally, we may even consider symmetries of Shabat Polynomials in a sense:

Definition 3.5. A canonical geometric form is said to be symmetric if there exists a
Shabat Polynomial P in its corresponding polynomial equivalence class such that P has
only real coefficients.

Theorem 3.6. If P has a unique type and at least two vertices of the same color but
different valency then P is symmetric.

Proof. We begin this proof by first stating a Lemma about complex conjugation.
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Figure 14. Example of path with self-intersecting image

Lemma 3.7. If P is a Shabat polynomial, then its complex conjugate P will also be a
Shabat polynomial.

Proof. Let P (z) = anz
n + ... + a1z + a0 be a Shabat Polynomial. P (z) = anz

n +

... + a1z + a0, so it follows that P
′
(z) = nanz

n−1 + ... + 2a2z + a1. If P ′(z0) =

nanz
n−1
0 + ...+ 2a2z+ a1 = 0, then it follows that P

′
(z0) = nanz0

n−1 + ...+ 2a2z+ a1 =

nanz
n−1
0 + ...+ 2a2z + a1 = 0 = 0, so CritP(P ) = CritP(P ), where CritP(P ) are

the critical points of P . Furthermore, CritV(P ) = P (CritP(P )) = P (CritP(P )) =

CritV(P ) = {0, 1} = {0, 1}, so P is also Shabat. �

Let P be a Shabat polynomial that has 2 same-colored vertices of different valency
fixed at 0 and 1 with a unique type, so P and P will be equivalent, thus for some
A,B, a, b ∈ C, AP (az + b) + B = P (z). Since CV (P ) = CV (P ), P and P will have
the same critical points, and since the critical points of both P and P will map to

zero, so A = 1 and B = 0. So P (az + b) = P . If P
′
(z0) = aP ′(az0 + b) = 0,

then z0 ∈ Crit(P (az + b)) = Crit(az + b) ∪ (Crit(P ) − b)/a = (Crit(P ) − b)/a,

so Crit(P ) = Crit(P ) = Crit(P ) − b)/a. (z − b)/a is a linear transformation, but
this linear transformation must fix 0 and 1 since they are real numbers (and thus self
conjugates). Therefore, (z − b)/a is trivial, so b = 0 and a = 1. Hence P = P , so its
coefficients must be real. By definition then P will be symmetric. �

Even if for an arbitrary BPT you find its Shabat polynomial, and the coordinates
of both its black and white vertices, there is still a chance that you may not know
whether two differently colored vertices are neighbors or not. One way to test this is
to construct a path between two differently colored vertices, and look at the image of
the path under the polynomial. It the image of the path intersects itself while the path
itself is bijective (i.e. non-intersecting), then the two vertices cannot be adjacent.

Theorem 3.8. Let v0 and v1 be differently colored vertices (black and white respec-
tively) of the same tree TP that are not adjacent. If p(t) is a non-self-intersecting path
connecting them (with no other vertices incident in it), then P (p(t)) is self-intersecting.

Proof. Let p : [0, 1] → C be a continuous non-iself-ntersecting path from v0 to v1. v0

and v1 are non-adjacent but still part of the same BPT, so there is a unique graph path
v0x0...xnv1 (not to be confused with p) that connects them where x0 will be white and
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xn will be black. Draw two edges, [x0,∞] and [xn,∞], such that both edges intersect
with p(t).

Figure 15. Preimage of path and edges

The image of [x0,∞] and [xn,∞] will connect with the segment [0, 1] and will cut
the w-plane into two halves in a way topologically equivalent to cutting the w-plane
along the real line. Moving from v0, p will intersect [xn,∞], meaning that P (p) will
move from P (v0) = 0 until it intersects a point on [1,∞], isolating 1 from [x0,∞]
on the first half-plane of the w-plane with P (p(t)) moving from 0 to [xn,∞]. When
the path P (p(t)) returns to the first half-plane for the last time it will first intersect
from [x0,∞], but [x0,∞] is isolated from 1 = P (v1) on the first half-plane by the first
segment of P (p(t)). Therefore P (p(t)) must be self-intersecting. �

Figure 16. Image with path self-intersection

3.4. Composition of Shabat Polynomials. We know that the composition of two
Shabat polynomials P , and Q with critical values {p1, p2} and {q1, q2} respectively will
be Shabat if P (q1), P (q2) ∈ {p1, p2}
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Theorem 3.9. Let P and Q be Shabat Polynomials with critical values {p1, p2} and
{q1, q2} respectively such that P (q1), P (q2) ∈ {p1, p2}, then P ◦ Q(z) is Shabat. Fur-
thermore the tree corresponding to P ◦Q is obtained by replacing the edges of the tree
of Q by the tree of P in the following way which we outline in figures 17 and 18.

Figure 17. Trees of P and Q

Figure 18. Resulting Tree of P ◦Q

Proof. Let CritV(P ) be the critical values of P , and let CritP(P ) be the critical points
of P . Notice that the CritV(P ◦ Q) = P ◦ Q(CritP(P ◦ Q)) = P ◦ Q(CritP(Q) ∪
Q−1(CritP(P ))) = P (CritP(Q))∪P (CritP(P )) = P (CritV(Q))∪CritV(P ) = P ({q1, q2})∪
{p1, p2} ⊆ {p1, p2}. Therefore P ◦Q is Shabat. �

The corresponding tree of P ◦Q will be the tree corresponding to Q with the edges
replaced by the tree corresponding to P , and more specifically each edge of TQ will be
replaced by the unique part between the vertices in TP that are the image of all the
white vertices and black vertices respectively of TQ. In addition the parts of TP which
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lie on either side of one of the image vertices of one color of vertices in TQ (but not in
between) will be pasted on in each instance of edge replacement by TP in TQ, outlined
by example in 17 and 18. Notice that the number of edges of the composition tree will
equal the number of edges of TP times the number of edges of TQ. Therefore the only
trees that can be non-trivial compositions are those with a composite number of edges.

If you have a Shabat polynomial with only multiple roots, then you may take any
power of it and still obtain a Shabat polynomial.

Theorem 3.10. Let P be a Shabat polynomial with only multiple roots, then P n will
also be a Shabat Polynomial.

Proof. Notice that (P n(z))′ = nP ′(z)(P n−1(z)), so (P n(z0))′ = 0 if P ′(z0) = 0 or
P n−1(z0) = 0. In the case that P ′(z0) = 0, then z0 is a critical point of P , and thus
P (z0) ∈ {0, 1}. If P n−1(z0) = 0, then P (z0) = 0, thus z0 is a multiple root of P ,
which means that P ′(z0) = 0, so z0 is a critical point of P , and thus P (z0) ∈ {0, 1}.
Therefore, P is a Shabat polynomial. �

3.5. Example of composition tree construction. Let P (z) = (z−i2
√

2)(z−1)(z+
1), and let T3(z) = 4z3− 3z, that is, let T3 be the third Chebyshev Polynomial. Notice

that P (−1), P (1) ∈ {0, P (i
√

2
2

)}, thus P ◦ T3 must be a Shabat Polynomial. To find
the corresponding tree of P ◦ T3, which we denote TP◦T3 , we go through the process
outlined in the proof of Theorem 3.9.

Figure 19. TP as the preimage of [0, P (i
√

2
2

)] under P

We see that two of the vertices of TP happen to fall on the critical points of T3,
we then replace the edges of TT3 with the component of TP between 1 and −1, which
happens to be all TP .

When we replace the edges of TT3 with copies of TP , we do it in a manner that
respects the orientation of the edges of TT3 . The figure below shows the tree TP◦T3 .
Notice that since P (−1) = P (1) = 0, the critical points of T3, which map to 1 or −1,
will map to 0. Therefore CritP(T3) ⊆ CritV(P ◦ T3), so the vertices of TT3 will also be
vertices of TP◦T3
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Figure 20. Tree for T3 with TP and its preimage under T3 in red

Figure 21. TP◦T3

3.6. Shabat polynomials on N distinct roots. We assume from this point on
that the given Shabat polynomial will correspond to the black vertices, unless stated
otherwise. In this section we show computations of W (z), and how we may exploit
certain algebraic features in order to determine our Shabat polynomials
• 1 Distinct Root
Let P (z) = (z − a)α

P ′(z) = α(z − a)α−1

Any polynomial with only one distinct root will automatically be Shabat. The
corresponding tree TP will be a star, with a single black vertex surrounded by α white
leaves. Its corresponding segment will be [0, 1]. Moreover we may fix a = 0, in order
to get the unique up to equivalence Shabat polynomial family zn.
• 2 Distinct Roots
Let P (z) = (z − a)α(z − b)β.
P ′(z) = (z − a)α−1(z − b)β−1(Az −B).
Where A = α + β, and B = αb+ βa.
Any polynomial with two distinct roots will automatically be Shabat. The corre-

sponding tree TP will have two black vertices a and b with α−1 and β−1 white leaves
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respectively. There will be one non-leaf white vertex B/A. Moreover we may fix a = 0,
and b = 1, implying that B = α, hence α and β determine the Shabat polynomial up
to equivalence. The corresponding segment for P will be [0, P (B

A
)]

Figure 22. Tree of polynomial P (z) = (z − a)α(z − b)β

• 3 Distinct Roots
Let P (z) = (z − a)α(z − b)β(z − c)γ.
P ′(z) = (z − a)α−1(z − b)β−1(z − c)γ−1(Az2 −Bz + C).
Where A = α+ β + γ, B = α(b+ c) + β(a+ c) + γ(a+ b), and C = αbc+ βac+ γab.
Let ∆ be the discriminant of Az2 − Bz + C, that is, let ∆ =

√
B2 − 4AC. Notice

that by the quadratic formula that Az2 − Bz + C = (z − B−∆
2A

)(z − B+∆
2A

), where the

roots B±∆
2A

will correspond with the non-leaf white vertices of the tree TP . In order for
a polynomial of three distinct roots to be Shabat, it is necessary and sufficient that
P (B+∆

2A
) = P (B−∆

2A
).

Case 1: We want ∆ = 0, then P (B+∆
2A

) = P (B−∆
2A

) = P ( B
2A

), which will make P
Shabat. For P , fix a = 0 and b = 1, then B2− 4AC = (α(1 + c) +βc+ γ)2− 4(α+β+
γ)(αbc) = (α + β)2c2 + 2(βγ − α(α + β + γ))c+ (α + γ)2. In order for ∆ = 0, we will
have to choose c to be root of (α + β)2c2 + 2(βγ − α(α + β + γ))c + (α + γ)2, which
can be done easily by application of the quadratic formula.

The corresponding tree TP for this polynomial of zero discriminant will have black
vertices 0, 1, and c with α − 1, β − 1, and γ − 1 leaves respectively. The three black
vertices will all be adjacent to the single non-leaf white vertex B

2A
. The corresponding

segment will be [0, P ( B
2A

)].

Case 2: Assume that ∆ 6= 0. In order for P (B+∆
2A

) = P (B−∆
2A

), it will require that

(B − 2Aa±∆)α(B − 2Ab±∆)β(B − 2Ac±∆)γ be the same no matter which choice
of ±. Special attention must be paid to if (without loss of generality) α, β, and γ are
all distinct; α = β and γ is distinct, or if α = β = γ. In the case where you fix a and
b, the polynomial given by solving (B − 2Aa+ ∆)α(B − 2Ab+ ∆)β(B − 2Ac+ ∆)γ =
(B − 2Aa−∆)α(B − 2Ab−∆)β(B − 2Ac−∆)γ may give different solutions for c but
with equivalent polynomials.

The corresponding tree TP will consist of a 4-path connecting the three black vertices
a, b, and c together with the white vertices B+∆

2A
and B−∆

2A
. The two non-leaf white

vertices will have valency two, and without loss of generality the black vertices a, b,
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Figure 23. Tree of P (z) = (z − a)α(z − b)β(z − c)γ when ∆ = 0

and c will have α− 1, β − 2, and γ − 1 leaves respectively where b is the middle black
vertex of the 4-path.

3.7. Constructing Algebraic Families of Shabat Polynomials. Using the ma-
chinery laid out in the previous section and using the fact that fixing any two bachelors
will decide the Shabat polynomial up to the position of the second (non-black) vertex
in the image segment. Therefore, we may give an explicit construction of families of
polynomials based on the number of roots that they have. We will explicitly give a con-
struction of two families of Shabat polynomials that correspond to a subset of planar
trees having only three black vertices and a single non-leaf white vertex. These types
of Shabat polynomials are described in the previous section as having 3 distinct roots,
such that P (z) = (z − a)α(z − b)β(z − c)γ where the discriminant of the polynomial
of the roots unique to P ′(z) is zero. The construction is based on the degrees of the
black vertices of TP . In this construction we fix the non-leaf white vertex at 0 and one
of the black vertices at 1

Example 3.11. Let all the black vertices have the same degree α. In the first con-
struction we give we use the composition of Shabat polynomials to form our P .
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Following from the construction of trees of composed Shabat polynomials, it is not to
hard to see that P (z) = (1− z3)α = (−1)α(z3 − 1)α will be Shabat and will correspond
with our tree.

Example 3.12. Let two of the black vertices have degree β, but let the black vertex
fixed at one have degree α 6= β, hence P (z) = (z − 1)α(z − b)β(z − c)β. First consider
the complex conjugate P (z) = (z− 1)α(z− b)β(z− c)β, since P corresponds to a tree of
a unique type, P and P must be equivalent, hence P = P and thus c = b. Now, where
A = α+ 2β and B = α(b+ b) +β(b+ b+ 2), B

2A
= 0 =⇒ 0 = B = α(b+ b) +β(b+ b+

2) =⇒ (α+β)(b+b) = −2β =⇒ b+b = − 2β
α+β

. Now in order for TP to have the form

we want, we need that 0 = B2 − 4AC. However, B = 0 and 4A is positive, so we only
need that C = 0 where C = αbb+β(b+b) = αbb−β( 2β

α+β
) = 0. Now because of similarity

we may assume that Re(b) = −1, hence αbb−β( 2β
α+β

) = α((Im(b))2 + 1)−β( 2β
α+β

) = 0,

which implies that Im(b) =
√

1
α

( 2β2

α+β
− α) =

√
2β2−αβ−α2

α(α+β)
. Hence b = 1+ i

√
2β2−αβ−α2

α(α+β)
,

giving us the family of Shabat polynomials.

Example 3.13. We present in Figures 25 through 28 several pictures of combinato-
rial plane trees, along with representatives of the corresponding equivalence classes of
Shabat polynomials. The polynomials were generated by taking the critical values to be
zero (whose preimages are the black vertices) and one (whose preimages are the white
vertices), choosing a black vertex to be zero and a white vertex to be one, and then
solving the resulting systems of polynomial equations.

Figure 24. P (z) = z2 and P (z) = 1
2
(z + 1)(z − 1

2
)2
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Figure 25. P (z) = z3 and P (z) = 4(z −
√

2
2

)2(z +
√

2
2

)2

Figure 26. −256
27
z3(z − 1) and z4

Figure 27. (z − 1)(z − 1+
√

5
4

)2(z − 1−
√

5
4

)2 and 3125
108

z3(z − 1)

4. Algebraic Numbers and Combinatorial Bicolored Plane Trees

A surprising consequence of Theorem 2.4 is that our trees inherit certain algebraic
properties from their corresponding polynomials. Since each tree is constructed by
solving systems of algebraic equations, each tree can certainly be realized as the preim-
age of a segment between the critical values of a Shabat polynomial with algebraic
coefficients. As the universal Galois group Γ = Aut(Q/Q) acts on the set of such



PLANE TREES AND SHABAT POLYNOMIALS 41

Figure 28. −2000
27
√

5
z2(z − 1)2(z − 2+

√
5

4
) and 135

512
z3(z −

√
15+i√

15
)(z −

√
15−i√

15
)

Shabat polynomials by sending coefficients to conjugate coefficients, we can naturally
define an action of Γ on the set of combinatorial bicolored plane trees. If T1 and T2 are
two bicolored plane trees with corresponding polynomials f1 and f2 (over Q) such that
the element g of Γ conjugates f1 to f2, then we say g(T1) = T2. We can further study
the algebraic properties of trees by studying and understanding the field of definition
of a tree.

Definition 4.1. Let T be a bicolored plane tree. The field of definition of T is the
Galois extension of the subfield K of Q corresponding to the subgroup of Γ which fixes
T .

The above definition is partially motivated by the following theorem, which gives
surprising algebraic information about bicolored plane trees.

Theorem 4.2. For any bicolored plane tree T there exists a Shabat polynomial whose
coefficients belong to the field of definition of T .

Proof. Given a bicolored plane tree, let pk(z) = (z − bk1) · · · (z − bkl) (resp. qk(z) =
(z− ak1) · · · (z− akm)) denote the monic polynomial whose roots are black (resp qk(z))
vertices of valency k. The coefficients of these polynomials are elementary symmetric
functions of the coordinates of the vertices of the same color and valency. We call these
symmetric functions vertex combinations. Note that a vertex combination includes only
vertices of same color and valency.

As an example, for the given tree in figure 4, we have p3(z) = (z − b31)(z − b32),
q1(z) = (z − a11)(z − a12)(z − a13)(z − a14), and q2(z) = (z − a21). The vertex combi-
nations look like b31b32, b31 + b32, a11a12a13 + a11a12a14 + a11a13a14 + a12a13a14, etc.
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Figure 29. Vertex combination

We look for a polynomial of the form

P (z) = λ
∏

pk(z)k

such that

P (z)− 1 = λ
∏

qk(z)k.

The coefficients give us (#vertices−1) equations but we have (#vertices+1) unknowns.
We will need to add two equations. Intuitively, this depends on where we put the tree
on the complex plane. Let σ denote the sum of vertices of degree one with the same
color (black or white), and set σ = 0. This means that the position of the tree is
determined up to a transformation z 7→ Az, for some A ∈ C.

Now let m be the order of symmetry of the tree. This means m is the largest num-
ber such that P (z) = P (ωmz), where ωm is the mth root of unity. We show that m
equals the smallest nonzero degree of all vertex combinations. Consider any pk(z) =
(z − bk1) · · · (z − bkl). We have that (z − bk1) · · · (z − bkl) = (z − ωmbk1) · · · (z − ωmbkl).
Since ωnm 6= 1 for n < m, any vertex combination of degree less than m has to equal
0 for the equality to hold. Conversely, when m′ is the smallest nonzero degree of all
vertex combinations, we have pk(z) = pk(ωm′z), so m′ ≤ m. The claim then follows.
Now the position of the tree is determined up to z 7→ Az, with Am = 1.

Let P be another solution of the system of equations, and suppose P gives the same
tree as P . This means P = P (Az) = P . This shows the uniqueness of P .

�

Before we prove that the absolute Galois group acts faithfully on the set of combi-
natorial bicolored plane trees, we need to use the following lemmas.

Lemma 4.3. Let f be a polynomial of degree n, and let d|n. Suppose there is a monic
polynomial h of degree d such that h(0) = 0 and for some polynomial g, f = g(h).
Then h is unique.
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Proof. By definition,
f = amh

m + · · ·+ a1h+ a0

where m = n/d. h is monic and has no constant term, so there are d−1 coefficients of h
which are unknown. The highest d-degree terms in f (the terms of degree n, . . . n−d+1)
must equal the terms of corresponding degree in amh

m. This gives us d independent
equations and d unknowns (the roots of h), so there is at most one solution. �

Lemma 4.4. Let g, h, ḡ, h̄ be polynomials such that g(h) = ḡ(h̄) and deg h = deg h̄.
Then for some constants c and d, h̄ = ch+ d.

Proof. For some constants c1, d1, c2, d2, the polynomials

h/c1 − d1 and h̄/c2 − d2

are monic and have no constant term. By altering g and ḡ accordingly into g1 and ḡ2,
we get

g(h) = g1(h/c1 − d1) = ḡ2(h̄/c2 − d2).

By Lemma 4.3,

h/c1 − d1 = h̄/c2 − d2 ⇒ h =
c1

c2

h̄+ (d1 − d2)c1.

�

This next lemma is a quite powerful result from the theory of Belyi functions, which
are studied extensively in [6]. This allows us to easily produce Shabat polynomials
which are acted upon by specific elements of the absolute Galois group, which is central
to the proof that this group acts faithfully on the set of combinatorial bicolored plane
trees.

Lemma 4.5. For any polynomial P with algebraic coefficients there exists a polynomial
f with rational coefficients such that f ◦ P is a Shabat polynomial.

For any polynomial g, let CritV(g) be the set of critical values of g, and CritP(g)
the set of critical points. First, observe that for any polynomials g and f ,

(g ◦ f)′(z) = f ′(z)(g′ ◦ f)(z).

Hence,

CritP(g ◦ f) = CritP(f) ∪ f−1(CritP(g)), and

CritV(g ◦ f) = g(CritV(f)) ∪ CritV(g).

From now on, call this observation ∗.

Let S0 be the set of all irrational critical values of P = P0, along with all of their
algebraic conjugates. Let P1 be the polynomial annihilating S0. As S0 contains the



44 DAOJI HUANG, LEO OLIVARES, BEN STRASSER, AND ADAM ZWEBER

algebraic conjugates of each of its elements, P1 has only rational coefficients. This is
because the set S0 by definition is invariant under any action by the Galois group Γ.
Let n = |S0| = deg(P0), and let S1 = CritV(P1). As P1 has only rational coefficients, S1

must contain all of the algebraic conjugates of its elements. Furthermore, deg(P1) = n,
so |S1| ≤ n− 1. By ∗,CritV(P1 ◦ P0) = CritV(P1) ∪ {0} since P1 annihilates S0.

For i < n, let Pi be the polynomial annihilating Si−1, and let Si = CritV(Pi). By
induction, |Si| ≤ n− i and deg(Pi) ≤ n− i+ 1. By ∗,

CritV(Pi ◦ Pi−1 ◦ · · · ◦ P1 ◦ P0) = CritV(Pi) ∪ CritV(Pi−1 ◦ · · · ◦ P0).

As each Pi has rational coefficients and maps Pi−1’s irrational critical points to 0, a
rational number. Therefore, the only irrational critical values resulting from the above
composition can be those of Pi. Terminate this process at the first polynomial Pk which
is linear. The resulting composition

g = Pk ◦ Pk−1 ◦ · · · ◦ P1 ◦ P0

will have all rational critical values.

With appropriate scaling by rationals, we can assume all critical values of g are con-
tained in a unit length interval. With a translation by a rational, we may insist that the
interval is [0, 1]. By abuse of notation, we will assume g only has critical values in [0, 1].

While our composition still has a critical value which is not 0, write that critical
value as m

m+n
. Construct

Pm,n(z) =
(m+ n)m+n

mmnn
zm(1− z)n.

Assuming m and n are both greater than 1 (if they are not, simply multiply them both
by a sifficiently large scalar), each Pm,n will be Shabat. Furthermore, note that

Pm,n

(
m

m+ n

)
=

(m+ n)m+n

mmnn

(
m

m+ n

)m(
1−

(
m

m+ n

))n
=

(m+ n)m(m+ n)n

mmnn

(
m

m+ n

)m(
n

m+ n

)n
= 1.

Therefore, Pm,n◦g will have one fewer rational critical value than g. If m1

m1+n1
, . . . , ml

ml+nl

are the rational critical values of g, Pm1,n1 ◦ g, . . . Pml−1,nl−1
◦ · · · ◦ g, then by ∗ the

polynomial

f = Pml,nl
◦ · · · ◦ Pm1,n1 ◦ Pk ◦ · · · ◦ P1

is a polynomial with rational coefficients such that f ◦ P is Shabat.
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We finally have the machinery needed to prove the much-anticipated theorem about
the faithful action of Gal(Q/Q).

Theorem 4.6. The action of Γ = Gal(Q/Q), on the set of combinatorial bicolored
plane trees is faithful.

Proof. Let K = Q[α] be a number field, and let β ∼= α such that β 6= α. Define

pα =

∫
z3(z − 1)2(z − α)dz

pβ =

∫
z3(z − 1)2(z − β)dz

such that pα and pβ have constant terms 0. We know there exists a polynomial f
over the rationals such that Pα = f ◦ pα is Shabat. In the proof of Lemma 4.5, the
set S0 contains all conjugates of α, including β, so the same polynomial f will satisfy
Pβ = f ◦ pβ is Shabat. Let Tα and Tβ be the bicolored plane trees obtained from Pα
and Pβ, respectively.

Claim: Tα and Tβ are distinct.

Suppose the contrary. By Theorem 2.3,

Pα = APβ(az + b) +B ⇒ f(pα(z)) = Af(pβ(az + b)) +B

Applying Lemma 4.4 to g = f , h = pα, g = Af + B, and h = pβ(az + b), we know
there exist constants c and d such that

pα(z) = cpβ(az + b) + d.

Furthermore,

CritP(pβ(az + b)) =

{
−b
a
,
1− b
a

,
β − b
a

}
CritP(pα(z)) = {0, 1, α}.

Since these polynomials are equivalent, CritP(pβ(az + b)) = CritP(pα(z)). Because
each of these critical points has different multiplicity in the derivative, we may write

−b
a

= 0,
1− b
a

= 1,
β − b
a

= α,

implying b = 0, a = 1, and β = α. We assumed β 6= α, a contradiction. �

Theorem 4.6 illustrates how the algebraic richness of the world of polynomials can be
translated into the world of combinatorial bicolored plane trees. The group Gal(Q/Q)
is poorly understood, and mathematicians have struggled with the famous ‘inverse
Galois problem’ for centuries. Results like Theorem 4.6 help to peel away the layers
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of abstraction associated with the group Gal(Q/Q), in the hopes of helping us better
understand this group.

5. Continued Fractions and Plane Trees

5.1. Introduction. Continued fractions are best known as an interesting and often
beautiful way of expressing real numbers. However, the concept of a continued fraction
can be expanded to include analogous representations of functions. Whereas most
of paper [7] deals with a bijection between plane trees and Shabat polynomials, the
paper briefly explains a function from plane trees to a different subset of polynomials:
those which display a certain symmetry in the continued fraction representation of
their square roots. We will introduce continued fractions as a topic in number theory,
generalize them to functions, and explain their relationship to plane trees.

5.2. Continued fractions: the number case.

5.2.1. Finite continued fractions.

Definition 5.1. (Definition 8.1 of [3]) A finite continued fraction (of a real number)
is an expression of the form

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an
where each of the ai are real numbers and a1, . . . , an are positive.

The ais of a continued fraction are called coefficients. In the case in which each
of the coefficients is an integer the continued fraction is called simple. Due to the
cumbersome nature of such expressions we will often use the notation

[a0, a1, . . . , an]

to represent the above continued fraction.

Example 5.2. The number
2013

4
can be written as a finite continued fraction in the

following manner.
2013 = 4× 503 + 1

So
2013

4
= 503 +

1

4
= [503, 4] .

We will discuss generally how to compute such expressions below after we have seen
why we may want to do such a thing.
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5.2.2. Infinite continued fractions. Now in the finite case discussed above, each of the
successive ak’s intuitively seems to be less and less relevant to the value of the expres-

sion. For instance, in example (5.2), 503 by itself is pretty close to
2013

4
. The below

discussion seeks to capture and exploit this intuition.

Definition 5.3. (Definition 8.15 of [3]) Let a0, a1, a2, . . . be an infinite sequence of
integers with each ai positive for i ≥ 1. Then

lim
n→∞

[a0, a1, . . . , an] = [a0, a1, a2, . . .]

is called an infinite simple continued fraction.

If the sequence a0, a1, a2, . . . is eventually periodic, then the continued fraction is said
to be periodic. If the sequence is purely periodic, then so is the continued fraction said
to be. We have not answered whether or not this limit always exists. The affirmitive
is true, but to see this we will need to do some legwork first.

A useful concept to introduce at this point is that of a convergent. The n-th con-
vergent, Cn, of the (finite or infinite) continued fraction [a0, a1, a2, . . .] is simply the
finite continued fraction [a0, a1, . . . , an] = Cn = xn

yn
where xn and yn are not necessarily

integers, though they are if the continued fraction is simple (Definition 8.5 of [3]). A
key observation about these convergents is the following proposition.

Proposition 5.4. ([10]) Let [a0, a1, a2, . . .] be a (not necessarily simple) continued frac-
tion whose n-th convergents are Cn = xn

yn
. Then for all n ≥ 0,(

a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an 1
1 0

)
=

(
xn xn−1

yn yn−1

)
. (5.1)

Proof. We will induct on n. First note that x0
y0

= a0 = a0
1

. We can define x−1 = 1 and

y−1 = 0 so that (
a0 1
1 0

)
=

(
x0 x−1

y0 y−1

)
.

Now suppose for all continued fractions, equation (5.1) holds for all k < n. Then(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1

1 0

)
=

(
xn−1 xn−2

yn−1 yn−2

)
.

We’ll let(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−2 1

1 0

)
=

(
xn−2 xn−3

yn−2 yn−3

)
= M.

Then we can think of the n-th convergent as the (n−1)-st convergent of the continued
fraction expansion that is identical to the expansion we are interested in, but with
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(n− 1)-st term equal to an−1 + 1
an

, instead of an−1. By hypothesis

M

(
an−1 + 1

an
1

1 0

)
=

(
xn xn−2

yn yn−2

)
.

So

M

(
an−1 + 1

an
1

)
= M

(
an−1

1

)
+M

(
1
an
0

)
=

(
xn−1

yn−1

)
+

1

an

(
xn−2

yn−2

)
=

(
xn
yn

)
.

Thus
xn
yn

=
xn−1 + xn−2

an

yn−1 + yn−2

an

=
anxn−1 + xn−2

anyn−1 + yn−2

. (5.2)

Therefore(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an 1
1 0

)
=

(
xn−1 xn−2

yn−1 yn−2

)(
an 1
1 0

)
=

(
xn xn−1

yn yn−1

)
.

�

There are a number of useful identies to be learned from this proof (The following
corollaries and proposition can all be found in [3] Chp. 8). For instance, equation (5.2)
implies a simple recurrence relation about the convergents.

Corollary 5.5. Let Ck = xk
yk

denote the k-th convergent of the continued fraction

[a0, a1, a2, . . .]. Then

xn = anxn−1 + xn−2, x0 = a0, x−1 = 1 (5.3)

yn = anyn−1 + yn−2 y0 = 1, y−1 = 0 (5.4)

By taking the determinant of both sides of equation (5.1) we usefully obtain

Corollary 5.6. Let xk, yk be as in Corollary 5.5. Then

xnyn−1 − ynxn−1 = (−1)n−1. (5.5)

Dividing by ynyn−1, we get

Corollary 5.7. Let xk, yk, Ck be as in Corollary 5.5. Then

Cn − Cn−1 =
xn
yn
− xn−1

yn−1

=
(−1)n−1

ynyn−1

. (5.6)

We are now well-equipped to show that Definition 5.3 makes sense. That is, we can
prove the following proposition
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Proposition 5.8. Let a0, a1, a2 . . . be a sequence of integers with each ai positive for
i ≥ 1. The limit

lim
n→∞

[a0, a1, . . . , an]

converges.

Proof. Let ε > 0 be given. We will show that the sequence of convergents is Cauchy,
that is, that there exists some N such that if N ≤ l < n then |Cl − Cn| < ε. Notice
that the triangle inequality and equation (5.6) give us

|Cl − Cn| ≤
n∑

k=l+1

|Ck − Ck−1|

=
n∑

k=l+1

1

|ykyk−1|
.

But because each ai (except possibly a0) is a positive integer, equation (5.4) implies
that the yi’s form a strictly increasing sequence of integers with y0 = 1. Therefore
yk > k, so

|Cl − Cn| ≤
n∑

k=l+1

1

|ykyk−1|
<

n∑
k=l

1

k2

The last sum converges so for some N ,
∑∞

k=N
1
k2

< ε. Therefore, the sequence is
Cauchy. �

This is great news for Definition 5.3, but as we will see, danger still looms large over
the following attempt to compute one of these infinite continued fractions.

Example 5.9. Consider solutions to the equation x2 − 2x − 1 = 0, which has roots
x = 1±

√
2. Notice that x(x− 2) = 1. So if x 6= 0 (which we know to be the case) then

x = 2 +
1

x
.

Substituting this last expression into itself yields

x = 2 +
1

2 +
1

x

.

And again

x = 2 +
1

2 +
1

2 +
1

x

.



50 DAOJI HUANG, LEO OLIVARES, BEN STRASSER, AND ADAM ZWEBER

And so on ad infinitum

x = 2 +
1

2 +
1

2 +
1

. . .

.

But which x is it, 1 +
√

2 or 1 −
√

2? We may notice that the right hand side
must be greater than 2 and conclude that we have a continued fraction expansion for
x = 1 +

√
2. But that fails to answer why our method somehow “preferred” this root

over its conjugate. To gain some insight into these matters, first note that any purely
periodic continued fraction can be written in the form

α =

[
a0, a1, . . . , an−1,

1

α

]
,

whose n-th convergent is equal to α. Equation (5.2) then gives us

Cn = α =
αxn−2 + xn−1

αyn−2 + yn−1

,

which is equivalent to the quadratic

yn−2α
2 + (yn−1 − xn−2)α− xn−1 = 0. (5.7)

The following theorem about the roots of this quadratic tells us for which x we have
found a continued fraction expansion in our example. Remember that throughout this
discussion of periodicity we have said nothing about whether or not the ai are integers,
so our previous theorem about the convergence of infinite simple continued fractions is
irrelevant.

Theorem 5.10. (Theorem 8.1 of [11]) Let α1, α2 be the fixed points of the transforma-
tion

f(α) =

[
a0, a1, . . . , an−1,

1

α

]
=
αxn−2 + xn−1

αyn−2 + yn−1

,

i.e.f(α1) = α1 and f(α2) = α2. Then the continued fraction

[a0, a1, . . . , an−1, a0, a1, . . . , an−1, a0, a1 . . .] (5.8)

converges if and only if α1, α2 satisfy

α1 = α2,

or

|Cn−1 − α2| > |Cn−1 − α1|, Cp 6= α2

p = 0, 1, 2, . . . , n− 1.

If the continued fraction in (5.8) converges, it equals α1.
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Proof. Notice that

Cnk+p = fk(Cp), p = 0, 1, 2, . . . , n− 1. (5.9)

Thus Cp is a fixed point of f if and only if Cp = Cnk+p. We consider three cases.

• Case 1: α1 = α2. In this case the quadratic (5.7) can be solved for α1. This
gives us

1

f(α)− α1

=
1

α− α1

+
1

Cn−1 − α1

,

which, when iterated k times gives

1

fk(α)− α1

=
1

α− α1

+
k

Cn−1 − α1

. (See [11]) (5.10)

Substituting in Cp for α and making use of equation (5.9) we get

1

fk(Cp)− α1

=
1

Cnk+p − α1

=
1

Cp − α1

+
k

Cn−1 − α1

. (5.11)

If Cp = α1 we know that Cnk+p = α1, so the following limit will hold, regardless.
We take the limit of both sides of equation (5.11):

lim
k→∞

1

Cnk+p − α1

= lim
k→∞

1

Cp − α1

+
k

Cn−1 − α1

We know that Cp, Cn−1, α1 are fixed numbers so the right hand side goes to
infinity. Therefore, the denominator of the left hand side must go to zero.
Thus for all p,

lim
k→∞

Cnk+p = α1

so the convergents in fact converge to α1, making this the value of the continued
fraction.
• Case 2: α1 6= α2 and |Cn−1 − α2| > |Cn−1 − α1|. Again using the quadratic

formula and the fact that the roots of equation (5.7) are in this case distinct,
we have the following (from [11]):

f(α)− α1

f(α)− α2

=
(Cn − α1)(α− α1)

(Cn − α2)(α− α2)
.

This time the k-th iteration is given by

fk(α)− α1

fk(α)− α2

=
(Cn−1 − α1)k(α− α1)

(Cn−1 − α2)k(α− α2)
= σk

(α− α1)

(α− α2)
(5.12)

where |σ| = | (Cn−1−α1)
(Cn−1−α2)

| < 1, by hypothesis. We let α = Cp and use equation

(5.9) to obtain
Cnk+p − α1

Cnk+p − α2

= σk
(Cp − α1)

(Cp − α2)
. (5.13)
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If Cp 6= α2, we now have

Cnk+p − α1 = εk(Cnk+p − α2)

with εk = σk Cp−α1

Cp−α2
, limk→∞ εk = 0. But now we have

(1− εk)Cnk+p = α1 − εkα2

So

Cnk+p =
α1 − εkα2

1− εk
.

Subtracting α1 from both sides we find

Cnk+p − α1 =
εk(α1 − α2)

1− εk
.

Upon taking the limit of both sides, we find that limk→∞Cnk+p − α1 = 0
and thus the convergents converge to α1. Now if we had for some p that
Cp = α2, then we know Cnk+p = α2 for all k by equation (5.9). But for all other
m = 0, 1, 2, . . . , n − 1,m 6= p we have limk→∞Cnk+p = α1 6= α2, and thus the
continued fraction no longer converges to one value, and thus diverges.
• Case 3: α1 6= α2 and |Ck−1 − α1| = |Ck−1 − α2|. We have σ as in Case 2, but

this time |σ| = 1. But because α1 6= α2, we know that σ 6= 1, and thus the
sequence of σk’s must have at least two different limit points. We let p = n− 1
in equation (5.13) and observe

C(k+1)n−1 − α1

C(k+1)n−1 − α2

= σk+1

and thus the sequence (
C(k+1)n−1−α1

C(k+1)n−1−α2
) has at least two limit points which means

that so must the sequence (Ckn−1) so the sequence (Ck) cannot converge.

�

Now this theorem shows us what happened in our example. We have

α1 = 1 +
√

2, α2 = 1−
√

2, Cn−1 = 2.

Which means we satisfy the second condition of the theorem because

|1−
√

2− 2| > |1 +
√

2− 2|.

And thus

1 +
√

2 = 2 +
1

2 +
1

2 +
1

. . .

.
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Alternatively, we could note that

1 +
√

2 = 2.414... = 2 + .414... = 2 +
1

r1

for some r1 > 1. We seek the greatest integer less than or equal to r1 so we can write
the above expression in the form

1 +
√

2 = 2 +
1

a1 +
1

r2

.

Solving 1
r1

= 1 +
√

2− 2 reveals r1 = 1 +
√

2, which, to no one’s surprise based off the
above discussion, shows

1 +
√

2 = 2 +
1

2 +
1

r2

.

Repeating this process will give the desired formula:

1 +
√

2 = 2 +
1

2 +
1

2 +
1

. . .

.

In general, to compute a simple continued fraction expansion of some real number r
we use the following algorithm: Find the largest integer a0 such that a0 ≤ r. Then
r = a0 + 1

r1
for some r1. Next find the largest integer a1 such that a1 ≤ r1. Then

r = a0 +
1

a1 +
1

r2

for some r2. Continue this process until your curiosity is satisfied.

5.2.3. Continued fractions of functions. This is all very wonderful for integers, but our
primary concern will be representing continued fractions of functions. Specifically, we
are seeking a representation for the square roots of polynomials. What exactly does
this mean and why would we do it? The idea of representing a number as a continued
fraction is to represent it as something resembling a rational number. Similarly the
idea behind continued fractions of functions is to represent the function as something
resembling a rational function. Specifically,

Definition 5.11. A continued fraction of a function, f, is an expression of the form
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f(z) = a0(z) +
1

a1(z) +
1

a2(z) +
1

. . .

= [a0, a1, a2, . . .]

where each of the ai are polynomials.

Now we wish to construct a continued fraction of a function, but it is unclear how
to proceed. In the case of irrational numbers we started by taking the integer part
of the number under consideration, but the analog to an integer part of a function is
unclear. Van der Poorten and Tran describe the process as follows in [10]: Given a
function, f , let z = 1

x
, such that f( 1

x
) has finitely many poles, and consider the Laurent

Series of f( 1
x
), centered around 0. This gives us a series representation converging to

f( 1
x
) for sufficiently small 1

x
, which is equivalent to a series representation for f(z) for

sufficiently large z. This series is

f(
1

x
) =

∞∑
i=−m

bix
i

Substituting in z = 1
x
, we now take the polynomial part of f(z), that is,

∑m
i=0 biz

i, and
use it to start our continued fraction. We have

f(z) =
m∑
i=0

biz
i +

1

F1(z)

for some function F1(z). Let a0 =
∑m

i=0 biz
i so

f(x) = a0 +
1

F1(z)
.

We can rearrange this expression to give F1(z) = 1
f(z)−a0 and then compute the poly-

nomial part of F1(z) in the same manner we did for f(z), and repeat. More explicitly
we define Fi+1 = 1

Fi−ai and F0 = f , where ai is the polynomial part of Fi. We can then
see that the continued fraction expansion of f is given by

f(z) = a0(z) +
1

a1(z) +
1

a2(z) +
. . .

for z sufficiently large.
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5.3. The number case vs. the polynomial case. One may notice that many of
the results we proved in our discussion of continued fractions of real numbers actually
generalize, with identical proofs, to the case in which each of the ais is a polynomial
(Proposition 5.4 and Corollaries 5.5, 5.6, and 5.7). However, there is at least one
important fact about simple continued fractions that does not hold for continued frac-
tions of functions. This is the well known result that for a non-square integer m the
continued fraction expansion of

√
m is always eventually periodic (Lemma 8.35 of [3]).

The fact that this is not so if m is a polynomial raises the question of when exactly the
continued fraction expansion of the square root of a polynomial is eventually periodic.
To this end Abel proved in 1826 the following incredible theorem:

Theorem 5.12. ([1]) The following are equivalent

(a) Given D(z), there exist polynomials P,Q such that the Pell equation for poly-
nomials, P (z)2 −D(z)Q(z)2 = 1, is satisfied.

(b) The square root
√
D(z) may be represented as an eventually periodic continued

fraction.
(c) An integral ∫

f(z)√
D(z)

dz

for some f(z) of deg p ≤ deg D − 2 can be computed in elementary functions.

We will show the path b) ⇒ a) ⇒ c), the rest of the proof remaining unknown to
us, but available to curious french-speakers in [1].

Remark 5.13. In the literature it is generally assumed, though not proven that if∫
f(z)√
D(z)

dz

can be computed in elementary functions then it will take the form∫
f(z)√
D(z)

dz = ln(p(z) + q(z)
√
D(z)).

From this we can see c) ⇒ a) by computing

0 =

∫
f(z)√
D(z)

dz −
∫

f(z)√
D(z)

dz

=

∫
f(z)√
D(z)

dz +

∫
f(z)

−
√
D(z)

dz

= ln(p(z) + q(z)
√
D(z)) + ln(p(z)− q(z)

√
D(z))

= ln(p(z)2 −D(z)q(z)2).

So p(z)2 −D(z)q(z)2 = 1.
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Now for the proof:

Proof. • b)⇒ a). Assuming b), Proposition 3.3 of [10] gives us√
D(z) = [a0, a1, a2, . . . an, an+1]

Where

an+1 = [2a0, a1, a2, . . .] = a0 +
√
D(z)

So by equation (5.2),
√
D(z) = an+1xn+xn−1

an+1yn+yn−1
where xn, xn−1, yn, yn−1 represent

the numerators and denominators respectively of the n-th and n− 1-th conver-
gents of

√
D(z). Then substituting a0 +

√
D(z) for an+1 yields√

D(z) =
(a0 +

√
D(z))xn + xn−1

(a0 +
√
D(z))yn + yn−1

From which it follows that√
D(z)(a0 +

√
D(z))yn +

√
D(z)yn−1 = (a0 +

√
D(z))xn + xn−1

and thus

D(z)yn + (a0yn + yn−1)
√
D(z) = (a0xn + xn−1) + xn

√
D(z).

But this means that

D(z)yn = (a0xn + xn−1)

and

a0yn + yn−1 = xn.

Solving for xn−1 and yn−1 gives

xn−1 = D(z)yn − a0xn

yn−1 = xn − a0yn

We substitute these equations into equation (5.5) to get

xn(xn − a0yn)− yn(D(z)yn − a0xn) = (−1)n+1

which we can rewrite as

xn
2 −D(z)yn

2 = (−1)n.

If n + 1 is even we are done. Otherwise, we use the second period in the
expansion of

√
D(z) instead of the first (so now when we repeat everything

above we will get x2n+1
2−D(z)y2n+1

2 = (−1)2(n+1).). This guarantees a solution
to the Pell equation!
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• a)⇒ c). Suppose P (z)2 −D(z)Q(z)2 = 1. We will show that∫
f(z)√
D(z)

dz = ln(P (z) +Q(z)
√
D(z))

where f(z) = P ′(z)
Q(z)

. First we must show that f(z) is indeed a polynomial. Note

that the Pell equation implies that P and Q are relatively prime. Further,
taking derivatives of both sides of it yields

2P (z)P ′(z)− 2D(z)Q(z)Q′(z)−D′(z)Q(z)2 = 0.

Or

2P (z)P ′(z) = Q(z)(2D(z)Q′(z) +D′(z)Q(z)).

So it must be the case that Q divides P ′ and that

f(z) =
P ′(z)

Q(z)
=

(2D(z)Q′(z) +D′(z)Q(z))

2P (z)
.

Thus

f(z)√
D(z)

=
2D(z)Q′(z) +D′(z)Q(z)

2P (z)
√
D(z)

=

√
D(z)Q′(z) + D′(z)Q(z)

2
√
D(z)

P (z)

=

√
D(z)Q′(z) + D′(z)Q(z)

2
√
D(z)

P (z)

(1 + Q
√
D

P
)

(1 + Q
√
D

P
)

=

√
D(z)Q′(z) + D′(z)Q(z)

2
√
D(z)

+ 2D(z)Q′(z)Q(z)+D′(z)Q(z)2

2P (z)

P (z) +Q(z)
√
D(z)

=

√
D(z)Q′(z) + D′(z)Q(z)

2
√
D(z)

+ P ′(z)

P (z) +Q(z)
√
D(z)

=
(P (z) +Q(z)

√
D(z))′

P (z) +Q(z)
√
D(z)

.

Lo and behold, from this it follows that∫
f(z)√
D(z)

dz = ln(P (z) +Q(z)
√
D(z)).

�
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Not only is this result surprising and interesting, but it helps if we find ourselves
searching for things we can integrate or things with periodic continued fractions. We
need only to find a polynomial, D, that satisfies the Pell Equation in order to find
some weird integral that we can be sure has a solution in elementary functions, as was
Abel’s wont.

5.4. Relationship to Plane Trees. Combinatorial bicolored plane trees can help
in an otherwise fruitless search for polynomials that satisfy one of the conditions of
Theorem 5.12. Shabat and Zvonkin discuss how to do this in [7]. Suppose we are
given a plane tree with corresponding Shabat polynomial, p. Consider the case where
p has critical values −1 and 1. Say, without loss of generality, that p maps the white
vertices of our tree to −1 and the black vertices to 1. Let the black vertices be given
by b1, b2, . . . , bn each with valency β1, β2, . . . , βn and let the white vertices be given by
w1, w2, . . . , wm with corresponding valencies υ1, υ2, . . . , υm. Then

p(z) = λ
n∏
i

(z − bi)βi − 1 = λ
m∏
j

(z − wj)υj + 1.

So

p(z)2 − 1 = (p(z)− 1)(p(z) + 1) = λ2

n∏
i

(z − bi)βi
m∏
j

(z − wj)υj . (5.14)

We can think of this product though as the product of terms corresponding to vertices
of odd valency, which all must be raised to odd powers, and terms corresponding
to vertices of even valency, which all must be raised to even powers. Letting the
product of terms corresponding to vertices of odd valency be equal to D(z) and those
of even valency be equal to q(z)2, Equation (5.14) reads p(z)2 − 1 = D(z)q(z)2 so
p(z)2 − D(z)q(z)2 = 1. So for a plane tree the “odd valency vertices” polynomial D
satisfies the Pell equation and thus inherits all of the interesting properties implied by
Theorem 5.12.

Remark 5.14. If some of the odd valencies are greater than 1, we can get other
solutions to the Pell equation by simply letting D(z) be the square-free part of the right
hand side of Equation (5.14).

The natural thing to do now is to compute some continued fractions of these “
√
D”s.

We start with the simplest tree, given by the pre-image of [−1, 1] under T1(z) = z.
The odd vertices are the end points −1 and 1 so

D(z) = (z + 1)(z − 1) = z2 − 1.

Thus we’d like to compute the continued fraction of
√
D =

√
z2 − 1.

We’ll do this in three ways.
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5.4.1. Method 1: Algebra and Divine Insight. Knowing that the continued fraction
expansion we seek is periodic, we can try to solve for it algebraically, in a way analogous
to Example 5.9. In Example 5.9, we used a polynomial that had 1 +

√
2 as a zero to

solve for the continued fraction expansion of this root. Following this lead and secretly
already knowing the answer we seek, we will search for a quadratic with z +

√
z2 − 1

and its algebraic conjugate as roots to compute the continued fraction expansion of√
z2 − 1. We have

(x− (z +
√
z2 − 1))(x− (z −

√
z2 − 1)) = x2 − 2xz + 1.

Setting this equal to zero gives

−x(x− 2z) = 1

So

x = 2z +
1

−x
.

We can almost conclude that

z +
√
z2 − 1 = 2z +

1

−2z +
1

2z +
.. .

implying
√
z2 − 1 = z +

1

−2z +
1

2z +
.. .

.

But before we jump to such hasty conclusions, we may notice that plugging z = 1
2

into
this equation implies the astonishing equality

√
3

2
i =

1

2
+

1

−1 +
1

1 +
. . .

.

This is concerning to say the least, as the left side is entirely imaginary, while the
would-be convergents of the right side are all entirely real! It turns out that once
again we need z sufficiently large for this continued fraction expansion to converge.
Further, like in Example 5.9 we need to answer why we have obtained the continued
fraction expansion of the root z +

√
z2 − 1 and not its conjugate? The answer to both

concerns, again like in Example 5.9, is provided by Theorem 5.10. If |z| < 1, we have
that z +

√
z2 − 1 and its conjugate are complex conjugates and are thus equidistant

from the (n − 1)-st convergent, an entirely real number. If |z| = 1, then we are in
the case where α1 = α2 = 1, and thus the first condition listed in Theorem 5.10 is
satisfied. Finally, if |z| > 1, then we have α1 = z +

√
z2 − 1, α2 = z −

√
z2 − 1 and
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Cn−1 = C1 = 1−2z2

2z
. We have then satisfied the second condition of the theorem, so we

can conclude that the continued fraction converges to z +
√
z2 − 1.

5.4.2. Method 2: Laurent series. We apply the algorithm for computing continued
fractions of functions discussed above. Usually computations with Laurent series are
messy, but in this case its not so bad, especially when we know what we’re looking for.
We first find that for f(z) =

√
z2 − 1,

f(1/x) =
√
x−2 − 1

=

√
1− x2

x2

=
1

x

√
1− x2

=
1

x
(1− x2

2
− x4

8
. . .)

=
1

x
− x

2
− x3

8
+ . . .

Changing the signs of the exponents, we find that the polynomial part we seek is a0 = z.
So f(z) = z+ 1

F1(z)
. We now want the polynomial part of F1(z) = 1√

z2−1−z . Computing

the Laurent series of F1(1/x) using a similar method as before we find that

F1(1/x) = −2

x
+
x

2
+
x3

8
+ . . . .

So the polynomial part of F1(z) is −2z. Continuing, we have f(z) = z + 1
−2z+ 1

F2(z)

.

But here, when we solve F2(z) = 1
F1(z)+2z

we find F2(z) = −F1(z). We know that the

polynomial part of F2(z) is therefore 2z. We then observe that F3(z) = 1
F1(z)+2z

=

−F2(z), and so on. This observation is equivalent to the algebra of method 1. Thus
we have

√
z2 − 1 = z +

1

−2z + 1

2z+
...

.

5.4.3. Method 3: Plane Trees and Luck. Could we have done this without Laurent
series or without knowing what we were looking for? By a fortunate accident in this
case, yes. We’ll need to use the following lemma from Van der Poorten.

Lemma 5.15. (Proposition 3.4 of [10]) Suppose x, y,D are polynomials satisfying

x(z)2 −D(z)y(z)2 = 1.

Then x
y

is a convergent of
√
D.
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Now notice that in our case we have the simple plane tree given by the first Chebyshev
polynomial, which has “odd vertex” polynomial D. But actually each of the plane trees
corresponding to the Chebyshev polynomials has the same odd vertices (because the
plane trees are “chains”), and thus each Chebyshev polynomial corresponds to the same
D. But the reason this is relevant is because this means each Chebyshev polynomial,
Tn and its corresponding “even vertex” polynomial, Qn satisfy

Tn(z)2 −D(z)Qn(z)2 = 1

So we are given an infinite number of convergents Tn
Qn

for
√
D. Now if we are lucky

enough to have obtained every convergent this way, then we can use equation (5.3) to
compute the coefficients from the numerators of the convergents. Because the degrees of
the Chebyshev polynomials are strictly increasing by 1 with every next polynomial, we
may conclude that we do indeed have every convergent. Example 1.2 of [7] Chebyshev
polynomials follow the relation

Tn = 2zTn−1 − Tn−2, T0 = 1, T1 = z.

This observation in conjunction with Equation (5.3) provides yet another way to see
that √

z2 − 1 = z +
1

−2z + 1

2z+
...

.

5.4.4. Generalization of Method 3. Now generally, one may notice that Theorem 3.9
still holds if we impose the alternative stipulations that the critical values of P and
Q are −1 and 1 (as opposed to 0 and 1), and that P (−1), P (1) ∈ {−1, 1} (instead of
P (0), P (1) ∈ {0, 1}). What’s more, each of the Chebyshev polynomials, Tn, has the
qualifications of such a P . This gives us a proposition.

Proposition 5.16. Let S(z) be a Shabat polynomial with CritV(S) = ±1 and “odd
valency polynomial” D(z). Then Xn

Yn
is a convergent of the periodic continued fraction

expansion of
√
D(z) where Xn and Yn are given by

Xn(z) = Tn ◦ S(z) = 2S(z)Tn−1 ◦ S(z)− Tn−2 ◦ S(z)

Yn(z) =

√
X2
n − 1

D(z)
.

Proof. We have seen the polynomial D(z) must satisfy the Pell equation and therefore
has a periodic continued fraction expansion by Theorem 5.12. Further, the polynomial
Tn ◦ S is Shabat by Theorem 3.9 with the alternate conditions proposed above. The
plane tree corresponding to Tn ◦ S amounts to substituting the tree corresponding
to Tn in for each of the edges of S (See Sections 3.4 and 3.5 for an exposition of tree
composition). But, as Tn is just a “chain tree” (i.e. one of the “chains” shown in figures
25 and 28, see Example 1.3 of [7]), this only adds verticies of even valency to the tree
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corresponding to S, not changing the odd valencies. The critical values of Tn ◦ S are
still at ±1 so by Lemma 5.15, Tn◦S(z) is another numerator of a convergent of

√
D(z).

For this convergent’s denominator, the formula for Yn can be obtained by solving the
Pell equation. Further, the recursive formula for Xn is obtained by substituting S(z)
for z in the recursive formula for Chebyshev polynomials. �

Unfortunately, these are not generally all of the convergents, and it is unclear to us
at this time exactly which convergents can be obtained in this way. Thus, until a better
understanding of these convergents is reached, Proposition 5.16 is of limited value.
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